蟑螂浓核病毒的三维结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来人们一直在探索着生物大分子的结构与其功能之间的关系。一般情况下,只有知道生物大分子的原子水平结构才能更好地了解其功能。所以生物大分子高分辨结构的研究对我们进一步了解病毒的装配过程和病毒在感染过程中在细胞内的一系列活动都至关重要。
     最早用于研究生物大分子高分辨结构的是X射线晶体学。可用于研究三维晶体的原子结构。但要求被研究的生物大分子能够生长成具有一定尺寸大小的三维晶体。由于这一局限,用X射线衍射技术研究不能结晶的生物大分子就很困难。
     核磁共振波谱学也可很好地研究溶液中生物大分子的原子级结构及动态的分子间的相互作用,但由于大分子量的生物大分子复合体的共振谱异常复杂,难以解释。所以,利用这一技术处理的生物大分子,其分子量一般不超过35Kda。
     用含水冷冻电子显微术进行生物大分子三维重构是近年来迅速发展的一门新兴学科。低温电子显微术是对含水生物大分子进行快速冷冻到液氮或液氦温度,并在低温条件下采用低电子剂量成像,从而可在高分辨水平上研究生物大分子的三维结构。而在传统电镜中,一般采用负染、化学固定、脱水等方法处理生物样品,使生物样品的高分辨结构信息失真,所以这种结构研究只局限于很低分辨率水平。而在低温电子显微术中,由于含水样品被冷冻的速率太快,样品内部的水来不及结晶而形成玻璃态的冰,这样整个生物大分子样品就被包埋在一薄层冰中。这层非晶态的薄冰一方面可作为支撑膜支撑样品,另一方面也可很好地在电镜的镜筒高真空中保存含水冷冻样品中的水,从而更好地保护含水生物大分子样品,使样品处于或接近于其生理活性状态,保持样品的高分辨结构信息。使生物大分子样品的高分辨三维结构研究成为现实。
    
     由于细小病毒主要感染人和哺乳动物,导致许多疾病。所以对细小病毒
    的研究比较深入。目前对许多动物细小病毒的生物学特性都比较清楚,如基因
    组结构、病毒粒子的衣壳蛋白结构以及结构与功能之间的关系,特别是其中的
    犬细小病毒、猫肠炎细小病毒、和小鼠细小病毒的晶体结构已经在近原子水平
    分辨率上得到阐述。然而对浓核病毒的研究却仍然有限。本文试图通过对嶂螂
    浓核病毒三维结构的研究,来阐明这方面的不足。
     素有活化石之称的嶂螂出现于3亿多年以前,是一种非常古老的昆虫。
    在我国分布最广的嶂螂种类是黑胸大蛾。黑胸大蜂浓核病毒是胡远扬等人
    1991年在国内首次报道并在国内外第一个正式分类鉴定的蜂螂浓核病毒。同
    时嶂螂也是一种危害不亚于蚊虫,苍蝇及老鼠的重要卫生害虫之一,传播许多
    疾病。该病毒属细小病毒科、浓核病毒亚科。它与其它细小病毒一样,病毒粒
    子无包膜,呈球状二十面体对称,直径22nm,基因组为单链线状DNA分子,
    含有五种结构蛋白,嶂螂浓核病毒基因组全长为5454个核昔酸,于C含量为
    38.13%。蜂螂浓核病毒可以感染嶂螂除中肠外的绝大部分组织。通常浓核病
    毒有很高的致病性,能在几天之内杀死大约90%的宿主幼虫,所以用浓核病
    毒作为杀虫剂很有潜力。因而希望进一步弄清楚它的结构和功能之间的关系。
    这对我们进一步了解病毒的浸染和增殖机理,有效地利用免疫学方法或基因工
    程方法改造昆虫浓核病毒,使之作为杀虫剂来控制和消灭有害昆虫都有极其重
    要的意义。
     本论文对嶂螂浓核病毒的基因组结构与其它细小病毒和浓核病毒的基因
    组结构进行了对比分析,发现嶂螂浓核病毒的基因组结构以及编码蛋白都有自
    己独特的特点。一般细小病毒基因组有两个主要的开放阅读框,位于同一条
    DNA链上,左边O灯编码一到两种非结构蛋白伽sl和NSZ),右边ORF编
    码三种结构蛋白(v卫l,VPZ和VP3)。其中主要成分是vPZ。而浓核病毒两条
    DNA链上都含有开放阅读框,右边含有一个开放阅读框(ORFI)编码所有的四
    种结构蛋白,左边含有三个开放阅读框(ORFZ,ORF3和ORF4)编码非结构蛋
    白。其中主要结构蛋白是V卫4。但蜂螂浓核病毒含有五种结构蛋白,有六个开
     II
    
    放阅读框,正链有3个大的阅读框(o RFa,O侧叨,ORFy),负链上也有3个大的
    阅读框(ORFI,ORFZ,ORF3),阅读框都集中在每条链的右端,并且有基因重叠
    现象。通过嶂螂浓核病毒基因组编码蛋白与其它细小病毒同源性的比较推测
    ORFa编码非结构蛋白,而ORFI和ORFZ编码五种结构蛋白。
     用SDS一PAGE电泳法对嶂螂浓核病毒的衣壳蛋白进行了分析,结果显示
    嶂螂浓核病毒衣壳蛋白由5条多肤组成,分子量分别为:VPI:52 kDa;VPZ:
    56 kDa;VP3: 79 kDa;VP4: 82 kDa;VPS:105 kDa。并利用凝胶成像系统
    分析软件对各蛋白质在衣壳中所占比例进行了计算,百分含量分别为:VPI:
    42.7%;VPZ:6.90%:VP3:31.9%;VP4:12.7%:VPS:5.75%。根据SDS一PAGE凝
    胶蛋白质条带密度以及百分含量计算结果确定VPI为蟀螂浓核病毒的主要结
    构蛋白。
     本论文的重点是利用低温电子显微术和三维重构法对嶂螂浓核病毒的三
    维结构进行研究。我们获得了分辨率为23人的嶂螂浓核病毒的三维结构,研
    究表明嶂螂浓核病毒含有五种结构蛋白,60个蛋白亚基按T二1的对称二十面
    体结
For a long time people have been trying to understand the relationship between the structure and function of the macromolecular complexes. In general, only with a good understanding of the structure of the macromolecular complexes at atomic resolution level, can its function be better understood. Therefore, investigations into the three-dimensional (3D) virus structures at a high resolution are crucial to the understanding of the fundamental processes of virus assembly and cellular events during viral infections.
    X-ray crystallography was the first method for structural determination of macromolecular complexes. It can be used to study atomic structure of 3-D crystals. The key requirement for a successful X-ray analysis is that the sample studied must grow to well-ordered 3-D crystals. However, due to this requirement, it is difficult to apply the technique of the X-ray crystallography in structural studies of viruses.
    Nuclear magnetic resonance (NMR) spectroscopy is a promising tool for studies of the atomic structure of small molecules and the macromolecule in solution. A unique feature of the technique is its ability to probe the dynamics of molecular conformations. However, the interpretation of the complex spectra obtained from the macromolecule with big molecular weight is exceptionally difficult. Therefore, NMR spectroscopy are normally used to study the structures of relatively small molecules with the molecular weight less than 35 Kda.
    Electron cryomicroscopy (cryoEM) is a fast emerging technique for three-dimensional structural reconstruction of macromolecular complexes. Through using this technique, images of frozen-hydrated macromolecules can be obtained by quickly freezing the specimen to the liquid nitrogen or liquid helium temperature, and then keeping the temperature below -150 C during the course of
    
    
    
    imaging. CryoEM images are recorded using a low electron dose (<20e / A2/s) to minimize the radiation damage to the specimen. This allows investigation into three-dimensional structures of macromolecular complexes at a high resolution. In the conventional electron microscopy, the stabilization of the sample in microscope vacuum is achieved through negative stain, chemical fixation, and dehydration, etc. This results in the loss of the high-resolution structural information of the biological sample. Therefore, the conventional methods can only be used for studies at a very low-resolution level. In contrast, in cryoEM , the cooling of hydrated specimen is exceptionally fast, avoiding the formation of crystalline ice. It is just like that the whole sample is embedded in a vitreous ice with the depth of about 2um. The layer vitreous ice can not only prop up the sample as support membrane, but also preserve the water in frozen-hydrated sample in the high vacuum of the microscope, giving a better protection of the sample of hydrated macromolecular complexes. As a result, the sample can be placed in or near to in the physiological active state, and the high resolution structure information of the sample can be retained. This makes possible the 3D structure study of macromolecular complexes at a high resolution.
    Parvoviruses are able to infect human and mammalian cells, and to cause a lot of diseases. Many efforts have been made to study the biological characteristics of the parvoviruses. The biological characteristic of many vertebrate parvoviruses have been clarified, for example the genome organization, the structure of capsids protein of virus particle, and the relationship between the structure and its function. In particular, among these studies, the crystal structure of three vertebrate parvoviruses, canine parvovirus(CPV), feline panleukopenia virus(FPV), and minute virus of mice(MVM), have been determined at near-atomic resolution using the technique of X-ray crystallography. However, the studies of densoviruses are still limited. This thesis will contribute to this subject through investigation into the 3D structure of Periplaneta fuliginosa densovirus (pfDNV).
    
    
    Cockroaches, an ancient insect
引文
曹日晖.蟑螂浓核病毒感染的黑胸大蠊消化道病理学研究(武汉大学硕士论文),1996
    谌东华,二十面体单颗粒结构的电子显微学研究(北京科技大学博士论文),2000
    冯建勋.中蜂囊状幼虫病病毒(CSBV)结构与分子生物学研究(中山大学博士论文),2000
    郭海涛,张珈敏,胡远扬.蟑螂浓核病毒全核苷酸序列与基因组结构。科学通报,2000,45:1076—1080
    郭海涛。蟑螂浓核病毒全核苷酸序列测定及基因组结构分析(武汉大学博士论文),2001
    胡远扬,梁东瑞,黄远达,等.发现黑胸大蠊(Perilaneta fuliginosa)非包涵体病毒。武汉大学学报,1991,1:114
    吕鸿声.昆虫病毒分子生物学.中国农业科技出版社,1998.
    李莉,谌东华,周正洪,张珈敏,胡远扬。蟑螂浓核病毒三维结构的对比分析。科学通报,2002,47:1907-1810
    蒲蛰龙主编,昆虫病毒学。1994,广州,广东科技出版社。
    杨复华.病毒学.湖南科学技术出版社,1992.
    姚二梅.蜚蠊浓核病毒的理化特性及其物理图谱的构建(武汉大学硕士论文),1994
    张立人,中国昆虫病毒电子显微镜图谱.1988,北京,科学出版社.
    郑东,Xue T,谌东华,郑明,Zhou ZH,徐伟。利用低温电镜术和像重构方法研究兔出血病毒的三维结构.科学通报,2001,46:39-43
    Abad-Zapatero C, Abedel-Meguid SS, Johnson JE, Leslie AG, Raymont I, Rossmann MG, Suck D and Tsukihara T. Structure of southern bean mosaic virus at 2.8 resolution. Nature, 1980, 286:33-39.
    Acharya R, Fry E, Stuart D, Fox G, Rowlands D and Brown F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 resolution.
    
    Nature, 1989, 337: 709-716.
    Adrian M, Dubochet J, Lepault J, Mcdowall AW, Cryo-electron microscopy of viruses. Nature, 1984,308:32-36.
    Agbandje M, Mckenna R, Rossmann M G, Strassheim ML, Parrish CR, Structure determination of feline panleukopenia virus empty particles. Proteins, 1993, 16: 155-171.
    Agbandje M,. Kajigaya, S, Mckenna, R, Young NS, Rossmann MG, Structure of human parvovirus B19 at 8 resolution. Virology, 1994, 203:106-115.
    Agbandje M, Parrish CR and Rossmarm MG, The structure of parvoviruses. Sem. Virol., 1995, 6: 299-309.
    Agbandje- Mckerma, M, Llamas-Saiz, AL, Wang, F, Tattersall, P. and Rossmann, MG. Functional implications of the structure of the murine parvovirus, minute virus of mice. Structure. 1998, 6: 1369-1381.
    Arnold R, Luo M, Vriend G, et al. Implications of the picornavirus capsid structure for polyprotein processing[J]. Proceding of the National Acadmy of Science of the United States of American, 1987, 84:21-25
    Astell CR, Thomson M, Merchlinsky M, Ward DC. The complete DNA sequence of minute virus of mice, an autonomous parvirus. Nucleic Acids Res. 1983, 11:999-1018.
    Auer M. Three-dimensional electron cryo-microscopy as a powerful structural tool in molecular medicine. J Mol Med. 2000, 78: 191-202.
    Ban N, McPherson A,. The structure of satellite panicum mosaic virus at 1.9 resolution. Nature Structural Biology,1995,2: 882-890.
    Baker TS, Drak J. and Bina M. Reconstruction of the three-dimensional structure of simian virus 40 and visualization of the chromatin core, Proceding of the National Acadmy of Science of the United States of American, 1988, 85: 422-426.
    
    
    Baker TS, Newcomb WW, Booy FP, Brown JC, Steven AC. Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. Journal of Virology. 1990,64:563-573.
    Baker TS, Newcomb WW, Olson NH, Cowsert LM, Olson C. and Brown JC. Structure of bovine and human papilloma viruses: analysis of cryoelectron microscopy and three-dimensional image reconstruction, Biophysics Journal, 1991, 60: 1445-1456.
    Baker TS, Cheng R.H. A model-based approach for determining orientations of biological macromolecules imaged by cryoelectron microscopy. J. Struct. Biol. 1996, 116: 120-130.
    Baker TS, Olson NH, Fuller SD. Adding the third dimension to virus life cycles: three-dimensional reconstruction of ieosahedral viruses from cryo-electron micrographs. Microbiol. Mol. Biol. Rev. 1999, 63: 862-922.
    Barbis, DP, Chang, SF, Parrish, CR. Mutations adjacent to the dimple of the canine parvovirus capsid structure affect sialie acid binding. Virology. 1992, 191: 301-308.
    Belnap DM, Filman D J, Trus BL, Cheng N, Booy FP, Conway IF, Curry S, Hiremath CN, Tsang SK, Steven AC. And Hogle JM. Molecular tectonic model of virus structural trasitions: the putative cell entry states of poliovirus. Journal Viology, 2000a, 74: 1342-1354.
    Belnap DM, McDermott BM, Filman D J, Cheng N, Trus BL, Zuccola HJ, Racaniello VR, Hogle JM. And Steven AC. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proceding of the National Academy of Science of the United States of American, 2000b, 97: 73-78.
    Bcrns KI. Parvoviridae and their replication. Virology (Fields BN, Knipc DM, ed.)., 2nd ed., Raven Press Ltd., New York, 1990, pp: 1743-1763.
    Bhuvancshwari M, et al, Structure of sesbania mosaic virus at 3.0 resolution.
    
    Structure, 1995, 3:1021-1030.
    Bloom ME, Alexandersen S, Perryman S, Lechner D, Wolfinbarger JB. Nucleotide sequence and genomic organization of aleutian mink disease parvovirus (ADV): Sequence comparisons between a nonpathogenic and a pathogenic strain of ADV. J. Virol., 1988,62:2903-2915.
    Booy FP, Newcomb WW, Trus GL, Brwon JC, Baker TS. And Steven AC. Liquid-crystalline, phage-like packing of encapsidated DNA in herpes simplex virus. Cell, 1991, 64: 1007-1015.
    Bottcher B, Tsuji N, Takahashi H, Dyson MR, Zhao S, Crother RA. And Murray K. Peptides that block hepatitis B virus assembly: analysis by cryomicroscopy, mutagenesis and transfection. EMBO Journal, 1998, 17: 6839-6845.
    Bottcher C, Ludwig K, Herrmann A, van Heal M, and Stark H, Structure of influenza haemagglutinin at nutral and at fusogenic PH by electron cryo-microscopy, FEBS Lett, 1999, 463: 255-259.
    Brink J, Chiu W, Dougherty M. Computer-controlled spot-scan imaging of crotoxin complex crystals with 400KeV electrons at near atomic resolution. Ultramicroscopy. 1992, 46: 229-240.
    Brown, CS, Jensen, T, Meloen, RH, Puuk, W, Sugamura, K, Sato,H and Spaan, WJM. Localization of an immunodominant domain on baculovirus-produced parvovirus B19 capsids: Correlation to a major surface region of the native virus particle. J. Virol., 1992, 66: 6989-6996.
    Brown KE, Anderson SM, Young NS. Erythrocyte P antigen: Cellular receptor for B19 parvovirus. Science, 1993, 262:114-117.
    Butcher SJ, Aitken J, Gowen B, and Dargan DJ. Structure of the human cytomegalovirus B capsis by electron cryomicroscopy and image reconstruction. Journal Structural Biology, 1998, 124: 70-76.
    
    
    Carlson J, Rushlow K, Maxwell I, Maxwell F, Winston S, Hahn W. Cloning and sequence of DNA encoding structural proteins of the autonomous parvovirus feline panleukopenia virus. J. Virol., 1985, 55(3):574-582.
    Chang, SF, Sgro, JY, Parrish, CR. Multiple amino acids in the capsid structure of canine parvovirus coordinately determine the host range and specific antigenic and hemagglutination properties. J. Virol. 1992, 66:6858-6867
    Chapman, MS and Rossmann MG. Structure, sequence, and function correlations among parvoviruses. Virology. 1993, 194:491-508
    Chen KC, Shull BC, Moses EA, Lederman M, Stout ER, Bates RC. Complete nucleotide sequence and genome organization of bovine parvovirus. J. Virol., 1986,60:1085-1097.
    Chen DH, Jiang H, Lee M, Liu F, Zhou ZH. Three dimensional visualization of tegument/capsid interactions in intact human cytomegalovirus. Virology. 1999, 260:10-16.
    Chen Z, Stauffacher C, Li Y, Schmidt T, Wu B, Kamer G, Shanks M, Lomonossoff G, and Johnson JE. Protein-RNA interactions in an icosahedral virus at 3.0 resolution. Science, 1989, 245: 154-159.
    Chen Z, Johnson JE. Capsid structure and RNA packaging in comovirus. Seminar in Virology, 1990, 453-466.
    Cheng RH, Olson NH, and Baker TS. Cauliflower mosaic virus, a 420 subunit (T=7) multi-layer structure. Virology, 1992, 186: 655-668.
    Cheng RH, Caston JR, Wang G, Gu F, Smith TG, Baker TS, Bozarth RF, Trus BL, Cheng N, Wickner RB. And Steven AC. Fungal virus capsids, cytoplasmic compartment for the replication of double-stranded RNA, formed as icosahedral shells of asymmetric Gag dimmers. Journal Molecular Biology, 1994, 244: 255-258.
    Chiorini JA, Kim F, Yang L, Kotin RM. Cloning and characterization of adeno-associated virus type 5. J. Virol., 1999, 73(2): 1309-1319.
    
    
    Chipman PR, Agbandje-MeKenna M, Kajigaya S, Brown KE, Young NS, Baker TS. And Rossmarm MG. Cryo-electron microscopy studies of empty eapsids of human parvovirus B19 complexed with its cellular receptor. Pine. Nail Acad. Sci. USA, 1996, 93: 7502-7506.
    Chipman PR, Agbandje-McKenna M, Renaudin J, Baker TS and McKerma R. Structural analysis of the Spiroplasma virus, Sp V40: implications for evolutionary varition to obtain host diversity among the Microviridae. Structure, 1998, 6: 135-145.
    Chiu W, Electron microscopy of frozen, hydrated biological specimens. Ann. Rev. Biophys. Chem. 1986, 15:237-257.
    Chiu W, Smith TJ. Structural studies of virus-antibody complexes by electron cryomicroscopy and X-ray crystallography. Curr. Opin. Struct. Biol. 1994,4:219-224.
    Chiu W. Structural Biology of Viruses[M] New York Oxford: Oxford University Press. 1997, 108-114.
    Chiu CY, Mathias P, Nemerow GR. And Stewart PL. Structure of adenovirus complexed with its internalization receptor, alphavbeta 5 integrin. Journal of Virology, 1999,73: 6759-6768.
    Chiu W, McGough A, Sherman MB, Schmid MF. High-resolution electron cryomicroscopy of macromolecular assemblies. Trends in Cell Biology. 1999, 9:154-159.
    Conway JF, Duda RL, Hendrix RW, Steven AC. Proteolytic and conformational control of virus capsid maturation: The bacteriophage HK97 system. J. Mol. Biol. 1995, 253:86-99.
    Conway JF, Cheng N, Zlotnick A, Wingfield PT, Stahl SJ. And Steven AC. Visualization of a 4-helix boundle in the hepatitis B virus capsid by cryoelectron microscopy. Nature, 1997, 386: 91-94.
    
    
    Corsini J, Afanasiev B, Maxwell IH, Carlson JO. Autonomous parvovirus and densovirus gone vectors. Adv. Virus Res., 1996, 47: 303-351.
    Crowther RA, DeRosier D J, Klug A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. Roy. Soc. London. 1970, 317:319-340.
    Crowther RA. Procedures for three-dimensional reconstruction of spherical viruses by fourier synthesis from electron micrographs. Phil. Trans. Roy. Soc. Lond. B. 1971, 261:221-230.
    Crowther RA, Kiselev NA, Bottcher B, Berriman JA, Borisova GP, Ose V, and Pumpens P. Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell, 1994, 77: 943-950.
    Deiss V, Tratschin J-D, Weitz M, Siegl G. Cloning of the human parvovirus B19 genome and structural analysis of its palindromic termini. Virology, 1990,175: 247-254.
    Deleu L, Pujol A, Faisst S, Rornmelaere J. Activation of promoter P4 of the autonomous parvovirus minute virus of mice at early S phase is required for productive infection. J. Virol., 1999, 73(5): 3577-3885.
    DeRosicr DJ, Klug A. Reconstruction of three-dimensional structures from electron micrographs. Nature. 1968, 217:130-134.
    Dokland T, Lindqvist BH. And Fukker SD. Image reconstruction from cryo-electron micrographs reveals the morphopoietie mechanism in P2-P4 bacteriophage system. EMBO Journal, 1992, 11: 839-846.
    Dokland T, Murialdo H. Structural transitions during maturation of bacteriophage lambda capsids. Journal of Molecular Biology. 1993, 233:682-694.
    Dokland T, McKenna R, Seherman DM, Bowman BR, Bean WF. And Rossmann MG. Structure determination of the phiX174 closed procapsid. Acta.
    
    Crystallogr D Bio. Crystallogr, 1998, 54: 878-890.
    Downing KH, Chiu W. Cold stage design for high resolution electron microscopy of biological materials. Electron Microsc. Rev. 1990, 3: 213-226.
    Downing K.H. Spot-scan imaging in transmission electron microscopy .Science. 1991, 251: 53-59.
    Dryen KA, Wang G, Yeager M, Nibert ML, Coombs KM, Furlong DB, Field BN. And Baker TS. Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. Journal of Cell Biology, 1993, 122:1023-1041.
    Dubochet J, Lepault J, Freeman R, Berriman JA, Homo JC. Electron microscopy of frozen water and aqueous solutions. J. Microsc. 1982, 128:219-237.
    Dubochet J, Adrian M, Lepault J, McDowall W. Cryo-electron microscopy of vitrified biological specimens. Trends Biochem. Sci. 1985, 10: 143-146.
    Dubochet J, Adrian M, Chang JJ, Homo JC, Lepault J, McDowall AW. And Schultz P. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 1988, 21: 129-228.
    Eisenberg D, Hill PC. Protein crystallography: more surprises ahead. Trends in biochemical sciences, 1989, 14:260-263.
    Erickson HP, Klug A. The fourier transform of an electron micrograph: effects of defocussing and aberrations, and implications for the use of underfocus contrast enhancement. Phil. Trans. Roy. Soc. Lond. B. 1970, 261:105-118.
    Filman D J, Syed R, Chow M, Macadam AJ, Minor PD. And Hongle JM. Structural factors that control conformational transitions and serotype specificity in type3 poilovirus. EMBL Journal, 1989, 8: 1567-1579.
    
    
    Fisher AJ, Johnson JE,. Ordered duplex RNA controls capsid architecture in an icosahedral animal virus. Nature (London), 1993, 361: 176-179.
    Frank J. Determination of source size and energy spread from electron micrographs using the method of Young's fringes. Optik. 1976, 44: 379-391.
    Fukami A, Adachi K. A new method of preparation of a self-perforated micro plastic grid and its application(I). Journal of Electron Microscopy. 1965, 14: 112-118.
    Fuller SD. The T=4 envelope of sindbis virus is organized by complementary interactions with a T=3 icosahedral capsid. Cell, 1987,48: 923-934.
    Fuller SD, Butcher S J, Cheng RH, Baker TS. Three-dimensional reconstruction of icosahcdral particles- the uncommon line. J. Struct Biol. 1996, 116: 48-55.
    Fuller ST, Wilk T, Gowen BE, Krausslich HG. And Vogt VM. Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Current Bioligy, 1997, 7: 729-738.
    Gao H, J.Zhang, Y.Hu, Complete sequence and organization of Periplaneta fuliginosa densovirus genome. Acta virologica. 2000, 44:315-322.
    Girod A, Ried M, Wobus C, Lahm H, Leike K, Kleinschmidt J, Deleage G. and Hallek M. Genetic capsid modifications allow efficient re-targeting of adeno-associated virus type 2. Nature Med. 1999, 5: 1052-1056.
    Glaeser RM, Chiu W, Grano D. Structure of the surface layer protein of the outer membrane of spirillum serpens. Journal of Ultrastructure Research. 1979, 66:235-242.
    Glaescr RM. Methods of Experimental Physics. (Academic Press, Inc., New York, 1982), Vol. 20, pp. 391-444.
    Glacscr RM, Downing KH. Assessment of resolution in biological electron crystallography. Ultramicroscopy. 1992, 47: 256-265.
    Gohnohammadi R, Valcgard K, Fridborg K, Liljas L. The refined structure of
    
    bacteriophage MS2 at 2.8 resolution. Journal of Molecular Biology, 1993,234: 620-639.
    Grimes JM, et al., An atomic model of the outer layer of the bluetongue virus core derived from x-ray crystallography and electron cryomicroscopy. Structure. 1997, 5:885-893.
    Grimes JM, et al., The atomic structure of the bluetongue virus core. Nature (London), 1998, 395: 470-478.
    Grimes JM, Fuller SD, Stuart DI. Complementing crystallography: the role of cryo-electron microscopy in structural biology. Acta Crystallogr. D Biol. Crystallogr. 1999, 55:1742-1749.
    Gross O and Tal J. Expression of insect parvovirus GmDNV in vivo: the structure and non-structural proteins are encoded by opposite DNA strands. Journal of Invertebrate Pathology, 2000, 75: 126-132.
    Hadficld AT, et al., The refined structure of human rhinovirus 16 at 2.15 resolution: implications for the viral life cycle. Structure, 1997, 5: 427-441.
    Harrison SC, Olson A, Schutt CE, Winkler FK. Bricogne G. Tomato bushy stunt virus at 2.9 resolution. Nature, 1978, 276:368-373.
    He Y, Bowman VD, Mueller S, Bator CM, Bella J, Peng X, Baker TS, Wimmer E, Kuhn PJ. And Rossmarm MG. Interaction of the poliovirus receptor with poliovirus, Proccding of the National Academy of Science of the United States of American, 2000, 97: 79-84.
    Henderson R. Image contrast in high-resolution electron microscopy of biological maromoleculcs: TMV in ice. Ultramicroscopy. 1992, 46: 1-18.
    Hewat EA, Booth TE, Loudon PT. And Roy P. Three-dimensional reconstruction of baculovirus expressed Bluctongue virus core-like particles by electron microscopy. Virology, 1992, 189: 10-20.
    Hewat EA, and Blass D. Structure of a neutralizing antibody bound bivalently to human rhinovirus 2. EMBO Journal, 1996, 15: 1515-1523.
    Hewat EA, Verdaguer N, Fita I, Blakernore W, Brookes S, King A, Newman J,
    
    Domingo E, Matuu MG, and Stuart DI. Structure of the complex of Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: positioning of a highly mobile antigenic loop. EMBO Journal, 1997, 16: 1492-1500.
    Hogle JM, Chow M, Filman DJ. Three-dimensional structure ofpoliovirus at 2.9 resolution. Science, 1985, 229: 1358-1365.
    Hogle JM, Maeda A, Harrison SC. The structure and assembly of turnip crinkle virus Ⅰ: X-ray crystallographic analysis at 3.2 resolution. Journal of Molecular Biology, 1986, 191: 625-638.
    Hu Y, J. Zhang, T.Iizuka and H.Bando. A densovirus newly isolated from the smoky-brown cockroach Periplaneta fuliginosa. Arch Virol. 1994, 138: 365-372.
    Jakubowski U, Baumeister W, Glaeser RM. Evaporated carbon stabilizes thin, frozen-hydrated specimens. Ultramicroscopy. 1989, 31: 351-356.
    Jeng TW and Chiu W. Low dose cryo-electron microscopy of the crotoxin complex thin crystal. Journal Molecular Biology. 1983, 164: 329-346.
    Jeng TW, Chiu W, Zemlin F, Zeitler E. Electron imaging of crotoxin complex thin crystal at 3.5 Journal of Molecular Biology. 1984, 175: 93-97.
    Jeng TW, Crowther RA, Stubbs G. and Chiu W. Visualization of alpha-helices in tobacco mosaic virus by cryo-electron microscopy. Journal Molecular Biology, 1989, 205: 251-257.
    Jones TA, Liljas L. Structure of satellite tobacco necrosis virus after crystallographic refinement at 2.5 resolution. Journal of Molecular Biology, 1984, 177: 735-767.
    Jongeneel CV, Sahli R, McMaster GK, Hirt B. A precise map of splice junctions in the mRNA's of minute virus of mice, an autonomous parvovirus. J Virol. 1986, 59: 564-573.
    
    
    Kariatsumari T, Horiuchi M, Hama E, Yaguchi K, Ishigurio N, Goto H, Shinagawa M. Construction and nucleotide sequence analysis of an infectious DNA clone of the autonomous parvovirus, mink enteritis virus. J. Gen. Virol., 1991, 72: 867-875.
    Kenney JM, Von Bonsdorff CH, Nassal M. and Fuller SD. Evolutinary conservation in the hepatitis Bvirus core structure: comparison of human and duck core. Structure, 1995, 15: 1009-1019.
    Kerr JR. The parvoviridae; an emerging virus family. Infect Dis Rev. 2000, 2(3): 99-109.
    Kim SS, et al., Crystal structure of human rhinovirus serotype 1A (HRV1A). Journal of Molecular Biology, 1989: 210: 91-111.
    Kolatkar PR, Bella J, Olson NH, Bator CM, Baker TS. And Rossmann MG. Structural studies of two rhinovirus syrotypes completed with fragments of their cellular receptor. EMBO Journal, 1999, 18: 6249-6259.
    Kuhlbrandt W, Wang DN, Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994, 367: 614-621.
    Kumar A, et al., The structure of alfalfa mosaic virus capsid protein assembled as a T=1 icosahedral particle at 4.0 resolution. Journal of Virology, 1997, 71: 7911-7916.
    Langeveld JPM, Casal JI, Vela C, Dalsgaard K, Smale SH, Puijk WC, Meleon RH. B-cell epitpoes of canine parvovirus: Distribution on the primary structure and exposure on the viral surface. J. Virol. 1993: 67: 765-772.
    Larson SB, Day J, Greenwood A, Mcpherson A. Refined structure of satellite tobacco mosaic virus at 1.8 resolution. Journal of Molecular Biology, 1998, 277: 37-59.
    
    
    Lee S, Owen KE, Choi HK, Lee H, Lu G, Wengler G, Brown DT, Rossmann MG. And Kuhn RJ. Identification of a protein binding site on the surface of the alphavirus nucleocapsid and its implication in virus assembly. Structure, 1996, 4: 531-541.
    Liljas L, Fridborg K, Valegard K, Bundule M, Pumpens P. Crystal structure of bacteriophage fr capsids at 3.5 resolution. Journal of Molecular Biology, 1994, 244: 279-290.
    Lin T, et al., Structural fingerprinting: Subgrouping of comoviruses by structural studies of red clover mottle virus to 2.4 resolution and comparisons with other comoviruese. Journal of Virology, 2000, 74: 493-504.
    Llamas-Saiz A L, Agbandje-Mckenna M, Wikoff W R, Bratton, J, Tattersall, P, and Rossmann, MG, Structure determination of minute virus of mice. Acta Cryst. D, 1997, 53: 93-102.
    Lu G, Zhou ZH, Baker ML, Jakana J, Cai D, Wei X, Chen S, Gu X. and Chiu W. Structure of double-shelled rice dwarf virus. Journal Viology, 1998, 72: 8541-8549.
    Ludtke S J, Baldwin PR, Chiu W. EMAN: Semi-automated software for high resolution single particle reconstructions. Journal of Structural Biology. 1999, 128: 82-97.
    Luo M, Vriend G, Kamer G, Minor I, Arnold E, Rossmann MG, Boege U, Scraba DG, Duke GM, and Palmenberg AC. The atomic structure of Mengo virus at 3.0 resolution. Science, 1987, 235: 182-191.
    McKenna P, Ilag LL, Rossmann MG. Analysis of the single-stranded DNA bacteriophage phiX174, refined at a resolution of 3.0 Journal of Molecular Biology, 1994, 237: 517-543.
    McKenna R, Olson N H, Chipman P R, Baker, TS, Booth, TF, Christensen, J, Aasted, B, Fox, JM, Bloom, ME, Wolfinbarger, JB, and Agbandje-McKenna,
    
    M, Three-dimensional structure of aleutian mink disease parvovirus: implications for disease pathogenicity. J Virology, 1999, 73: 6882-6891
    McPherson A, The preparation and analysis of protein crystals (John Wiley and Sons, New York, 1982)
    Metealf P, Cryklaff M. and Adrian M. The three-dimensional structure of reovirus obtained by cryo-electron microscopy. EMBO Journal, 1991, 10: 3129-3136.
    Miyazawa A, Fujiyoshi Y, Stowell M, Unwin N. Nicotinic acetylcholine receptor at 4.6 resolution: transverse tunnels in the channel wall. Journal of Molecular Biology. 1999, 288: 765-786.
    Newcomb WW, Brown JC. Structure of the herpes simplex virus capsid: Effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. Journal of Virology. 1991, 65: 613-620.
    Olson NH, Baker TS, Bomn W, Johnson JE. And Hendry DA. The three-dimensional structure of frozen-hydrated Nudaurelia capensis bate virus. Proc. Elect. Microsc. Soc. Am., 1987, 45: 650-651.
    Olson NH, Baker TS, Johnson JE, Hendry DA. The three-dimensional structure of frozen-hydrated nudaurelia capensis virus, a T=4 insect virus. Journal of Structural Biology. 1990, 105: 111-122.
    Olson NH, et al., Structure of a human rhinovirus complexed with its receptor molecule. Proceedings of National Academy of Sciences. 1993, 90: 507-511.
    Parrish, CR, Carmichael, LE, Antczak, DF, Antigenic relationships between canine parvovirus type 2, feline panleukopenia virus and mink enteritis virus using conventional antisera and monoclonal antibodies. Arch. Virol. 1982, 72: 267-278
    Parrish, CR, Aquadro, CF, Carmichael, LE. Canine host range and a specific epitope map along with variant sequences in the capsid protein gene of canine parvovirus and related feline, mink, and raccoon parvoviruses. Virology. 1988, 166: 293-307
    Parrish, CR. Mapping specific functions in the capsid structure of canine
    
    parvovirus and feline panleukopenia virus using infectious plasmid clones. Virology. 1991, 183: 195-205.
    Prasad BVV, Wang GL, Clerx JPM, and Chiu W. Three-dimensional structure of rotavirus. Journal Molecular Biology, 1988, 199: 269-275.
    Prasad BVV, Burns JW, Marietta E, Estes MK, Chiu W. Localization of VP4 neutralization sites in rotavirus by three-dimensional cryo-electron microscopy. Nature (London). 1990, 343: 476-479.
    Prasad BVV, Yamaguchi S. and Roy P. Three-dimensional structure of single-shelled bluetongue virus. Journal of Viology, 1992, 66: 2135-2142.
    Prased BVV, Prevelige PE, Marietta E, Chen RO, Thomas D, King J. and Chiu W. Three-dimensional transformation of capsids associated with genome package in bacterial virus. Journal Molecular Biology, 1993, 231: 65-74.
    Prasad BVV, Matson DO, Smith AW. Three-dimensional structure of calicivirus. Journal of Molecular Biology. 1994, 240: 256-264.
    Prasad BVV, Rothnagel R, Jiang X, and Estes MK. Three-dimensional structure of baculovirus expressed norwalk virus capsids. Journal Viology, 1994, 68: 5117-5125.
    Prasad BVV, et al., X-ray crystallographic structure of the norwalk virus capsid. Science, 1999, 286: 287-290.
    Rabinowitz J, Xiao W. and Samulski R. Insertional mutagenesis of AAV2 capsid and the protection of recombinant virus. Virology. 1999, 265: 274-285.
    Radek R, Fabel P. A new entomopoxvirus from a cockroach: light and electron microscopy. J. Invertebr. Pathol., 2000, 75(1): 19-27.
    Radermacher M. Three-dimensional reconstruction of single particles from random and non-random tilt series. J. Electr. Microsc. Tech. 1988, 9: 359-394.
    Ranz AI, Manclus JJ, Diaz-Aroca E, Casal JI. Porcine parvovirus: DNA sequence and genome organization. J. Gen. Virol., 1989, 70: 2541-2553.
    
    
    Reed AP, Jones EV, Miller TJ. Nucleotide sequence and genome organization of canine parvovirus. J. Virol., 1988, 62: 266-276.
    Rhode SI Ⅲ, Paradiso PR. Nucleotide sequence of H-1 and mapping of its genes by hybrid-arrested translation. J. Virol., 1983, 45: 173-184.
    Rhode SI Ⅲ. Nucleotide sequence of the coat protein gene of canine parvovirus. J. Virol. 1985, 54: 630-633
    Rosenfeld S J, Yoshimoto K, Kajigaya S, Anderson S, Young NS, Field A, Warrener P, Bansal G and Collett MS. Unique region of the minor capsid protein of human parvovirus B19 is exposed on the virion surface. J. Clin. Invest. 1992, 89: 2023-2029
    Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosse, AG, Rueckert RR, Sherry B, and Vriend G. Structure of a human common cold vires and functional relationship to other picornaviruses. Nature (London). 1985, 317: 145-153.
    Rossmann MG, and Palmenberg AC. Conservation of the putative receptor attachment site in picornaviruses. Virology. 1988, 164: 373-382.
    Schmid MF, Sherman MB, Matsudaira P, Tsuruta H, Chiu W. Scaling structure factor amplitudes in electron cryomicroscopy using X-ray solution scattering. Journal of Structural Biology. 1999, 128: 51-57.
    Schrag JD, Prasad BVV, Rixon FJ. And Chiu W. Three-dimensional structure of the HSV1 nucleocapsid. Cell, 1989, 56: 651-660.
    Shade RO, Blundell MC, Cotmore SF, Tattersall P, Astell CR. Nucleotide sequence and genome organization of human parvovirus B19 isolated from the serum of a child during aplastic crisis. J. Virol., 1986, 58: 921-936.
    Shaw AL, Rothnagel R, Chen D, Ramig R.F, Chiu W. and Prasad BVV. Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell,
    
    1993, 74: 693-701.
    Sherman MB, Brink J, Chiu W. Performance of a slow-scan CCD camera for macromolecular imaging in a 400 Kev electron eryomieroscope. Micron. 1996, 27: 129-139.
    Simpson AA, Chipman PR, Baker TS, Tijssen, P and Rossmann MG, The structure of an insect parvovirus (Galleria mellonella densovirus) at 3.7 resolution. Structure, 1998, 6: 1355-1367
    Simpson AA, Chandrasekar V, Hebert B, Sullivan GM, Rossmann MG, Parrish CH. Host range and variability of calcium binding by surface loops in the capsids of canine and filine parvoviruses. J. Mol. Biol., 2000, 300: 597-610.
    Skoglund U, Ofverstedt LG, Burnett RM, Bdcogne G. Maximum-entropy three-dimensional reconstruction with deconvolution of the contrast transfer function: a test application with adenovirus. J. Struct. Biol. 1996, 117: 173-188.
    Smith MF. And Langmore JP. Quantitation of molecular densities by cryo-electron microscopy, determination of the rasial density distribution of tobacco mosaic virus. Journal Molecular Biology, 1992, 226: 763-774.
    Smith TJ, Olson NH, Cheng RH, Chase ES. And Baker TS. Structure of a human rhinovirus-bivalently bound antibody comlex: implications of viral neutralization and antibody flexibility. Proceeding of the National Academy of Science of the United States of American, 1993a, 90: 7015-7018.
    Smith TJ, Olson NH, Cheng RH, Liu H, Chase ES, Lee WM, Leippe DM, Mosser A, Rueckert RR. And Baker TS. Structure of human rhinovirus complexed with Fab fragment from a neutralizing antibody. Journal Virology, 1993b, 67: 1148-1158.
    Smith TJ, Cheng HR., Olson NH, Peterson P, Chase E, Kuhu RJ. And Baker TS. Putative receptor binding site on alphaviruses as visualized by cryoelectron microscopy, Proceeding of the National Academy of Science of the United States of American, 1995, 92: 10648-10652.
    
    
    Sosa H, et al., A model for the microtubule-Ncd motor protein complex obtained by cryo-clectron microscopy and image analysis. Cell. 1997, 90: 217-224.
    Speir JA, Munshi S, Wang G, Baker TS, Johann JE. Structure of the native and swollen forms of cowpca chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure, 1995, 3: 63-78.
    Spence JCH. Experimental high-resolution electron microscopy(Oxford University Press, NY, ed. 2nd ed., 1988).
    Spencer JV, Trus RL, Booy PP, Steven AC, Newcomb WW., and Brown JC. Structure of the herpes simplex virus capsid: peptide A862-H880 of the major capsid protein is displayed on the rim of the capsomer protrusions. Virology, 1997, 228: 229-235.
    Stark H, et al., Arrangement of tRNAs in pre-and posttranslocational ribosomes revealed by electron cryomicroscopy. Cell. 1997, 88: 19-28.
    Stehle T, Yan Y, Benjamin TL, Harrison SC. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature, 1994, 369: 160-163.
    Stehle T, Gamblin SJ, Yan Y, Harrison SC. The structure of simian vires 40 refined at 3.1 resolution. Structure, 1996, 4: 165-182.
    Stephanie K, Jurgen A, Kleinschmidt & Bettina B. Electron cryo-microscopy and image reconstruction of adeno-associated virus type 2 empty capsids. EMBO reports. 2001, 21: 997-1002.
    Stewart PL, Burner RM, Cryklaff M. and Fuller SD. Image reconstruction reveals the complex molecular organization of adenovirus. Cell, 1991, 67: 145-154.
    Stewart PL, Fuller SD, Burnett RM. Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy. EMBO J. 1993, 12: 2589-2599.
    Stewart PL, Chiu CY, Huang S, Muir T, Zhao Y, Chait B, Mathias P. and Nemerow GR. Cryo-EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization. EMBO Journal, 1997, 16: 1189-1198.
    
    
    Stowell MH, Miyazawa A, Unwin N. Macromolecular structure determination by electron microscopy: new advances and recent results. Curr Opin Struct Biol. 1998, 8: 595-600.
    Strassheim ML, Gruenberg A, Veijalainen P, Sgro J-Y, Parrish CR. Two dominant neutralizing antigen determinants of canine parvovirus arc found on the threefold spike of the virus capsid. Virology, 1994, 198: 175-184.
    Suto C. A new virus isolated from the cockroach, Periplaneta fuliginosa(Serville). Microbiol. Immunol., 1979, 23: 207-211.
    Szilagyi JF. And Berriman J. Herpes simplex virus L particles contain spherical membrane-enclosed inclusion vesicles. Journal General Virology, 1994, 75: 1749-1753.
    Taylor KA, Glaeser RM, Electron diffraction of frozen, Hydrated protein crystals. Science, 1974, 186: 1036-1037.
    Thuman-Commike PA, Tsuruta H, Greene B, Prevelige PE, King J. and Chiu W. Solution X-ray scaRing-based estimation of electron cryomieroscopy image parameters for reconstruction of virus particles. Biophysical Journal, 1999, 76: 2249-2261.
    Tijssen P. and Bergoin M. Densonucleosis viruses constitute an increasingly diversified subfamily among the parvoviruses. Semin. Virol. 1995, 6: 347-355.
    Toyoshima C, Unwin PNT. Contrast transfer for frozen-hydrated specimens: Determination from pairs of defocused images. Ultramicroscopy. 1988, 25: 279-291.
    Toyoshima C, Yonekura K. Contrast transfer for frozen-hydrated specimens: Determination from pairs of defocused images. Ultramicroscopy. 1993, 48: 165-176.
    Tratschin, JD, McMaster, GK, Kronauer, G, Siegl, G. Canine parvovirus: relationship to wild-type and vaccine strains of feline panleukopenia virus and mink enteritis virus. J. Gen. Virol. 1982, 61: 33-41.
    
    
    Trus BL, Newcomb WW, Booy FP, Brown JC., and Steven AC. Distinct monoclonal antibodies separately label the hexons or the pentons of herpes simplex virus capsid. Proceeding of the National Academy of Science of the United States of American, 1992, 89: 11508-11512.
    Trus BL, Gibson W, Cheng N, and Steven AC. Capsid structure of simian cytomegalovirus from cryoelectron microscopy: evidence for tegument attachment sites. Journal Virology, 1999, 73: 2181-2192.
    Tsao J, Chapman M S, Agbandje M, Keller W, Smith, K, Wu, H, Luo, M, Smith, TJ, Rossmann, MG, Compans RW, ans Parrish, CR, The three-dimensional structure of canine parvovirus and its functional implications. Science, 1991, 251: 1456-1464
    Unwin PNT, Henderson R. Molecular structure determination by electron microscopy of unstained crystalline specimens. Journal of Molecular Biology. 1975, 94: 425-440.
    Van Regenmortel MHV, Fauquet CM, Bishop DHL, Carstens EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB. Virus taxonomy: classification and nomenclature of viruses. (Seventh reports of the International Committee on Taxonomy of Viruses) Academic Press, San Diego, 2000.
    Verdaguer N, Schoehn G, Ochoa WF, Fita I, Brookes S, King A, Domingo E, Mateu MG, Stuart D, and Hewat EA. Flexibility of the major antigenic loop of foot-and-mouth disease virus bound to a Fab fragment of a neutralizing antibody: structure and neutralization, Virology, 1999, 255: 260-268.
    Vogel RH, Provencher SW, yon Bonsdorff CH, Adrian M. and Dubochet J. Envelope structure of Semliki Forest virus reconstructed from cryo-electron microscopy. Nature, 1986, 320: 533-535.
    Wade RH, Frank J. Electron microscopic transfer function for partially coherent axial illumination and chromatic defocus spread. Optik. 1977, 49: 81-92.
    
    
    Wang G, Porta C, Chen Z, Baker T, Johnson JE. Identification of a Fab interaction footprint site on an icosahedral virus by cryoelectron microscopy and X-ray crystallography. Nature. 1992, 355: 275-278.
    Wagner G, An account of NMR in structural biology. Nature structural biology suppl., 1997, 841-844.
    Weiss WJH, Brown S, Cusack JC, Paulson JJ, Skekel, and D.C. Wiley. Structure of influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature. 1988, 333: 426-431.
    Wery JP, Reddy VS, Hosur MV, Johnson JE. The refined three-dimensional structure of an insect virus at 2.8 resolution. Journal of Molecular Biology, 1994, 253: 565-586.
    Williams RC, Fisher HW. Electron microscopy of tobacco mosaic virus under conditions of minimal beam exposure. Journal of Molecular Biology. 1970, 52: 121-123.
    Wu P, Xiao W, Conlon T, Hughes J, Agbandje-McKerma M, Ferkol T, Flotte T. and Muzyczka N. Mutational analysis of the adeno-associated vires type 2 (AAV2) capsid gene and construction of AAV2 vectors with altered tropism. J. Virol. 2000, 74: 8635-8647.
    Wuthrich K, The second decade-into the third millennium. Nature structural biology suppl., 1998, 492-495.
    Wynne SA, Crowther RA, Leslie AG. The crystal structure of the human hepatitis B virus capsid. Molecular Cell, 1999, 3: 771-780.
    Xing L, Kato K, Li T, Takeda N, Miyamura T, Hammar L, and Cheng RH. Recombinant hepatitis E capsid protein self-assemble into a dual-domain T=1 particle presenting native virus epitopes. Virology, 1999, 265: 35-45.
    Yamagish J, Y.Hu, J.Zhang, and H. Bando, Crenome organization and mRNA
    
    structure of Periplancta fuliginosa densovirus imply alternative splicing involvement in viral gene expression. Arch Virol. 1999, 144: 2111-2124.
    Yeager MC, Dryden KA, Olson NH, Greenberg HB. And Baker TS. Three-dimensional structure of rhesus rotavirus by cryo-electron microscopy and image reconstruction. Journal Cell Biology. 1990, 110: 2133-2144.
    Zemlin F. Expected contribution of the field emission gun to high-resolution transmission electron microscopy. Micron. 1994, 25: 223-226.
    Zhang H, Zhang J, Yu X, Lu X, Zhang Q, Jakana J, Chen DH, Zhang X, and Zhou ZH. Visualization of protein-RNA interactions in cytoplasmic polyhedrosis virus. Journal of Virology. 1999, 73: 1624-1629.
    Zhou ZH, Chiu W. Prospects for using an ⅣEM with a FEG for imaging macromolecules towards atomic resolution. Ultramicroscopy. 1993, 49: 407-416.
    Zhou ZH, Prasad BVV, Jakana J, Rixon F, Chiu W. Protein subunit structures in the herpes simplex virus A-capsid determined from 400KV spot-scan electron cryomicroscopy. Journal of Molecular Biology. 1994, 242: 456-469.
    Zhou ZH. Ph.D. thesis. Baylor College of Medicine. 1995.
    Zhou ZH, Macnab SJ, Jakana J, Scott LR, Chiu W. Refinement of herpesvirus B-capsid structure on parallel supercomputers. Biophysical Journal. 1998, 74: 576-588.
    Zhou ZH, Chen DH, Jakana J, Rixon FJ, Chiu W. Visualization of tegument/capsid interactions and DNA in intact herpes simplex vires type 1 virions. Journal of Virology. 1999, 73: 3210-3218.
    Zlotnick A, Cheng N, Stahl SJ, Conway JF, Steven AC, and Wingfield PT. Localization of the C terminus of the assembly domain of hepatitis B virus capsid protein: Implications for morphogenesis and organization of encapsidated RNA. Proceeding of the National Academy of Science of the United States of American, 1997, 94: 9556-9561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700