过量碘对小鼠脑神经元发育的影响及硒的干预作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全民食盐加碘政策的实施,碘缺乏病已得到了有效控制。但另一方面,由于摄入含碘高的食物、水以及药物,或由于补碘不当造成的过量碘对机体的危害日益受到关注。我国生活在水源性高碘地区的人口已达到6000万。深入研究过量碘对人体的危害以采取有效的干预措施成为急需解决的重要问题。以往的研究证实,过量碘可引起高碘性甲状腺肿大,过量碘摄入是否也会影响脑发育过程而影响智力,有关此方面的研究资料较少并且没有统一的结论。另一微量元素硒以硒半胱氨酸的形式存在于许多蛋白以及酶的活性中心,是抗氧化酶谷胱甘肽过氧化物酶(GSH-Px)和甲腺原氨酸脱碘酶的重要组成成分,在甲状腺激素的合成、代谢以及甲状腺组织损伤过程中具有重要作用。有研究认为硒可通过影响甲状腺素合成影响神经系统发育,但有关硒、碘与脑发育的研究多为硒与低碘导致的脑发育障碍方面的资料,有关硒对过量碘导致的脑发育障碍的干预作用的研究,国内外未见报道。本研究在成功复制Balb/c小鼠过量碘动物模型的基础上,首先观察了过量碘对亲代鼠甲状腺激素代谢的影响及不同剂量硒的干预作用;然后观察过量碘对孕鼠甲状腺激素代谢的影响及不同剂量的硒干预作用;随后观察了过量碘对仔鼠甲状腺激素代谢的影响及不同剂量硒的干预作用,进行了脑组织形态学及海马神经元超微结构的研究,最后应用荧光定量PCR、Western-blot和免疫组化方法检测了神经元特异性烯醇化酶(NSE)、突触素(SYP)、神经颗粒素(RC3)、微管蛋白(α-tubulin)、G蛋白α亚单位(G0α)、甲状腺激素受体(TRα1和TRβ1)基因的表达,从神经元和树突、突触的成熟、细胞骨架蛋白、甲状腺激素受体、信号传导几个方面深入探讨了过量碘对仔鼠脑神经元发育影响的分子机制及硒的干预作用,为进一步深入研究过量碘对智力的影响及硒的干预作用提供理论依据。现将结果报告如下:
     第一部分过量碘亲代小鼠模型的建立及不同剂量硒对过量碘危害的干预作用
     目的复制过量碘亲代小鼠动物模型,观察不同剂量硒对过量碘亲代鼠甲状腺激素代谢的影响,在过量碘动物模型的基础上,探讨硒对过量碘亲代小鼠所致损伤的干预作用及其机制及适宜剂量范围,为下一步实验提供依据。
     方法将刚断乳的清洁级Balb/c小鼠240只(雌雄2:1),随机分为8组,每组30只动物,分别给予自来水及含碘酸钾(KIO_3)的过量碘水,过量碘组碘剂量为3000μg/L碘,过量碘补硒组分为6组,饮水中除含3000μg/L碘,还分别含亚硒酸钠:0.1、0.2、0.3、0.4、0.5、0.75mg/L Se。四个月后,测定小鼠尿碘、尿硒、肝硒、血清甲状腺激素,肝、肾和甲状腺1型脱碘酶(D1)活性和mRNA水平,并取甲状腺观察病理变化。
     结果3000μg/LⅠ会导致亲代鼠尿碘水平显著升高,尿硒水平显著下降(P<0.05),肝硒水平有下降趋势;血清总四碘甲状腺原氨酸(T_4)显著升高,总三碘甲状腺原氨酸(T_3)降低(P<0.05);甲状腺病理切片表现为胶质潴留性甲状腺肿;肝、肾和甲状腺D1的活性和mRNA水平下降(P<0.05)。补硒可提高过量碘亲代鼠的硒营养状况,升高尿碘、尿硒、肝硒以及甲状腺激素水平(P<0.05),减轻甲状腺滤泡腔胶质潴留,升高肝、肾和甲状腺D1的活性和mRNA表达水平,改善甲状腺激素代谢异常,以0.2~0.4mg/L硒剂量范围效果较好。
     结论Balb/c亲代小鼠过量碘动物模型的复制是成功的;3000μg/L碘导致亲代小鼠甲状腺激素代谢紊乱,补充亚硒酸钠可改善过量碘亲代小鼠甲状腺激素代谢,以0.2~0.4mg/L硒剂量范围效果较好。本部分的研究首次表明补硒可干预过量碘对亲代小鼠甲状腺激素的影响,为进一步研究硒干预过量碘对仔鼠脑神经元发育的影响打下了基础。
     第二部分过量碘对孕鼠甲状腺激素代谢的影响及不同剂量的硒干预作用
     目的观察过量碘对孕鼠甲状腺激素代谢的影响及不同剂量硒的干预作用,为进一步探讨硒拮抗过量碘所致神经元发育异常的机制提供依据。
     方法刚断乳的清洁级Balb/c小鼠240只(雌雄2:1),按体重随机分为8组,每组30只动物,A组,即正常对照组,给予自来水;B组,过量碘组,给予3000μg/L I的过量碘水;C~H组为过量碘补硒组,除了3000μg/L I外,分别给予0.1、0.2、0.3、0.4、0.5、0.75mg/L的硒。亲代鼠饲养四个月后,按雌雄2:1的比例合笼,次日晨检查阴栓,查到阴栓者计为孕0.5d,在孕12.5d和19.5d分别取6至10只母鼠的血、肝脏和肾脏测定其甲状腺激素水平、脱碘酶D1的活性和mRNA表达等指标。同时取孕12.5d和19.5d母鼠的胎盘和12.5d的子宫,液氮速冻后,-70℃保存,测胎盘和子宫2型脱碘酶(D2)和3型脱碘酶(D3)活性及mRNA水平、肝脏和胎盘硒含量。
     结果①过量碘显著降低孕鼠肝硒水平(P<0.05),补硒可显著提高孕鼠的硒营养水平,肝硒水平在0.2mg/L补硒组开始显著高于过量碘组,胎盘硒水平在0.3mg/L补硒组开始显著高于过量碘组。②过量碘降低胎盘重量(P<0.05),补硒在一定剂量范围内有升高平均胎盘重量的趋势,0.3mg/L补硒组与过量碘组间有显著性差异。③过量碘降低孕鼠血清T_3水平,升高T_4水平(P<0.05);补硒可升高过量碘孕鼠血清T_3水平,降低T_4水平,从0.2mg/L补硒组开始与过量碘对照组有显著性差异,但在0.75mg/L补硒组,血清T_3和T_4水平与过量碘组间无显著性差异。④过量碘可降低孕鼠肝、肾D1活性(P<0.05),补硒可显著升高肝、肾D1活性和肝mRNA水平。肝脏、肾脏D1活性在0.2~0.5mg/L剂量组显著高于过量碘组(P<0.05)。肝脏D1mRNA水平在0.2~0.5mg/L剂量组显著高于过量碘组,肾脏D1mRNA水平在0.3~0.75mg/L剂量组显著高于过量碘组。⑤过量碘可降低胎盘和子宫D2活性,升高19.5d子宫的D3活性(P<0.05);补硒可显著升高胎盘和子宫D2活性。12.5d胎盘D2活性在0.2~0.3mg/L硒剂量组显著高于过量碘组,19.5d胎盘D2活性在0.3~0.4mg/L剂量组显著高于过量碘组,而19.5d子宫D2活性从0.2mg/L硒剂量组开始显著高于过量碘组(P<0.05)。补硒对胎盘D3活性无明显影响,而19.5d子宫的D3活性从0.2mg/L硒剂量组开始显著低于过量碘组。
     结论过量碘影响孕鼠肝、肾、胎盘和子宫脱碘酶活性以及孕鼠甲状腺激素代谢,从而可能影响胎儿甲状腺激素代谢;补硒可明显改善过量碘孕鼠的硒营养状况,在一定剂量范围内发挥对过量碘所致胚胎毒性的干预作用。补硒可调节甲状腺激素代谢过程中关键酶-脱碘酶的活性,影响孕鼠和胚胎的甲状腺激素水平,本实验条件下,拮抗过量碘所致胚胎毒性的适宜硒剂量为0.2~0.4mg/L。首次说明补硒在妊娠期这个环节上拮抗过量碘对子代的影响,为进一步探讨硒拮抗过量碘所致神经元发育异常的机制提供依据。
     第三部分过量碘对仔鼠甲状腺激素代谢的影响及不同剂量硒的干预作用
     目的观察过量碘仔鼠甲状腺激素代谢的影响及不同剂量硒的干预作用,为进一步探讨硒干预过量碘仔鼠脑神经元发育的机制提供理论依据。
     方法刚断乳的清洁级Balb/c小鼠240只(雌雄2:1),按随机分为8组,每组30只动物,即正常对照组(NC),给予自来水;过量碘组(EI),给予3000μg/LI的过量碘水;C~H组为过量碘补硒组,除了3000μg/LI外,分别给予0.1、0.2、0.3、0.4、0.5、0.75mg/L的硒。各组亲代鼠饲养4个月后雌雄按2:1交配,取0、14和28日龄仔鼠血及脑组织,测定甲状腺激素和脑D2、D3活性及mRNA水平;取肝脏、肾脏,测D1活性和mRNA水平;取棕色脂肪组织(BAT)测D2活性;测0日龄仔鼠肝硒含量;取14日龄仔鼠甲状腺,检查病理改变。
     结果过量碘导致14日龄仔鼠甲状腺出现胶质储留性甲状腺肿,滤泡腔变大,腔内胶质较多,上皮细胞较少,细胞较扁,不同剂量补硒可减轻甲状腺肿,但0.75mg/L硒效果较差。与正常对照组相比,过量碘组0日龄仔鼠肝硒含量降低,但无显著性意义,14日龄仔鼠血清T_4水平显著降低(P<0.05);0和14日龄时,过量碘组仔鼠脑组织T_4、T_3水平显著降低,脑D3活性及mRNA表达降低,脑D2活性及mRNA表达升高,肝、肾D1活性降低,BAT D2活性升高(P<0.05),不同剂量补硒组较过量碘组血清和脑组织T_4、T_3都有一定程度上的升高,上调脑D3和肝、肾D1活性和mRNA表达,下调脑和BAT D2活性和mRNA表达;28日龄时各组血清和脑T_4、T_3水平、脑和BAT D2、脑D3以及肝、肾D1活性和表达无显著性差异。
     结论母体过量碘和高血清甲状腺激素可通过胎盘到达胎儿,引起仔鼠胶质储溜性甲状腺肿大,影响甲状腺激素的合成和释放,导致仔鼠出现甲状腺功能减退症和甲状腺激素代谢紊乱。虽然,过量碘可造成亲代鼠硒的不足或相对缺乏,但仔鼠无明显硒缺乏。补硒可拮抗过量碘引起的仔鼠甲状腺形态和功能的异常,主要通过影响母体的甲状腺激素代谢而发挥作用。本实验条件下0.2~0.4mg/L的硒发挥了相对较好的干预作用。本实验首次表明补硒可拮抗过量碘引起的仔鼠甲状腺形态和功能的异常,为进一步研究硒干预过量碘仔鼠脑神经元发育提供了理论依据。
     第四部分过量碘对仔鼠脑组织及神经元超微结构的影响及硒的干预作用
     目的从大脑组织形态学及超微结构上,观察过量碘对仔鼠脑发育的影响及硒的干预作用,为研究硒干预过量碘仔鼠智力的影响提供理论依据。
     方法动物饲养、分组和交配与第三部分类似。将出生后0、14和28日龄仔鼠摘眼球取血并脱臼致死,断头,冰上快速分离大脑及海马。将分离的大脑放入4%多聚甲醛固定,经常规洗涤、脱水、透明、浸蜡和包埋,石蜡固定并制作切片,用于HE染色。参照鼠脑立体定位图,在冰上分离14日龄仔鼠海马CA1区,修成1mm×1mm×1mm小块,2.5%戊二醛预固定后,用于电镜标本制作及观察。
     结果与正常组相比,光镜下,0日龄过量碘组皮层细胞更密集,体积更小,14日龄过量碘组仔鼠大脑皮层、齿状回和CA1区神经细胞小而圆,核着色较深,异染色质较多,胞质少,细胞数较多,细胞分化程度较低,发育程度较低;大脑皮层细胞紧密相连,导致整个大脑减小,过量碘组14日龄仔鼠海马CA1区神经元超微结构表现为细胞突起较少,核周染色质较少,核较大,核/浆比增大,异染色质增多,胞质细胞器减少,粗面内质网及核糖核蛋白体数量较少,线粒体也减少,轴突和树突内微管和微丝减少,表明过量碘使仔鼠脑神经元发育落后,补硒可使仔鼠脑神经元发育落后有一定的改善。
     结论过量碘造成大脑组织及神经细胞超微结构异常,大脑发育落后,补硒对过量碘仔鼠脑形态和神经元超微结构异常具有一定的改善作用,本研究首次为硒干预过量碘仔鼠脑发育提供了组织形态和超微结构的依据,为进一步研究硒干预过量碘对智力的影响提供了理论依据。
     第五部分过量碘对仔鼠脑神经元发育影响的分子机制及硒的干预作用
     目的从分子水平上,观察过量碘对不同日龄仔鼠脑神经元发育的影响及硒的干预作用,应用荧光定量PCR、Western-blot和免疫组织化学的方法,从神经元的发育成熟、突触的发育、甲状腺激素靶基因神经颗粒素的表达、甲状腺激素受体、信号传导几个方面深入探讨硒对过量碘仔鼠脑神经元发育的影响及分子机制。
     方法动物饲养和交配与第三部分。刚断乳的清洁级Balb/c小鼠120只(雌雄2:1),按随机分为4组,每组30只动物,即正常对照组(NC)给予自来水;过量碘组(EI+)给予3000μg/L I的过量碘水;补硒组(Se+)饮水中给予0.2mg/L的硒;过量碘补硒组(EI+Se+)除了3000μg/L I外,给予0.2mg/L的硒。将出生0日龄(P0)、14日龄(P14)、28日龄(P28)仔鼠摘眼球放血并脱臼致死,断头,冰上快速分离大脑,液氮速冻,然后存放于-80℃。将一部分分离的大脑放入4%多聚甲醛固定,经常规洗涤、脱水、透明、浸蜡和包埋,石蜡固定并制作切片,用于免疫组化。
     结果过量碘可下调0和14日龄大脑神经元特异性烯醇化酶(NSE)、突触素(SYP)、神经颗粒素(RC3)的表达,下调0日龄微管蛋白α-tubulin的表达(P<0.05),延缓出生后α-tubulin表达降低的速度,上调甲状腺激素受体(TRα1和TRβ1)和G蛋白α亚单位(G0α)的表达(P<0.05)。28日龄各组仔鼠脑NSE、SYP、α-tubulin、RC3、TRα1和TRβ1以及G0α的表达水平无明显差异。补硒则可拮抗过量碘引起的0和14日龄仔鼠大脑NSE、SYP和RC3的表达下降,下调TRα1和TRβ_1 mRNA、GoαmRNA的表达,使出生后α-tubulin表达下调模式与正常对照组接近。
     结论过量碘可引起NSE、SYP、RC3、α-tubulin的表达下调以及TRα1和TRβ1以及G0α的表达上调,从而影响仔鼠脑神经元的发育成熟、树突发育以及突触发育,硒可拮抗过量碘对脑神经元发育的影响。硒可能主要是通过影响过量碘亲代、孕鼠以及仔鼠甲状腺激素代谢来发挥对过量碘仔鼠脑神经元发育的干预作用,本研究首次在分子水平研究了硒对过量碘不同日龄仔鼠脑神经元发育的干预作用,为进一步探讨硒干预过量碘对智力的影响奠定了理论基础。
The goal of eliminating iodine deficiency disease (IDD) has been achieved since Universal Salt Iodization (USD policy has been widely carried out in many nations including China. On the other hand, reports are increasingly appearing about the side effects caused by excess iodine intake. Iodine-induced goiter has been reported in many nations and areas resulted from ingestion of excess iodine in foods, in drinking water and in medications, or resulted from excess iodine supplementation in iodated foods. Previous studies reveal that excess iodine intake may result in diffused colloid goiter. However, it is not well documented if iodine excess also has an effect on brain development as iodine deficiency. Another microelement selenium is essential to thyroid hormone metabolism and thyroid function by the selenocysteine-containing glutathione peroxidase (GSH-Px) system and deiodinase system. Se influences nervous system development by thyroid hormone. Several studies have been carried out to establish the effects of combined selenium and iodine deficiency on brain development. However, few researches were carried out to study the intervention of selenium on dysfunction induced by excess iodine. It is necessary to study the possible intervention of Se on brain development defect induced by excess iodine. In this study, on the basis of excess iodine animal model successfully established in Balb/c mice, first, we observed the effects of excess iodine on thyroid hormone and deiodinase, and intervention by different doses of selenium in maternal mice. Second, we observed the effects of excess iodine on thyroid hormone metabolism in pregnant mice and intervention by different doses of Se. Third, we observed the effects of excess iodine on thyroid hormone metabolism of filial mice and intervention of Se. Fourth, we observed the pathological change by histomorphometry and ultrastructure of cerebrum and hippocampus. At last, we detected the expression level of NSE, SYP, RC3, α-tubulin, TRα1, TRβ1 and G0α in cerebrum of filial mice with excess iodine intake and intervention of selenium by real-time quantitative PCR, immunohistochemistry and western-blot, and try to study the molecular mechanism of the effect of excess iodine on neuron development and intervention of selenium from the three aspects of neuron development, thyroid hormone receptor and signal transmission. The results were summarized as follow:
    Part one
    Establishment of excess iodine model in maternal mice and intervention of selenium on effects of excess iodine
    Objective To establish excess iodine model of maternal mice and observed the effects of excess iodine on thyroid hormone metabolism and intervention by different doses of selenium in maternal mice and establish the optimal dose range of selenium.
    Methods 240 weanling Balb/c mice were divided into 8 groups randomly. Normal control group(NC) was given taper water; excess iodine(EI) control group was given drinking water containing 3000μg/L iodine; C~H groups were selenium supplementation groups and given drinking water containing 0.1, 0.2, 0.3, 0.4, 0.5, 0.75mg/L selenium, respectively, besides 3000μg/L iodine. After four months, such indices were determined as urinary iodine and selenium, hepatic selenium, thyroid hormones in serum, type I iothyronine deiodinase (D1) activity and mRNA in liver, kidney and thyroid gland Thyroid was used for histological examination.
    Result 3000μg/L iodine could induced diffused colloid goiter. Median of urinary iodine, and serum T_4 level was significantly higher in excess iodine than in normal control, and median of urinary selenium, hepatic selenium level and T_3 level decreased significantly in excess iodine group than in normal control (P<0.05). Activity and mRNA level of D1 in liver and kidney was decreased significantly in excess iodine group compared with normal group (P<0.05). Supplementing Se alleviated goiter, enhanced hepatic selenium level and T_3 level and activity and mRNA level of D1, lowered serum T_4 level significantly (P<0.05). Under the conditions of this study, the optimal dose range of selenium intervention was 0.2~ 0.4mg/L.
    Conclusion Excess iodine model of Balb/c was established successfully and 3000 μ g/L iodine intake can lead to goiter and abnormal thyroid hormone metabolism. Supplementing Se improved thyroid hormone metabolism. It is proposed that the optimal dose range of selenium was 0.2~0.4mg/L and supplementing selenium improves thyroid hormone metabolism in maternal mice with excess iodine. The results lay a foundation for exploring the intervention of selenium on neuron development of cerebrum in filial mice with excess iodine.
    Part two
    Effects of excess iodine on thyroid hormone metabolism in pregnant mice and intervention by different doses of Selenium
    Objective To observe the effects of excess iodine on thyroid hormone metabolism and intervention of selenium, and explore the optimal dose range of selenium.
    Methods 240 weanling Balb/c mice were divided into 8 groups randomly. Normal control group(A) was given taper water; excessive iodine(B) control group was given drinking water containing 3000μg/L iodine; C~H groups were selenium supplementation groups (SS) and given drinking water containing 0.1, 0.2, 0.3, 0.4, 0.5, 0.75mg/L selenium, respectively, besides 3000μg/L iodine. Four months later, urinary iodine concentration of female mice was determined. Then the mice were mated (female: male = 2:1) and the morning of appearance of a vaginal plug was taken as 0.5 day (0.5d) of pregnancy. On the 19.5d of pregnancy, pregnant mice were killed and the uteri were cut open to take out placenta immediately. Meanwhile, serum of pregnant mice was used for thyroid hormone level determination. Liver, kidney and placenta of 12.5d and 19.5d pregnant mice were used to determine the selenium level, and the activity and mRNA level of deiodinase.
    Results ①Excess iodine lowered significantly hepatic selenium level, and selenium nutritional status in pregnant mice was improved by supplementing selenium (P<0.05). Compared with EI group, selenium level in liver and placenta increased in 0.2mg/L~0.75mg/L or 0.3mg/L~0.75mg/L SS groups, respectively. ②Excess iodine reduced placenta weight (P<0.05). Placenta weight was significant higher in 0.3mg/L SS group than that in EI group (P<0.05). ③Excess iodine enhanced significantly serum T_4 level and lowered serum T_3 level, and selenium supplementation decreased serum T_4 and increased T_3 from 0.1 to 0.5mg/L selenium dose (P<0.05). No change was found in 0.75mg/L SS group. ④Excess iodine reduced significantly activity of D1 in liver and kidney, and mRNA level of hepatic D1. A dose-dependant increase of D1 activity in liver and kidney was observed in SS groups from 0.2 to 0.5mg/L selenium dose (P<0.05). Compared with EI group, D1 mRNA expression in liver markedly increased in 0.2 ~ 0.5mg/L SS groups, and in kidney increased significantly in 0.3~0.75mg/L SS group (P<0.05). ⑤Excess iodine reduced significantly D2 activity in placenta and uterus, and enhanced D3 activity in uterus on pregnant day 19.5 (P<0.05). Selenium supplementation enhanced D2 activity in placenta and uterus at a certain range of doses (P<0.05), but had no effect on the D3 activity in placenta. D3 activity in 19.5d uterus decreased obviously in 0.2~0.75mg/L SS groups.
    Conclusion Excess iodine influences on deiodinase in liver, kidney, placenta and uterus, and thyroid hormone metabolism in pregnant mice. Excess iodine finally may influence on thyroid hormone metabolism in fetus. Selenium supplementation resulted in an elevation of selenium level in mice with excess iodine intake and had a favorable intervention on the embryo toxicity induced by excessive iodine intake. Supplementing selenium influences on maternal-fetal thyroid hormone level by regulating activity of deiodinase. Under the conditions of this study, the optimal dose range of selenium was 0.2~0.4mg/L. It is initiated that supplementing selenium
    alleviates the influences of excess iodine on filial mice during pregnancy.
    
    
    
    
    Part Three
    Effects of excess iodine on thyroid hormone metabolism in filial mice
    and intervention by different doses of selenium
    Objective To observe the thyroid hormone metabolism in filial mice with excess iodine and intervention of selenium by different doses
    Methods 240 weanling Balb/c mice were divided into 8 groups. Normal control group(NC) was given taper water; excessive iodine(EI) control group was given drinking water containing 3000μg/L iodine; C~H groups were selenium supplementation groups (SS) and given drinking water containing 0.1, 0.2, 0.3, 0.4, 0.5, 0.75mg/L selenium, respectively, besides 3000μg/L iodine. Four months later, urinary iodine concentration of female mice was determined. Then the mice were mated (female: male=2:1) and the morning of appearance of a vaginal plug was taken as 0.5 day (0.5d) of pregnancy. Thyroid hormones, and activity and mRNA of deiodinase in serum, cerebrum, liver, kidney and BAT of filial mice were measured on postnatal day 0, 14 and 28. Thyroid gland of filial mice was used for histological examination on postnatal day 14.
    Results Excess iodine induced diffused colloid goiter of filial mice on postnatal day 14 and supplementing selenium by different doses alleviated the goiter, but 0.75mg/L selenium has little effects. Hepatic selenium level fell in filial mice in EI group, but no significant difference compared with normal control. Excess iodine lowered significantly T_4 level in serum, T_4 and T_3 level in cerebrum, activity and mRNA level of D3, activity of D1 in liver and kidney, meanwhile, enhanced significantly activity and mRNA level of D2 in cerebrum and BAT on postnatal day 0 and 14 (P<0.05). Supplementing Selenium antagonized the influences induced by excess iodine. No significant difference was found in all indices between all groups on postnatal day 28.
    Conclusion Excess iodine and high T_4 in serum may pass through placenta to fetus and results in diffused colloid goiter and abnormal synthesis and release of thyroid hormone and hypothyroidism in filial mice. Although excess iodine brought about relative selenium deficiency in maternal mice, not significant selenium deficiency in filial mice. It is proposed that supplementing selenium can antagonize abnormal histo-morphalogy and function induced by excess iodine in filial mice through influencing on thyroid hormone metabolism in maternal mice. The optimal
    dose range of selenium was 0.2~0.4mg/L.
    
    Part Four
    The effects of excess iodine on histo-morphalogy and ultrastructure of neuron in cerebrum of filial mice and intervention of selenium
    Objective To observe the pathological change of cerebrum and ultrastructure of neuron in filial mice with excess iodine intake and selenium intervention.
    Method Animal treatment and mating was the same as the part three. The pathological change of cerebrum and ultrastructure of neuron in hippocampus were observed by HE and electron microscope.
    Results In EI group, the cells in the cerebrum are packed closer together and smaller, thus leading to a decrease in the overall size of the brain, staining thicker in nuclear, heterochromatin obviously increased and the degree of cell differentiation is lower in filial mice on postnatal day 14 compared with NC. Under electron microscope, nucleus and the ratio of nuclear/cytoplasm is bigger, cytoplasm surrounding nucleus reduces, nuclear membrane is thinner, microtubule and microfilament of axon and dendrites reduces, the number of cellular organelle reduces in EI group. The results demonstrate that excess iodine results in a delay of brain development. Supplementing selenium alleviates the effects of excess iodine. Conclusion The new ideas are brought forth that excess iodine leads to abnormality in histo-morphalogy and ultrastructure of cerebrum and delay in brain development, and supplementing selenium improves the brain development. The study on morphyology and ultrastructure of cerebrum lays a foundation of selenium intervening intelligence under the condition of excess iodine intake.
    
    
    Part Five Molecular mechanism of effects of excess iodine on neuron
    development in filial mice and intervention of selenium
    Objective To study the molecular mechanism of the effects of excess iodine on neuron development in filial mice and intervention of selenium by real-time quantitative PCR, immunohistochemistry and western-blot from the three aspects of neuron development, thyroid hormone receptor and signal transmission.
    Methods 120 weanling Balb/c mice were divided into 4 groups. Normal control group(NC) was given taper water; excess iodine(EI) control group was given drinking water containing 3000μg/L iodine; selenium(Se+) was given drinking water containing 0.2mg/L selenium; selenium supplementation group (EI+Se+) was given drinking water containing 0.2 mg/L selenium, respectively, besides 3000μg/L iodine. Four months later, urinary iodine concentration of female mice was determined. Then the mice were mated (female: male=2:1) and the morning of appearance of a vaginal plug was taken as 0.5 day (0.5d) of pregnancy. Cerebrum of filial mice on postnatal day 0,14 and 28 was taken out for measurement.
    Results Excess iodine down-regulated the expression of NSE, SYP, RC3 in cerebrum of filial mice on postnatal day 0 and 14, and α—tubulin on postnatal day 0 (P<0.05), delayed the developmental downregulation of α—tubulin, and up-regulated the expression of TRα1,TRβ1 and Goα on postnatal day 0 and 14 (P<0.05). No significant difference was found in the expression level of NSE, SYP, α—tubulin, RC3, TRα1, TRβ1and G0α between four groups on postnatal day 28. Supplementing selenium antagonized the effects induced by excess iodine.
    Conclusion Excess iodine influences development and mature of neuron, dendrites and synapse in cerebrum of filial mice and supplementing selenium antagonized the effects induced by excess iodine from molecular mechanism. The new ideas are brought forth that selenium intervened on development of neuron of cerebrum in filial mice by intervening on thyroid hormone metabolism in maternal and filial mice with excess iodine.
引文
1 WHO. Assessment of Iodine Deficiency Disorders and Monitoring their Elimination. A guide for programme managers (second edition), 2001.
    2 马泰,卢惆章,于志恒.碘缺乏病-地方性甲状腺肿与地方性克汀病.第2版.北京:人民卫生出版社,1993.320-326.
    3 朱惠民,王凤荣,尹桂山,等.高碘地方性甲状腺肿发病机理的实验研究.中国地方病学杂志,1989,8(4):220-224.
    4 于志恒,陈崇义,谭凤珠.中国高碘地方性甲状腺肿的发现历程和分布概况.中华预防医学杂志,2001,35(5):351-352.
    5 Suzuki H. Endemic coast goiter in Hokkad. Acta Endocrinol. 1965, 5: 165-168.
    6 Bogazzi F, Bartalena L, Gasperi M, et al. The various effects of amiodarone on thyroid function. Thyroid, 2001, 11(5):511-519.
    7 Delange F., de Benoist B. and Alnwick D. Risks of iodine-induced hyperthyroidism after correction of iodine deficiency by iodized salt. Thyroid, 1999, 9: 545-556.
    8 Coakley JC, Francis I, Gold H, et al. Transient primary hypothyroidism in the newborn: experience of the Victorian Neonatal Thyroid Screening Programme. Aust Paediatr J. 1989, 25(1):25-30.
    9 陈祖培主编.中国控制碘缺乏病的对策-卫生部碘缺乏病专家咨询组工作概要.第1版.天津:天津科学技术出版社,2002.72-74.
    10 于志恒,胡宣扬,朱惠民.高碘甲状腺肿.中国地方病学杂志,1983,2(4):248-256.
    11 孙晓楼,谢继良,邹继源,等.地方性甲状腺肿和地方性克汀病流行区七至十四岁学生智力调查初报.中国地方病学杂志,1985,4(3):257-261.
    12 谢继良,齐全,邹继源,等.水源性高碘地甲病区儿童智力调查研究.中国地方病防治杂志,1987,2(1):27-29.
    13 钱明,陈祖培,聂秀玲,等.碘过量对8~10岁学生智力发育的影响.中国公共卫生,2005,21(9),1064—1065.
    14 王栋,陈祖培,齐澍平,等.高碘地区儿童的智力研究中国地方病防治杂志,1987,2(6):349-350.
    15 王玲芳,张希宁,王秀琴.高碘、低碘病区儿童智力、神经-心理机能对比调查(摘要).中国地方病防治杂志,1989,4(5):290.
    16 高秋菊,朱惠民,张建军.高碘对智力影响的实验观察.中国地方病学杂志,1999,18:104-106.
    17 高博,尹桂山.高碘对小鼠脑发育的影响.中华预防医学杂志,1997,31:134-136.
    18 Calvo, R. M., Jauniaux, E., Gulbis, B., et al. Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab, 2002, 87: 1768-1777.
    19 Bianco, A. C., Salvatore, D., Gereben, B., et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine Selenodeiodinases. Endocr Rev, 2002, 23: 38-89.
    20 Bates J.M., St.Germain D.L., Galton V.A.. Expression profiles of the three iodothyronine deiodinases D1, D2 and D3 in the developing rat. Endocrinology, 1999, 140:844-851.
    21 高天舒,胡凤楠,滕卫平.中轻度过量补碘对非碘缺乏大鼠甲状腺功能和形态的影响.中华内科杂志,2003,42(10):705-709.
    22 房辉,阎玉芹,陈祖培.碘缺乏与碘过多对大鼠甲状腺肿形成及功能的影响.中国地方病学杂志,1999,14(3):133—136.
    23 Bednarczuk T., Pietrzykowski A., Slon M., et al. Pharmacologic effect of excess iodine on type Ⅰ thyroxine 5'-deiodinase activity in rat thyroid. 1993, Endokrynol Pol., 44: 405-412.
    24 Noteboom JL, Hummel WA, Broerse JJ, et al. Protection of the maternal and fetal thyroid from radioactive contamination by the administration of stable iodide during pregnancy. An experimental evaluation in chimpanzees. Radiat Res, 1997, 147: 691-697.
    25 Vitale M., Matola T. D. and D'Ascoli F. Iodide excessive induces apoptosis in thyroid cells through a p53-independent mechanism involving oxidative stress..Endocrinology, 2000, 141: 598-605.
    26 项建梅,陈祖培,邸红军,等.高碘对小鼠抗氧化能力的影响.中国地方病学杂志,1999,18(4):245-249.
    27 Iniguez MA, Rodriguez-Pena A, Ibarrola N, et al. Thyroid hormone regulation of RC3, a brain-specific gene encoding a protein kinase-C substrate. Endocrinology, 1993, 133:467.
    28 Kvicala J, Zamrazil V. Effect of iodine and selenium upon thyroid function. Cent Eur J Public Health, 2003, 11(2):107-13.
    29 Calvo, R. M., Jauniaux, E., Gulbis, B., et al. Fetal tissues are exposed to biologically relevant free thyroxine concentrations during early phases of development. J Clin Endocrinol Metab, 2002, 87: 1768-1777.
    30 Bianco, A. C., Salvatore, D., Gereben, B., et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine Selenodeiodinases. Endocr Rev, 2002, 23: 38-89.
    31 Bates J.M., St.Germain D.L., Galton V.A. Expression profiles of the three iodothyronine deiodinases D1, D2 and D3 in the developing rat. Endocrinology, 1999, 140:844-851.
    1 阎玉芹,陈祖培,舒延清.全民食盐加碘4年来我国是否发生了高碘性甲状腺肿流行.中国地方病学杂志,2001,20(3):228-229.
    2 于志恒,朱惠民,陈崇义,等.高碘地方性甲状腺肿研究进展(之一).中国地方病学杂志,1999,18(4):301-304.
    3 阎玉芹,刘列均,张亚平,等.尿碘的砷铈催化分光光度测定方法.中国地方病学杂志,1997,16(1):37-40.
    4 王光亚,周瑞华,孙淑庄,等.生物样品、水及土壤中痕量硒的荧光测定法.营养学报,1985,7(1):39-45.
    5 Hotz CS., Belonje B., Fitzpatrick DW, et al. A method for the determination of type Ⅰ iodothyronine deiodinase activity in liver and kidney using ~(125)I-labelled reverse triiodothyronine as a substrate. Clin Biochem, 1996, 29: 451—456.
    6 阎玉芹,陈祖培.正确和规范化使用“尿碘”这一生物学指标.中国地方病学杂志,2002,21(6):512—514.
    7 赵金扣,陈祖培,何天育.高碘及其危害.中国地方病学杂志,2000,19:S10-S16.
    8 朱惠民,于桂荣,尹桂山,等.实验性高碘和低碘甲状腺肿的对比研究.中国地方病学杂志,1988,7(4):199-203.
    9 杨正刚,谭凤珠,李荣芬,等.高碘对甲状腺功能及形态的影响.中华内分泌代谢杂 志,1995,11(1):36-38.
    10 Markou K., Georgopoulos N., Kyriazopoulou V., et al. Iodine-induced hypothyroidism. Thyroid, 2001, 11:501-510.
    11 Roti E., Uberti ED. Iodine excessive and hyperthyroidism. Thyroid, 2001, 11: 493-500.
    12 高秋菊,刘颖,许崇亮.不同剂量碘与甲状腺形态和功能的剂量反应关系.中国公共卫生,2002,18(4):423-424.
    13 高天舒,胡凤楠,滕卫平.中轻度过量补碘对非碘缺乏大鼠甲状腺功能利形态的影响.中华内科杂志,2003,42(10):705-708.
    14 房辉,阎玉芹,陈祖培.碘缺乏与碘过多对大鼠甲状腺肿形成及功能的影响.中国地方病学杂志,1999,14(3):133-136.
    15 Kohrle J. Local activation and inactivation of thyroid hormones: the deiodinase family. Mol. Cell. Endocrinol. 1999, 151: 103-119.
    16 Bednarczuk T., Pietrzykowski A., Slon M., Nauman A. Pharmacologic effect of excess iodine on type Ⅰ thyroxine 5'-deiodinase activity in rat thyroid. 1993, Endokrynol Pol, 44: 405-412.
    17 吴泰相,王家良,刘关键.高碘甲肿及碘致甲亢机制新假说:脱碘酶障碍学说.华西医学,2000,15(4):405-408.
    18 Geoffrey J Beckett, Fergus Nicol, Peter WH Rae, et al. Effects of combined iodine and selenium deficiency on thyroid hormone metabolism in rats. AM J Clin Nutr Suppl, 1993, 57:240S-3S.
    19 张在香,杨晓光,牟维鹏,等.慢性硒中毒大鼠硒蛋白的变化.卫生研究,1999;28(3):155—158.
    20 张在香,田园,杨晓光,等.不同硒水平饲料对大鼠肝脏谷胱甘肽过氧化物酶利脱碘酶活性的影响.卫生研究,1998,27(3):209-211.
    1. Danef J. F., Many M. C. and van de Hove M. F. Iodine-induced thyroid inhibition and cell necrosis: two consequences of the same free-radical mediated mechanism. Mol. Cell. Endocrinol. 1996, 121, 101-103.
    2.秦贵军,王庆祝,欧阳安,等.不同浓度高碘水对小鼠甲状腺形态和功能影响的实验研究.中国地方病学杂志,1997,16(4):225-229.
    3. Koopdonk-Kool J.M., de Vijlder J.J.M., Veenboer G.J.M., et al. Type Ⅱ and type Ⅲ deiodinase activity in human placenta as a function of gestational age. J. Clin. Endocrinol. Metab, 1996, 81, 2154-2158.
    4. Bartalena L., Bogazzi F., Braverman L.E.. Effects of amiodarone administration during pregnancy on neonatal thyroid function and subsequent neurodevelopment. J Endocrinol Invest, 2001,24:275-283.
    5. Serreaul R., Polack M., Leger J. Fetal thyroid goiter after massive iodine exposure. Prenat Diagn. 2004, 24: 745-754.
    6. Rosalia Lavado-Autric, Eva Auso, Jose Victor Garcia-Velasco et al. Early maternal hypothyroxinemia alters histogenesis and cerebral cortex cytoarchitecture of progeny. Journal of Clinical Investigation, 2003, 111(7): 1073-1082.
    7. Santini F., Chiovato L., and Ghirri R, et al. Serum iodothyronines in the human fetus and the newborn: evidence for an important role of placenta in fetal thyroid hormone homeostasis. J Clin Endocrinol Metab, 1999, 84:493-498.
    8. Bianco A.C., Salvatore D., Gereben, B.,et al. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine Selenodeiodinases. Endocr Rev, 2002, 23: 38-89.
    9. Stutp M.R., de Vijlder J.J., Ris-Stalpers C. Placental iodothyronine deiodinase Ⅲ and Ⅱ ratios, mRNA expression compared to enzyme activity. Mol Cell Endocrinol, 1998, 142:67-73.
    10. Koopdonk-Kool J.M., de Vijlder J.J.M., Veenboer G.J.M., et al. Type Ⅱ and type Ⅲ deiodinase activity in human placenta as a function of gestational age. J. Clin. Endocrinol. Metab, 1996, 81: 2154-2158.
    11. Galton V.A., Martinez E., Hernandez A., et al. The type 2 iodothyronine deiodinase is expressed in the rat uterus and induced during pregnancy. Endocrinology, 2001, 142:2123-2128.
    12. Galton, V.A., Martinez, E., Hernandez, A., et al. Pregnant rat uterus expresses high levels of the type 3 iodothyronine deiodinase. J. Clin. Invest. 1999, 103: 979-987.
    13. Carvalho D. P. Modulation of uterine iodothyronine deiodinases--a critical event for fetal development? Endocrinology, 2003, 144(10): 4250-4252.
    14.项建梅,陈祖培,邸红军,等.高碘对小鼠抗氧化能力的影响.中国地方病学杂志,1999,18(4):245-249.
    15. Kohler Josef. The trace element selenium and the thyroid gland. Biochimie 1999,81:527-533.
    16. Bou-Resli M.N., Dashti H.M., Mathew T.C., et al. Pre- and postnatal tissue selenium of rat in the growing state. Biol Neonate, 2001, 80(2): 169-172.
    1. Lomenick JP, Jackson WA, Backeljauw PE Amiodarone-induced neonatal hypothyroidism: a unique form of transient early-onset hypothyroidism. J Perinatol. 2004, 24(6):397-9.
    2. Soroku Nishiyama, Tomohiro Mikeda, Toshihisa Okada, et al. Transient Hypothyroidism or Persistent Hyperthyrotropinemia in Neonates Born to Mothers with Excessive Iodine Intake. THYROID, 14(12), 2004: 1077—1083.
    3. Zahidi A, Draoui M, Mestassi M. Iodine status and the used of iodized antiseptics in the mother-newborn pair. 1999, 54(5):545-8.
    4. Beckett G J, Russell A, Nicolf, et al. Effect of selenium deficiency on hepatic type Ⅰ 5 iodothyronine deiodinase activity and hepatic thyroid hormone levels in the rat. Biochm J, 1992, 282(Pt2): 483-486.
    5. Kenneth J. Livak and Thomas D. Schmittgen. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCt. METHODS, 2001, 25: 402-408.
    6.罗敏.分子内分泌学(基础与临床).北京:人民军医出版社,2003.224-228.
    7.Glinoer D. Pregnancy and iodine. Thyroid 2001; 11: 471-481.
    8.王威,尹桂山,朱惠民.碘对体外培养人甲状腺细胞合成DNA蛋白质和甲状腺激素分泌的影响.中国地方病学杂志 1999,18(2):97-100.
    9. Noteboom JL, Hummel WA, Broerse JJ, et al. Protection of the maternal and fetal thyroid from radioactive contamination by the administration of stable iodide during pregnancy. An experimental evaluation in chimpanzees. Radiat Res, 1997, 147: 691-697.
    10. Beresford NA, Mayes RW, Barnett CL, et al. The effectiveness of oral administration of potassium iodide to lactating goats in reducing the transfer of radioiodine to milk. J Environ Rad.1997, 35: 115-128.
    11. Burrow GN, Fisher DA, Larsen PR. Mechanisms of disease: Maternal and fetal thyroid function. The New England J of Medicine, 1994, 331(16): 1072-1078.
    12. Theodoropaulos T, Braverman LE, Vagenakis AG, Iodide-induced hypothyroidism: A potential hazard during perinatal life. Science, 1979, 205: 502-503.
    13. Bartalena L, Bogazzi F, Braverman LE, et al. Effects of amiodarone administration during pregnancy on neonatal thyroid function and subsequent neurodevelopment. J Endocrinol Invest. 2001, 24: 275-283.
    14.张世勇,高秋菊,刘天鹏,等.高碘、低碘对亲代及仔—代小鼠甲状腺形态定量体视学的影响.中国地方病学杂志,2001,16(4):198~200.
    15. National Research Council. Mineral Tolerance of Domestic Animals. Washington, DC: National Academy Press, p227, 1980.
    16. Lomenick JP, Jackson WA, Backeljauw PF. Amiodarone-induced neonatal hypothyroidism: a unique form of transient early-onset hypothyroidism. J Perinatol, 2004, 24(6):397-9.
    17. Higuchi K, Kumagai T, Kobayashi M, et al. Short term hyperthyroidism followed by transient pituitary hypothyroidism in a very low birth weight infant born to a mother with uncontrolled Graves disease. Pediatrics, 2001, 107(4):57-67.
    18. Kohrle J. Local activation and inactivation of thyroid hormones: the deiodinase family. Mol. Cell. Endocrinol. 1999, 151, 103-119.
    19. Type 3 Iodothyronine Deiodinase Is Highly Expressed in the Human Uteroplacental Unit and in Fetal Epithelium. J Clin Endocrinol Metab. 2003, 88: 1384-1388.
    20.吴泰相,王家良,刘关键.高碘甲肿及碘致甲亢机制新假说:脱碘酶障碍学说.华西医学,2000,15:405—408.
    21. Bednarczuk T., Pietrzykowski A., Slon M. Pharmacologic effect of excess iodine on type Ⅰ thyroxine 5'-deiodinase activity in rat thyroid. Endokrynol Pol. 1993, 44,405-412.
    22. JOANNE M. BATES, VICKIE. L. SPATE, J. STEVEN MORRIS, et al. Effects of Selenium Deficiency on Tissue Selenium Content, Deiodinase Activity, and Thyroid Hormone Economy in the Rat during Development. Endocrinology. 2000, 141: 2490-2500.
    23. Crantz FR,Silva JE,Larsen PR. An ananlysis of the sources and quantity of 3,5,39 triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum.Endocrinology, 110: 367-375.
    24. Guadano-Ferraz A, Escamez MJ, Rausell E, et al. Expression of type 2 iodothyronine deiodinase in hypothyroid rat brain indicates an important role of thyroid hormone in the development of specific primary sensory systems. J Neurosci. 1999,19(9):3430-9.
    25. SO" NKE FRIEDRICHSEN, STEPHANIE CHRIST, HEIKE HEUER, et al. Regulation of Iodothyronine Deiodinases in the Pax8~(-/-) Mouse Model of Congenital Hypothyroidism. Endocrinology. 2003, 144: 777-784.
    26.朴建华,张在香,杨晓光,等.大鼠硒耗竭过程中不同组织硒蛋白利用硒的优先性.卫生研究,28(3):158-160.
    27. Bermano G, Nicol F, Dyer JA, et al. Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Journal Biochemical, 1995, 311: 425-430.
    28. LYNN A. BURMEISTER, JOHN PACHUCKI, AND DONALD L. ST. GERMAIN. Thyroid Hormones Inhibit Type 2 Iodothyronine Deiodinase in the Rat Cerebral Cortex by Both Pre- and Posttranslational Mechanisms.Endocrinology. 1997, 138: 5231-5237.
    1.刘金保,李金茹,王俊艳,等.碘缺乏对大鼠大脑体细胞的影响.解剖学报,2004(5):521—523.
    2.宿宝贵,等.人胎海马发育的研究.解剖学杂志,1992,15(4):263.
    3.张占元,吴冬,赵小光,等.碘、甲状腺素对体外培养人胚脑细胞、猪甲状腺细胞增殖及DNA合成的影响.全国第四届碘缺乏病学术会议论文专辑,1991,218.
    4. Filipcik P, Saito H, Katsuk i H. 3, 5, 3'triiodothyronine promotes survival and axon elongation of embryonic rat septal neurons. Brain Res, 1994, 647(1): 148~152.
    5. Fisher DA, Dussault JH, Foley Jr TP, et al. screening for congenital hypothyroidism:result of screening one million North American infants. J Pediatr 1979, 94:700-705.
    6.郭守祥,李兰戈,崔汝珍,等.甲状腺激素缺乏对胚胎发育期间脑微管蛋白合成的影响.中华内分泌代谢杂志,1989,5(2):100~101.
    7.陈雪娴,郭艺河,刘金宝,等.碘元素缺乏大鼠小脑的研究.中国地方病学杂志,1989,8(4):213~215.
    8.高博,尹桂山.高碘对小鼠脑发育的影响.中国预防医学杂志,1997,31(3):134-136.
    9.周秀霞,尹桂山.高碘对脑、肾等组织损伤的研究.中国地方病学杂志,全国第五届碘缺乏病学术会议论文专辑,1995,216.
    10.郭艺河,陈雪娴,刘祥林,等.高碘性大、小鼠的大脑形态学观察.中国地方病防治杂志,1990,4(5):286~287.
    11.郭兆起,章燕程.高碘性甲状腺肿雏鸡的培育及其形态观察.第二届全国地方性甲状腺肿地方性克汀病学术会议资料汇编,1984,351~357.
    12.李英华,朱惠民,王彦娜,等.高碘对仔鼠脑发育影响的实验研究,中国公共卫生,2000,16(12):1103—1104.
    13.庄宗杰,张静,李绪明,等.大鼠连续多代缺碘对子代海马形态结构的影响 全国第四届碘缺乏病学术会议论文专辑,1991,33~39.
    14.闫玉芹,王丹娜,刘守军,等.碘、硒缺乏对大鼠脑脂类含量的影响.中国地方病学杂志,1996,15(5):273~275.
    15.高秋菊,张世勇.高碘对小鼠大脑神经细胞超微结构的影响.中国地方病防治杂志,2000,5(5):270-272.
    16.侯晓晖,杨雪锋,孙秀发,等.硒对高碘仔鼠MBP基因表达的影响.卫生研究,2005,34(4):428-430.
    1. Kenneth J. Livak and Thomas D. Schmittgen. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCt. METHODS, 2001, 25: 402-408.
    2. Fox PT, Raichle ME, Minton HA, et al. Nonoxidative glucose consumption during focal physiologic neural activity. Science, 1988, 241: 462~463.
    3. Marangos PJ. Developmental profile of neuro-specific (NSE) and non-neuronal (NNE) enolase in rat and monkey brain.Brain Research,1980,190:186.
    4. Sehmechel DE.Neuron switch from non-neuronal enolase to neuro-specific enolase during differentiation. Brain Research, 1980,190:195.
    5.闫玉芹,刘家慧,张桂华,等.碘缺乏对仔鼠大脑烯醇化酶发育的影响.中国地方病学杂志,1997;16(2):65—67.
    6.孙素菊,冯忠军.过量碘对仔鼠海马组织烯醇化酶活性的影响.中华预防医学杂志,2000;34(1):39—40.
    7. Baenekow A, Jahn R, Scheller M. Synaptophysin: A substrate for the protein tyrosine kinase p060c-src in intact synaptic vesicles. Oncogene, 1990, 5(6): 1019—1024.
    8. Navone F, Jahn R, Di Gioia G, et al. Protein p38: An integal membrane protein specific for small vesicles of neurons and neuroendocrine cells[J]. J Cell Biol, 1986, 103(6): 2511-2527.
    9. Leube RE, Kaiser P, Seiter A, et al. Synaptophysin: molecular organization and mRNA expression as detemined from cloned cDNA[J]. EMBO J, 1987, 6(11): 3261-3268.
    10. Jahn R, Schiebler W, Ouimet C, et al. A 38,000-dalton membrane protein(p38) present in synaptie vesicles[J]. Proc Natl Acad Sci USA, 1985, 82(12): 4137-4141.
    11. Wiedenmann B,Franke WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles[J]. Cell, 1985, 41(7): 107-128.
    12. Pieribone VA,PortonB, RendonBetal.Expression of synapsin—Ⅲ in nerve terminals and neurogenic region softhe adult brain.J Comp Neurol,2002, 454(2):105-114.
    13. Wiedenmann B,Franke WW.Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell, 1985, 41(7): 107-128.
    14. Crispino M, Stone DJ, Wei M, et al. Variations of synaptotagmin Ⅰ, synaptotamin Ⅳ, and synaptophysin mRNA levels in rat hippocampus during the estrous cycle. Exp Neurol, 1999, 159(2): 574—583.
    
    15. Daly C, Sugimori M, Jorge E, et al. Synaptophysin regulates clathrin-independent endoeytosis of synaptic vesicles. Proc Natl Acad Sci USA, 2000, 2397(11): 6120—6125.
    
    16. Bergmann M, Post A. Rittel I, et al. Expression of synaptophysin in sprouting neurons after entorhinal lesion in the rat. Exp Bra Res, 1997, 117(1): 80-86.
    
    17. Heisenberg CP, Thoenen H, Lindholm D. Tri-iodothyronine regulates survival and differentiation of rat cerebellar granule neurons. Neuroreport. 1992, 3(8):685-8.
    
    18. Bhattacharya,B.and Sarkar,P.K. Tubulin gene expression during synaptogenesis in rat, mouse and chick brain. Int.J.Dev. Neurosci., 1991, 9: 89-100.
    
    19. Chaudhury,S.and Sarkar,P.K. Stimulation of tubulin synthesis by thyroid hormone in the developing rat brain. Biochim. Biophys. Acta, 1983,763: 93-98.
    
    20. Bond,J.F.and Farmer,S.R. Regulation of tubulin and actin mRNA production in rat brain. Expression of a new P-tubulin mRNA with development.Mol.Cell.Biol., 1983,3:1333-1342.
    
    21. Mazumder,A., Das,K.and Sarkar, P.K. Regulation of tubulin by T3 in hypothyroid rat brain. Biosci.Rep.,5(1985)643-648.
    
    22. Ranjana Poddar,Surojit Paul, Sukanya,et al.Regulation of actin and tubulin gene expression by thyroid hormone during rat brain development.Molecular Brain Research, 1996,35:111-118.
    
    23. Aniello F, Couchie D, Gripois D, et al. Regulation of five tubulin isotypes by thyroid hormone during brain development. J Neurochem, 1991, 57:1781-1786.
    
    24. Watson, J.B., Battenberg, E.F., Wong, K.K., et al. Subtractive cDNA cloning of RC3, a rodent cortex enriched mRNA encoding a novel 78 residue protein, J. Neurosci.Res., 1990,26: 397-408.
    
    25. Piosik, P.A., Van Groenigen, M., Ponne, N.J., et al.RC3/Neurogranin structure and expression in the caprine brain in relation to congenital hypothyroidism. Mol. Brain Res.,1995,29:119-130.
    
    26. Represa, A., Deloulme, J.C., Sensenbrenner, M.,et al. Neurogranin: immunocytochemical localization of a brain-specific protein kinase C substrate. J. Neurosci., 1990,10:3782-3792.
    
    27. Higo N.Oishi T,Yamashita A, Matsuda K, et al. Cell- type and region—specific expression of protein kinase C—substrate mRNAs in the cerebellum of the macaque monkey. J Comp Neurol, 2003, 467(2): 135 — 149.
    
    28. van Dam EJ, Ruiter B, Kamal A, et al. N—methyl—D—aspartate induced long—term depression is associated with a decrease in postsynaptie protein kinase C-substrate phosphorylation in rat hippocampal slices. Neurosci Lett, 2002, 320(3): 129—132.
    
    29. Mons N, Enderlin V, Jafard R, et al. Selective age—related changes in the PKC—sensitive,calmodulin—binding protein, neurogranin, in the mouse brain. J Neurochem, 2001, 79(4):859—867.
    
    30. Husson M , Enderlin V, Alfos S, et al. Expression of neurogranin and neuromodulin is affected in the striatum of vitamin A—deprived rats. Brain Res Mol Brain Res, 2004,123(1-2): 7-17.
    
    31. Devireddy LR, Green MR. Transcriptional program of apoptosis induction following interleukin 2 deprivation: identification of RC3, a calcium / calmodulin binding protein,as a novel proapoptotic factor. Mol Cell Biol, 2003, 23(13): 4532-4541.
    
    32. Guadano- Ferraz A.,Eseamez MJ, Morte B, et al. Transcriptional induction of Ng / neurogranln by thyroid hormone: differential neuronal sensitivity is not correlated with thyroid hormone receptor distitribution in the brain. Brain Res Mol Brain Res, 1997, 49(1-2): 37-44.
    33. Munoz, A Rodriguez-Pena, A Perez-Castillo, et al. Effects of neonatal hypothyroidism on rat brain gene expression. Molecular Endocrinology, 1991, 5: 273-280.
    34. MIGUEL A. IRIGUEZ, LUIS DE LECEA, et al. Cell-Specific Effects of Thyroid Hormone on RC3/Neurogranin Expression in Rat Brain. Endocrinology, 1996, 137: 1032-1041.
    35. IniguezMA, L ecea L, Guadano Ferraz A, et al. Cell specific effects of thyroid hormone or RC3 expression in rat brain.Endocrinology, 1996, 137(3): 1032-1041.
    36. Johnston MV. Developmental disorders of activity dependent neuronal plasticity. Indian J Pediatr, 2001, 68(5): 423-426.
    37. Petra A. Piosik, Marion van Groenigen, Frank Baas, et al. Effect of thyroid hormone deficiency on RC3/neurogranin mRNA expression in the prenatal and adult caprine brain. Molecular Brain Research, 1996, 42: 227-235.
    38.冯绮文,苏青.甲状腺激素受体研究进展.国外医学内分泌学分册,2003,23(1):44-46.
    39.T3对人神经干细胞分化过程中甲状腺激素受体表达的影响,中华内分泌代谢杂志,2003,19(5):348—350.
    40.左爱军,赵学勤,梁东春,等.缺碘大鼠补碘对脑内甲状腺激素受体的影响.中国地方病学杂志,2004,23(3):198-200.
    41.苏青,邢惠莉,左静南,等.围生期甲减对大鼠脑甲状腺激素受体基因表达的影响.上海第二医科大学学报,2003,23(Suppl):22-24.
    42. O'Shea PJ, Williams GR. Insight into the physiological actions of thyroid hormone receptors from genetically modified mice. J Endocrinol, 2002, 175: 553-570.
    43. Morte B, Manzano J, Scanlan T, et al. Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci USA, 2002, 99: 3985-3989.
    44. Hashimoto K, Curry FH, Borges PP, et al. An unliganded thyroid hormone receptor causes severe neurological dysfunction. Proc Natl Acad Sci USA, 2001, 98: 3998-4003.
    45.蔡东升.甲状腺激素与脑信号传导系统.国外医学内分泌学分册.2001,21(2):73-76.
    46. Leung FC, Saggerson ED, Clark JB. Signal transduction processes in the developing brain: perturbations of G protein alpha subunit abundances by perinatal hypothyroidism. Dev Neurosci, 1996,18:153-161.
    47. Wong CC, Warsh JJ, Sibony D, et al. Differential ontogenetic appearance and regulation of stimulatory G protein isoforms in rat cerebral cortex by by thyroid hormone deficiency. Dev Brain Res, 1994, 79:136-139.
    48.苏青,罗敏,陈源,等.围生期甲减对鼠脑Go α基因表达的影响.上海第二医科大学学报.2000,20(5):385-387.
    49.蔡东升,刘优萍,陈刚,等.甲状腺激素调节幼年大鼠海马Go α及Gs α基因表达的研究.中华内分泌代谢杂志,2000,16(3):185-186.
    50.蔡东升,罗敏,陈源.甲状腺激素对新生鼠下丘脑Go α亚单位的影响.中华内分泌代谢杂志,1999,15:286-290.
    51.杨雪锋 孙秀发 侯晓晖,等.硒对高碘小鼠肝脏两种含硒酶的影响.营养学报 2005,27(4):300-302.
    52. Grosso S, Berardi R, Cioni M, Morgese G. Transient neonatal hypothyroidism after gestational exposure to amiodarone: a follow-up of two cases. J Endocrinol Invest. 1998, 21(10): 699-702.
    53. Magee Laura A., Nulman Irena, Rovet Joanne F, et al. Neurodevelopment After In Utero Amiodarone Exposure, et al. Neurotoxicology and Teratology, 1999, 21(3): 261-265.
    54. Glinoer D, Delange F. The potential repercussions of maternal, fetal, and neonatal hypothyroxinemia on the progeny. Thyroid, 2000, 10: 871-887.
    55. Haddow JE, Palomaki GE, Allan WC, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med, 1999, 341:549-555.
    56.谢继良,齐全,邹继源,等.水源性高碘地甲病区儿童智力调查研究.中国地方病防治杂志,1987,2(1):27-29.
    57.王栋,陈祖培,齐澍平,等.高碘地区儿童的智力研究中国地方病防治杂志,1987,2(6):349-350.
    58.钱明,阎玉芹,陈祖培,等.碘缺乏、补碘、高碘对儿童智力影响的Meta分析.中华流行病学杂志,2002,23(4):246-249.
    1. Benal J, Pekonen F. Ontogenesis of the nuclear 3,5,3'-triiodothyronine receptor in the human fetal brain. Endocrinology. 1984, 114(2):677-9.
    2. Anderson GW, Mariash CN, Oppenheimer JH. Molecular actions of thyroid hormone. In: LE Braverman, RD Utiger, Eds. Werner and Ingbar' s The Thyroid. Philadelphia: Lippincott, Williams & Wilkins, 2000: 174-195.
    3. Chin WW, Yen PM. Molecular mechanisms of nuclear thyroid hormone action. In: LE Braverman, Ed. Diseases of the Thyroid: Totowa, NJ: Humana Press, 1997; 1-15.
    4. Koenig RJ. Thyroid hormone receptor coactivators and corepressors. Thyroid 1998, 8: 703-713.
    5. McKenna NJ, Lanz RB, O' Malley BW. Nuclear receptor coregulators: Cellular and molecular biology. Endocr Rev, 1999, 20: 321-344.
    6. Bradley DJ, Towle HC, Young WSd. Spatial and temporal expression of alpha-and betathyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci, 1992, 12: 2288-2302.
    7. Carlson DJ, Strait KA, Schwartz HL, et al. Immunofluorescent localization of thyroid hormone receptor isoforms in glial cells of rat brain. Endocrinology, 1994, 135: 1831-1836.
    8. Carre JL, Demerens C, Rodriguez-Pena A, et al. Thyroid hormone receptor isoforms are sequentially expressed in oligodendrocyte lineage cells during rat cerebral development. J Neurosci Res, 1998, 54: 584-594.
    9. Mellstrom B, Naranjo JR, Santos A, et al. Independent expression of the alpha and beta c-erbA genes in developing rat brain. Mol Endocrinol, 1991, 5: 1339-1350.
    10. Strait KA, Carlson DJ, Schwartz HL, et al. Transient stimulation of myelin basic protein gene expression in differentiating cultured oligodendrocytes: A model for 3,5,39- triiodothyronine-induced brain development.Endocrinology, 1997, 138: 635-641.
    
    11. Strait KA, Schwartz HL, Seybold VS, et al. Oppenheimer JH. Immunofluorescence localization of thyroid hormone receptor protein beta 1 and variant alpha 2 in selected tissues: cerebellar Purkinje cells as a model for beta 1 receptor-mediated developmental effects of thyroid hormone in brain. Proc Natl Acad Sci USA, 1991,88: 3887-3891.
    
    12. Sandhofer C, Schwartz HL, Mariash CN, et al. Beta receptor isoforms are not essential for thyroid hormone-dependent acceleration of PCP-2 and myelin basic protein gene expression in the developing brains of neonatal mice. Mol Cell Endocrinol, 1998, 137: 109 - 115.
    
    13. Henley WN, Koehnle TJ. Thyroid hormones and the treatment of depression: An examination of basic hormonal actions in the mature mammalian brain. Synapse, 1997,27: 36-44.
    
    14. Cleare AJ, McGregor A, 0' Keane V. Neuroendocrine evidence for an association between hypothyroidism, reduced central 5-HT activity and depression. Clin Endocrinol, 1995, 43: 713-719.
    
    15. Jackson I, Asamoah EO. Thyroid function in clinical depression: Insights and uncertainties. Thyroid Today, 1999, 22: 1 - 11.
    
    16. Boyages SC. The neuromuscular system and brain in hypothyroidism. In: LE Braverman, RD Utiger, Eds. Werner and Ingbar' s The Thyroid. Philadelphia: Lippincott, Williams & Wilkins, 2000: 803-810.
    
    17. Whybrow PC, Bauer M. Behavioral and psychiatric aspects of hypothyroidism. In: LE Braverman, RD Utiger, Eds. Werner and Ingbar' s The Thyroid. Philadelphia: Lippincott, Williams & Wilkins, 2000: 837-842.
    
    18. Bennett AW, Cambor CG. Clinical study of hyperthyroidism. Arch Gen Psychiatr, 1961,4: 160- 167.
    
    19. Whybrow PC, Prange AJ, Jr., Treadway CR. Mental changes accompanying thyroid gland dysfunction. A reappraisal using objective psychological measurement. Arch Gen Psychiatr, 1969, 20: 48-63.
    
    20. Whybrow PC, Prange AJ, Jr. , Treadway CR. Mental changes accompanying thyroid gland dysfunction. A reappraisal using objective psychological measurement.Arch Gen Psychiatr, 1969, 20: 48-63.
    
    21. Bernal J, Nunez J. Thyroid hormones and brain development. Eur J Endocrinol, 1995, 133: 390-398.
    
    22. Durand B, Raff M. A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays, 2000, 22: 64-71.
    
    23. Gould E, WoolleyCS, McEwenBS. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.Psychoneuroendocrinology, 1991, 16:67 - 84.
    
    24. Koibuchi N, Chin WW. Thyroid hormone action and brain development. Trends Endocrinol Metab, 2000, 11: 123 - 128.
    
    25. Legrand J. Thyroid hormone effects on growth and development. In: G Hennemann,Ed.Thyroid Hormone Metabolism. New York:Dekker, 1986:. 503-534.
    
    26. Oppenheimer JH, Schwartz HL. Molecular basis of thyroid hormone-dependent brain development. Endocr Rev, 1997,18: 462-475.
    
    27. Porterfield SP, Hendrich CE. The role of thyroid hormones in prenatal and neonatal neurological development—Current perspectives. Endocr Rev, 1993, 14;94-106.
    
    28. Rodriguez-Pena A. Oligodendrocyte development and thyroid hormone. J Neurobiol, 1999, 40: 497 - 512.
    
    29. Alm J, Larsson A, Zetterstrom R. Congenital hypothyroidism in Sweden.Psychomotor development in patients detected by clinical signs and symptoms. Acta Paediatr Scand, 1981, 70: 907-912.
    
    30. IlligR, Largo RH, Weber M, et al. Sixty children with congenital hypothyroidism detected by neonatal thyroid: Mental development at 1, 4, and 7 years: A longitudinal study. Acta Endocrinol Suppl, 1986, 279: 346-353.
    
    31. Klein AH, Meltzer S, Kenny FM. Improved prognosis in congenital hypothyroidism treated before age three months. J Pediatr, 1972, 81: 912-915.
    
    32. Klein RZ, Mitchell ML, Foley TP. Hypothyroidism in infants and children. In: LE Braverman, RD Utiger, Eds. Werner and Ingbar' s The Thyroid. Philadelphia: Lippincott, Williams & Williams, 2000: 973-988.
    
    33. Chan S, Kilby MD. Thyroid hormone and central nervous system development. J Endocrinol, 2000, 165: 1-8.
    
    34. Bongers-Schokking JJ, Koot HM, Wiersma D, et al. Influence of timing and dose of thyroid hormone replacement on development in infants with congenital hypothyroidism. J Pediatr, 2000, 136: 292-297.
    
    35. Eayrs JT. Thyroid and developing brain: Anatomical and behavioral effects. In: M Hamburgh,EJW Barrington, Eds. Hormones in Development. New York:Appleton - Century - Crofts, 1971.
    
    36. Eayrs JT, Levine S. Influence of thyroidectomy and subsequent replacement therapy upon conditioned avoidance learning in the rat. J Endocrinol, 1963, 25:505-513.
    
    37. Eayrs JT, Lishman WA. The maturation of behaviour in hypothyroidism and starvation. Br J Anim Behav, 1955, 3: 17-24.
    
    38. Essman WB, Mendoza LA, Hamburgh M. Critical periods of maze acquisition development in euthyroid and hypothyroid rodents. Psychol Rep, 1968,23:795 - 800.
    
    39. Hendrich CE, Jackson WJ, Porterfield SP. Behavioral testing of progenies of Tx (hypothyroid) and growth hormone- treated Tx rats: an animal model for mental retardation. Neuroendocrinology, 1984, 38: 429-437.
    
    40. Eayrs JT. Age as a factor determining the severity and reversibility of the effects of thyroid deprivation in the rat. J Endocrinol, 1961, 22: 409-419.
    
    41. Durand B, Raff M. A cell-intrinsic timer that operates during oligodendrocyte development. Bioessays, 2000, 22: 64 - 71.
    
    42. Gao FB, Durand B, Raff M. Oligodendrocyte precursor cells count time but not cell divisions before differentiation. Curr Biol, 1997,7: 152-155.
    43. Durand B, Gao FB, Raff M. Accumulation of the cyclin-dependent kinase inhibitor p27/Kipl and the timing of oligodendrocyte differentiation. EMBO J, 1997, 16:306 - 317.
    
    44. Ahlgren SC, Wallace H, Bishop J, et al. Effects of thyroid hormone on embryonic oligodendrocyte precursor cell development in vivo and in vitro. Mol Cell Neurosci, 1997,9: 420-432.
    
    45. Ibarrola N, Mayer-Proschel M, Rodriguez-Pena A, et al. Evidence for the existence of at least two timing mechanisms that contribute to oligodendrocyte generation in vitro. Dev Biol, 1996, 180: 1-21.14 COMMENTARY.
    
    46. Rabie A, ClaveiM C, Legrand J. Analysis of the mechanisms underlying increased histogenetic cell death in developing cerebellum of the hypothyroid rat: determination of the time required for granule cell death. Brain Res, 1980,190(2): 409-14.
    
    47. Tompson CC., Potter GB. Thyroid Hormone Action in neural Development: Cerebral Cortex, 2000, 10:939-945.
    
    48. Farwell AP, Dubord-Tomasetti SA. Thyroid hormone regulates the extracellular organization of laminin on astrocytes. Endocrinology, 1999; 140: 5014-5021.
    
    49. Siegrist-Kaiser CA, Juge-Aubry C, Tranter MP, et al. Thyroxinedependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J Biol Chem, 1990, 265: 5296-5302.
    
    50. Trentin AG, Moura Neto V. T3 affects cerebellar astrocyte proliferation, GFAP and fibronectin organization. Neuroreport, 1995, 6: 293-296.
    
    51. Martinez-Galan JR, Pedraza P, Santacana M, et al. Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism. J Clin Invest, 1997, 99: 2701-2709.
    
    52. Pesetsky I. The development of abnormal cerebellar astrocytes in young hypothyroid rats. Brain Res, 1973, 63: 456-460.
    
    53. Guadano-Ferraz A, Escamez MJ, Rausell E, et al. Expression of type 2 iodothyronine deiodinase in hypothyroid rat brain indicates an important role of thyroid hormone in the development of specific primary sensory systems. J Neurosci, 1999, 19: 3430-3439.
    
    54. Guadano-Ferraz A, Obregon MJ, St. Germain DL, et al. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci, 1997,94: 10391 - 10396.
    
    55. Larsen PR, Berry MJ. Nutritional and hormonal regulation of thyroid hormone deiodinases. Annu Rev Nutr, 1995,15: 323 - 352.
    
    56. Larsen PR, Davies TF, Hay ID. The thyroid gland. In: JD Wilson, DW Foster, HM Kronenberg, PR Larsen, Eds. Williams Textbook of Endocrinology. Philadelphia:Saunders, 1998:389-515.
    
    57. Bernal J. Iodine and brain development. Biofactors, 1999, 10: 271-276.
    
    58. Dratman MB, Gordon JT. Thyroid hormones as neurotransmitters. Thyroid 1996,6:639 - 647.
    
    59. Jacobson M. Role of thyroid hormones in mammalian brain development. In:Developmental Neurobiology. New York: Plenum, 1991; 293-296.
    60. Legrand J. Analyse de 1' action marphoge' ne' tique des hormones thyroidiennes sur le cervelet du jeune rat. Arch Anat Microsc Morph Exp, 1967,56: 205-244.
    
    61. Patel AJ, Rabie A, Lewis PD, Balazs R. Effect of thyroid deficiency on postnatal cell formation in the rat brain: A biochemical investigation. Brain Res, 1976, 104:33 - 48.
    
    62. Lauder JM. The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. III. Kinetics of cell proliferation in the external granular layer. Brain Res, 1977, 126: 31-51.
    
    63. Nicholson JL, Altman J. The effects of early hypo- and hyperthyroidism on the development of the rat cerebellar cortex. II. Synaptogenesis in the molecular layer. Brain Res, 1972, 44: 25-36.
    
    64. Legrand J. Variations, en fonction de 1' age, de la response du cervelet a 1' action morphogenetique dela thyroide chezle rat. Arch Anat Microsc Morph Exp, 1967, 56: 291-307.
    
    65. Lauder JM. Effects of early hypo- and hyperthyroidism on development of rat cerebellar cortex. IV. The parallel fibers. Brain Res, 1978, 142: 25-39.
    
    66. Lauder JM. Granule cell migration in developing rat cerebellum. Influence of neonatal hypo and hyperthyroidism. Dev Biol, 1979, 70: 105-115.
    
    67. Xiao Q, Nikodem VM. Apoptosis in the developing cerebellum of the thyroid hormone deficient rat. Front Biosci,1998, 3: A52 - A57.
    
    68. Rami A, Rabie A, Patel AJ. Thyroid hormone and development of the rat hippocampus:cell acquisition in the dentate gyrus. Neuroscience, 1986, 19: 1207-1216.
    
    69. Madeira MD, Paula-Barbosa MM. Reorganization of mossy fiber synapses in male and female hypothyroid rats: A stereological study. J Comp Neurol 1993,337:334 - 352. COMMENTARY 15.
    
    70. Madeira MD, Sousa N, Lima-Andrade MT, et al. Selective vulnerability of the hippocampal pyramidal neurons to hypothyroidism in male and female rats. J Comp Neurol, 1992,322: 501-518.
    
    71. Eayrs JT. The cerebral cortex of normal and hypothyroid rats. Acta Anat, 1955, 25:160-183.
    
    72. Balazs R. Hormonal influences on brain developmen. In: RP Michael, Ed.Biochemistry of theDeveloping Brain. New York: Dekker, 1973: 39-63.
    
    73. Ruiz-Marcos A, Sanchez-Toscano F, Escobar del Rey F, et al. Severe hypothyroidism and the maturation of the rat cerebral cortex. Brain Res, 1979,162: 315-329.
    
    74. Ruiz-Marcos A, Salas J, Sanchez-Toscano F, et al. Effect of neonatal and adult-onset hypothyroidism on pyramidal cells of the rat auditory cortex. Brain Res, 1983, 285: 205-213.
    
    75. Calikoglu AS, Gutierrez-Ospina G, D' Ercole AJ. Congenital hypothyroidism delays the formation and retards the growth of the mouse primary somatic sensory cortex (S1). Neurosci Lett, 1996, 213: 132-136.
    
    76. Gravel C, Hawkes R. Maturation of the corpus callosum of the rat: I. Influence of thyroid hormones on the topography of callosal projections. J Comp Neurol, 1990,291: 128- 146.
    77. Gravel C, Sasseville R, Hawkes R. Maturation of the corpus callosum of the rat:II. Influence of thyroid hormones on the number and maturation of axons. J Comp Neurol, 1990,291: 147-161.
    
    78. Strait KA, Zou L, Oppenheimer JH. Beta 1 isoform-specific regulation of a triiodothyronineinduced gene during cerebellar development. Mol Endocrinol, 1992,6: 1874-1880.
    
    79. Anderson GW, Hagen SG, Larson RJ, Strait KA, Schwartz HL, et al. Purkinje cell protein-2 cis-elements mediate repression of T3-dependent transcriptional activation. Mol Cell Endocrinol, 1997, 131: 79-87.
    
    80. Anderson GW, Larson RJ, Oas DR, et al. Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) modulates expression of the Purkinje cell protein-2 gene. A potential role for COUP-TF in repressing premature thyroid hormone action in the developing brain. J Biol Chem, 1998,273:16391 - 16399.
    
    81. Koibuchi N, Chin W. ROR alpha gene expression in the perinatal rat cerebellum:Ontogeny and thyroid hormone regulation. Endocrinology, 1998, 139: 2335 - 2341.
    
    82. Koibuchi N, Liu Y, Fukuda H, et al. ROR alpha augments thyroid hormone receptor-mediated transcriptional activation. Endocrinology,1999,140:1356 - 1364.
    
    83. Giordano T, Pan JB, Casuto D, et al. Thyroid hormone regulation of NGF, NT-3 and BDNF RNA in the adult rat brain. Brain Res Mol Brain Res, 1992, 16: 239-245.
    
    84. Koibuchi N, Fukuda H, Chin WW. Promoter-specific regulation of the brain-derived neurotropic factor gene by thyroid hormone in the developing rat cerebellum.Endocrinology, 1999, 140: 3955 - 3961.
    
    85. Neveu I, Arenas E. Neurotrophins promote the survival and development of neurons in the cerebellum of hypothyroid rats in vivo. J Cell Biol, 1996, 133: 631 - 646.
    
    86. Alvarez-Dolado M, Gonzalez-Sancho JM, Bernal J, et al. Developmental expression of the tenascin-C is altered by hypothyroidism in the rat brain.Neuroscience, 1998, 84: 309-322.
    
    87. Alvarez-Dolado M, Ruiz M, Del Rio JA, et al. Thyroid hormone regulates reelin and dab1 expression during brain development. J Neurosci, 1999, 19: 6979 - 6993.COMMENTARY 12.
    
    88. Iglesias T, Caubin J, Stunnenberg HG, et al. Thyroid hormonedependent transcriptional repression of neural cell adhesion molecule during brain maturation. EMBO J,1996,15: 4307 - 4316.
    
    89. Thompson CC. Thyroid hormone-responsive genes in developing cerebellum include a novel synaptotagmin and a hairless homolog. J Neurosci, 1996, 16: 7832 - 7840.
    
    90. Thompson CC, Bottcher MC. The product of a thyroid hormone-responsive gene interacts with thyroid hormone receptors. Proc Natl Acad Sci USA ,1997,94:8527-8532.
    
    91. Muller Y, Rocchi E, Lazaro JB, et al. Thyroid hormone promotes BCL-2 expression and prevents apoptosis of early differentiating cerebellar granule neurons. Int J Dev Neurosci, 1995,13: 871 - 885.
    
    92. Bhat NR, Sarlieve LL, Rao GS, et al. Investigations on myelination in vitro. Regulation by thyroid hormone in cultures of dissociated brain cells from embryonic mice. J Biol Chem, 1979, 254: 9342-9344.
    93. Munoz A, Rodriguez-Pena A, Perez-Castillo A, F, et al. Effects of neonatal hypothyroidism on rat brain gene expression. Mol Endocrinol, 1991, 5: 273-280.
    94. Tosic M, Torch S, Comte V, et al. Triiodothyronine has diverse and multiple stimulating effects on expression of the major mylin protein genes. J Neurochem, 1992, 59: 1770-1777.
    95. Rodriguez-Pena A, Ibarrola N, Iniguez MA, et al. Neonatal hypothyroidism affects the timely expression of myelin-associated glycoprotein in the rat brain. J Clin Invest, 1993, 91: 812-818.
    96. Farsetti A, Desvergne B, Hallenbeck P, et al. Characterization of myelin basic protein thyroid hormone response element and its function in the context of native and heterologous promoter. J Biol Chem, 1992, 267: 15784-15788.
    97.蔡东升,陈源,陈刚,等.甲低对新生早期大鼠海马及齿状回Goα mRNA的影响,中国应用生理学杂志,2001(1):21—24.
    98.苏青,罗敏,陈源,等,甲状腺激素缺乏对发育期鼠脑蛋白激酶C活性的影响,中华内分泌代谢杂志,2000,16(2):106—108
    99. Bussemaker E, Popp R, Fisslthaler B, et al. Hyperthyroidism enhances endothelium-dependent relaxation in the rat renal artery. Cardiovase Res., 2003, 59(1):181-188
    100. Iniguez MA, Rodriguez-Pena A, Ibarrola N, et al. Adult rat brain is sensitive to thyroid hormone Regulation of RC3/neurogranin mRNA. J Clin Invest, 1992, 90(2):554-8.
    101. Amy L. S. Dowling, R. Thomas Zoeller. Thyroid hormone of maternal origin regulates the expression of RC3/neurogranin mRNA in the fetal rat brain. Molecular Brain Research, 2000, 82:126-132.
    102. Iniguez MA, Rodriguez-Pena A, Ibarrola N, et al. Thyroid hormone regulation of RC3, a brain-specific gene encoding a protein kinase-C substrate. Endocrinology, 1993, 133(2):467-473.
    103. Poddar R, Paul S, Chaudhury S, et al. Regulation of actin and tubulin gene expression by thyroid hormone during rat brain Development[J]. Brain Res Mol Brain Res. 1996, 35(1-2):111-118.
    104. Dowling ALS, Martz GU, Leonard JL, et al. Acute changes in maternal thyroid hormone induce rapid and transient changes in gene expression in fetal rat brain. The Journal of Neuroscience, 2000, 20(6):2255-2265.
    105. Denver RJ, Pavgi S, Shi YB. Thyroid hormone-dependent gene expression program for Xenopus neural development. J Biol Chem, 1997, 272: 8179-8188.
    106. Dowling AL, Martz GU, Leonard JL, et al. Acute changes in maternal thyroid hormone induce rapid and transient changes in gene expression in fetal rat brain. J Neurosci, 2000, 20: 2255-2265. COMMENTARY 13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700