胸压对三尖瓣反流速度和肺动脉压测定影响的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     应用超声心动图观察平静呼吸情况下胸压对三尖瓣反流速度的影响规律及机制,为超声心动图方法准确测定肺动脉压和验证呼吸影响心功能机制新假说提供实验依据。
     方法
     1、实验对象的筛选经多普勒超声检查证实三尖瓣口有稳定反流且频谱多普勒速度曲线清晰者,排除有明显心律不齐、中度以上心包积液、缩窄性心包炎、先天性心脏病疾病患者。
     2、实验数据采集采用Acuson Sequoia 512彩色电脑声像仪,探头频率2.5~4.0MHz。同步记录单向导联心电图,采用热敏式呼吸传感器(E99H450)记录呼吸曲线,其上升支为吸气相,下降支为呼气相。受检者取左斜卧位,平静呼吸。三尖瓣反流速度测定:清晰显示胸骨旁四腔切面观及心尖四腔切面观后,启动彩色多普勒功能,将连续多普勒聚焦区置于三尖瓣瓣口,调整探头部位使声束与血流方向尽可能平行,设置扫描速度(sweep)为50mm/s或25mm/s。显示轮廓完整、清晰的反流曲线后,连续测量5个吸气末的反流速度与其后相对应的呼气末反流速度,分别平均后作为不同呼吸相三尖瓣反流速度的平均值。跨三尖瓣压力阶差:利用简化伯努利方程,根据三尖瓣反流速度,计算跨三尖瓣压力阶差,即:△P=4V2。分别计算不同呼吸相跨瓣压差,取平均值。
     3、统计学分析使用SPSS 13.0统计软件,超声测量指标以均数±标准差表示,吸气相与呼气相之间的反流速度及跨瓣压差别进行配对t检验。P<0.05为差异有统计学意义。
     结果
     在平静呼吸条件下,三尖瓣反流速度吸气相与呼气相之间差异无统计学意义[(2.87±0.72)m/s对( 2.84±0.75)m/s, p=0.410],三尖瓣反流跨瓣压吸气相与呼气相之间差异无统计学意义[(35.01±20.65)mmHg对(34.51±19.84)mmHg,p=0.581]。
     呼吸对三尖瓣反流速度有明确的影响,反流速度与呼吸时相关系表现有三种类型:第一种为吸气相速度增加,呼气相速度减小;第二种表现与第一种相反;第三种为速度变化表现为随机性。
     结论
     呼吸性胸压变化对三尖瓣反流速度有明确影响,根据国内学者提出的新假说,呼吸性胸压变化导致了三尖瓣跨瓣压的变化,因而产生了呼吸影响三尖瓣反流速度的现象。表现为:吸气使跨瓣压减小,反流速度减小。同时,吸气又使外周回到右心的血液增加,右室于舒张期得到相对较多的充盈,使得收缩力增大,构成了增大反流速度的因素。正常人的呼吸和心动周期并无固定的时相关系,心脏收缩可能落到呼气周期的任何时相,使得这两个对抗因素出现较为复杂的配对而表现为呼吸性胸压变化对三尖瓣反流速度的影响具有复杂性,不规律性。因此提示用多普勒法无创测定肺动脉压时,需要将呼吸停止在呼吸时相的中期,并保持测定过程中胸压稳定,以提高测定准确性,研究为呼吸影响心功能新假说提供了更多的依据。
Objective
     To study the mechanism of the effects of the intrathoracic pressure variation on the velocity of tricuspid regurgitation in quiet respiration, to accurately estimate the pulmonary artery systolic pressure, and to verify the new proposed mechanism of respiratory effects on hemodynamics using echocardiography.
     Methods
     1、Experiment subjects screened The patients with stable tricuspid regurgitation and clear Doppler spectral envelopes were selected for the study. Regurgitations were confirmed by continuous-wave Doppler method and apparent arrhythmia, moderate pericardial effusion, constrictive pericarditis, congenital heart disease were ruled out.
     2、Experimental data acquisition Together with Electro-cardiogram and respiratory curve recorded simultaneously, continuous-wave Doppler spectra of tricuspid regurgitation were recorded with the Siemens Sequoia 512 system using a 2.5-4.0MHz probe.Breathing thermal sensors (E99H450) were used to record respiratory curve in which the ascending branch represented the inspiratory phase and the decreasing branch represented the expiratory phase. The left lateral decubitus was adopted in all subjects with calm breathing. Followed with clear graphics got in parasternal four chamber view or apical four chamber view and focus area set under tricuspid valve, the tricuspid regurgitation velocity was detected by using color Doppler function. The probe position was adjusted to make the sound beam and the blood flow in the same direction as far as possible. The scan rate (sweep) set to 50mm/s (or 25mm/s) simultaneously. And the tricuspid regurgitation spectra recorded at the end-inspiration and end-expiration. According to tricuspid regurgitation velocity by using of simplified Bernoulli equation(△P = 4V2), the cross-tricuspid pressure gradients were acquired. The 5 continuous measurements were averaged in each phase.
     3、Statistical analysis Using SPSS 13.0 statistical software, all the ultrasound measurements were respectively compared between the inspiratory phase and expiratory phase of the regurgitation velocity and the pressure gradient. All the demographic data were expressed as mean±standard deviation. P values of <0.05 were considered as statistically significant.
     Results
     In the calming-breath conditions, there was no significant difference between the inspiratory phase and expiratory phase of the tricuspid regurgitation velocity [(2.87±0.72) m / s of (2.84±0.75) m / s, p = 0.410] and the pressure gradients [(35.01±20.65) mmHg to (34.51±19.84) mmHg, p = 0.581].
     The tricuspid regurgitation velocity were affected by the respiration variation apparently, and showed three patterns:①The velocity increased in the inspiratory phase.②T he velocity decreased in the inspiratory phase.③The velocity changed randomly.
     Conclusion
     According to the new hypothesis by Chinese scholars, the thoracic pressure changes have a clear impact on the tricuspid regurgitation velocity, and the respiratory changes in pleural pressure has led to inter-tricuspid valve pressure changes, which results tricuspid regurgitation velocity varies with the respiratory changes. The former theory shows that the regurgitation velocity decreases followed the inter-tricuspid valve pressure decreases in inspiratory phase. And at the same time the peripheral blood return to right heart increases in right ventricular diastolic filling phase followed the increased contractility, which become the factors to lead to the regurgitation velocity increase. But there is no fixed relation between the normal respiratory and the cardiac cycle. So the heart contraction cycle can be occurred in any respiratory phase, which leads to the complex effects on the tricuspid regurgitation velocity. The regularity of the variations of the tricuspid regurgitation velocity affected by the respiratory pleural pressure shows two characteristics: complexity and non-regularity. So it is essential to keep respiratory movement in the medium-term during estimating pulmonary arterial pressure by using the tricuspid regurgitation velocity method, which can keep the intrathoracic pressure stability to improve the accuracy of the determination. This study provides more evidences for the new hypothesis that the cardiac function affected by the respiratory movement.
引文
1 Eder L, Zisman D, Wolf R, Bitterman H. Pulmnonary hypertension and amyloidosis-an uncommon association: a case report and review of the literature. J Gen Intern Med. 2007; 22(3): 416-419
    2 Lode HN, Krings G, Schulze-Neick I, Dahmlow S, Schroeder U, Bonnet R, Dapalma J, Luck W, Strau G, Berger F, Gardicke G. Pulmonary Hypertension in a case of Hb-Mainz hemolytic anemia. J Pediatr Hematol Oncol. 2007; 29(3): 173-177
    3 Collard HR, Anstrom KJ, Schwarz MI, Zisman DA. Sildenafil improves walk distance in idiopathic pulmonary fibrosis. Chest. 2007; 131(3): 897-899
    4 Ryu JH, Krowka MJ, Pellikka PA, Swanson KL, McGoon MD. Pulmonary hypertension in patients with interstitial lung diseases. Mayo Clin Proc. 2007; 82(3): 342-350
    5冷晓萍,田家玮.超声多普勒无创性估测肺动脉压力的方法.中国医学影像,2001,17:277-279.
    6 Skjaerpe T, Hatle L. Diagnosis and assessment of tricuspid regurgitation with Doppler ultrasound. In: Rijsterborgh H, ed. Echocardiology. The Hague: Martinus Nijhoff, 1981:299-304.
    7 Paul G,Yock MD, Richard L,et al. Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation.Circulation, 1984, 70:657-662.
    8 Scharf SM, Cassidy SS. Heart-lung interactions in health and disease. Marcel Dekker, Inc; 1989:445.
    9 Sun Y, Beshara M, Lucariello RJ, et al. A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex. Am J Physiol. 1997;272:H1499-H1515.
    10 Tsang TS, Oh JK, Seward JB, et al. Diagnosis and management of cardiac tamponade in the era of echocardiography. Clin Cardiol. 1999;22:446-452.
    11 Lange RL, Tsagaris TJ. Time course of factors causing exaggerated respiratory variation of arterial blood pressure. J Lab Clin Med. 1964;63:431.
    12曹铁生,孙鲲,袁丽君等.正常呼吸对循环系统的影响-模拟实验与动物实验研究.第四军医大学学报. 1999;20(8)735.
    13 Morpurgo M, et al.Noninvasive assessment of pulmonary arterial hypertension in chronic lung disease:Why and how?European Heart Journal.1987;8:864
    14罗慰慈.现代呼吸病学(第一版),人民军医出版社,1997:335.
    15闫跃进,赵红,樊峰萍,宋建民,姚海英.超声和胸片法测定肺动脉高压与心导管术测定法的相关性研究.武警医学院学报,2003,12(5):373
    16黄克武,王辰.右心导管检查在慢性肺源性心脏病诊治中的应用.中国医刊,2000,34(11):7-9
    17 Alexandru B, Bogdan MA. Monocrotaline induce pulmonary hypertension in animal models. Pneumologia. 2001; 50(2): 85-89
    18 Johnson L. Diagnosis of pulmonary hypertension. Clin Tech Small Anim Pract. 1999; 14(4): 231-236
    19 Johnson L, Boon J, Orton EC. Clinical characteristics of 53 dogs with Doppler-derived evidence of pulmonary hypertension: 1992-1996. J Vet Intern Med. 1999; 13(5): 440-447
    20 Budev MM, Arroliga AC, Jennings CA. Diagnosis and evaluation of pulmonary hypertension. Cleve Clin J Med. 2003; 1(70 Suppl): 9-17
    21 Chemla D, Castelain V, Herve P, Lecarpentier Y, Brimioulle S. Haemodynamic evaluation of pulmonary hypertension. Eur Respir J. 2002; 20(5): 1314-1331
    22 Kitabatake A , Inoue M , Asao M , et al :Noninvasive evaluation of pulmonary hypertension by a puled Doppler technique [J ] . Circulation ,1983 ,68 :3022309.
    23 Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J, Morita T, Mishima M, Uematsu M, Shimazu T, Hori M, Abe H. Noninvasive evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation. 1983; 68(2):302-309
    24 Isobe M, Yazaki Y, Takaku F, Koizumi K, Hara K, Tsuneyoshi H, Yamaguchi T, Machii K. Prediction of pulmonary arterial pressure in adults by pulsed Doppler echocardiography. Am J Cardiol. 1986; 57(4): 316-321
    25 Burstin L. Determination of pressure in the pulmonary artery by external graphic recordings. Br Heart J. 1967; 29(3):396-404
    26 Harle L, Angelsen BA, Tromsdal A. Noninvasive estimation of pulmonary artery systolic pressure with Doppler ultrasound. Br Heart J. 1981;
    27 Sundar AS, Shrivastava S, Bahl VK, Bhatia ML. Quantitative assessment of pulmonary hypertension in patients with rheumatic heart disease using continuous wave Doppler ultrasound. Int J Cardiol. 1987; 17(2): 187-196
    28 Yock PG, Popp RL. Noninvasive estimation of right ventricular systotic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulanon. 1984; 70(4): 657-662
    29曹铁生, Shap SM.超声心动图法测定肺动脉收缩压的可靠性的存在问题.第四军医大学学报. 2000;21(11):1387-1389
    30周忠良,朱汉民.超声心动图监测肺动脉高压20例.医学理论与实践. 1995;11(8):521-522
    31杨锐瑛,陈树兰,张德利.多普勒超声估测肺动脉高压的临床研究.宁夏医学杂志. 1991;2(13):65-69
    32 Paul G ,Yock MD , Richard L ,et al . Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation [J ]. Circulation ,1984 ,70 :6572662.
    33王国干.肺源性心脏病及肺动脉高压的无创性诊断.中国医刊,2000,35(11):5
    34 Cosio FG, Martinez JP, Serrano CM, et al. Abnormal septal motion in cardiac tamponade with pulsus paradoxus. Chest. 1977;71:787-789.
    35 Savitt MA, George ST, Joseph RE, et al. Physiology of cardiac tamponade and paradoxical pulse in conscious dogs. Am J Physiol. 1993;265:H1996-H2008.
    36 Settle HP, Adolph RJ, Fowler NO, et al. Echocardiographic study of cardiac tamponade. Circulation. 1977;56:951-959.
    37 Feigenbaum H. Echocardiography. Ed2, Philadelphia, Lea and Febiger, 1976;430-431.
    38 Robotham JL, Bodke FR, Kindred MK, et al. Regional left ventricular performance during normal and obstructed spontaneous respiration. J Appl. Physiol. 1983;55:569-577.
    39 Guberman BA, Fowler NO, Engel PJ, et al. Cardiac tamponade in medical patients. Circulation. 1981;64:633-640.
    40曹铁生,袁丽君,孙鲲,等.超声心动图观察呼吸对室间隔运动的影响.中华超声影像学杂志. 2003;12:13-15.
    41袁丽君,高峰,曹铁生,等.超声心动图评价平静呼吸对正常人左室收缩功能的影响.中华超声影像学杂志. 2006; 15: 415-417.
    42 Riggs TW. Abnormal right ventricular filling in patients with dilated cardiomyopathy. Pediatr Cardiol. 1993;14(1):1-4.
    43 Tyberg JV, Grant DA, Kingma I, et al. Effects of positive intrathoracic pressure on pulmonary and systemic hemodynamics. Respir Physiol. 2000;119:171-179.
    44 Jellinek H, Krenn H, Oczenski W, et al. Influence of positive airway pressure on the pressure gradient for venous return in humans. J Appl Physiol. 2000;88:926-932.
    45 Alchanatis M, Paradellis G, Pini H, et al. Left ventricular function in patients with obstructive sleep apnoea syndrome before and after treatmentwith nasal continuous positive airway pressure. Respiration. 2000;67:367-371.
    46王凤芝,冀锐锋,张雪娥,等. BiPAP鼻罩式机械通气治疗左心衰竭.中华心血管病杂志. 2001;29:100-103.
    47 Bemis CE, Serur JR, Borkenhagen D, et al. Influence of right ventricular filling pressure on left ventricular pressure and dimension. Circ Res. 1974;34:498-504.
    48 Santamore WP, Lynch PR, Heckman JL, et al. Myocardial interaction between the ventricles. J Appl Physiol. 1976;41:362-368.
    49 Jardin F, Farcot JC, Boisante L, et al. Mechanism of paradoxic pulse in bronchial asthma.Circulation.1982;66:887-894.
    50 Guntheroth WG, Morgan BC, Mullins GL. Effect of respiration on venous return and stroke volume in cardiac tamponade. Circ Res. 1967; 20:381-390.
    51 DeGristofaro D, Liu CK. The hemodynamics of cardiac tamponade and blood volume overload in dogs. Cardiovasc Res. 1969;3: 292-298.
    52 Dornhorst A, Holmes JC. Pulsus paradoxus. Lancet 1952;1:746-748.
    53 Shabetai R, Fowler NO, Gueron M. The effects of respiration on aortic pressure and flow. Am Heart J. 1963;65: 525-533.
    54 Henkind SJ, Benis AM, Teichholz LE. The paradox of pulsus paradoxus. Am Heart J. 1987;114:198-203.
    55 Fuenning C, Wise R, Brower R, et al. The mechanism of pulsus paradoxus in cardiac tamponade (abstract). Fed Proc.1985; 44: 1973.
    56 Viola AR, Puy RJM, Goldman AE. Mechanisms of pulsus paradoxus in airway obstruction. J Appl Physiol. 1990; 68:1927-1931.
    57 Klopfenstein H, Schuchard G, Wann L, et al. The relative merits of pulsus paradoxus and right ventricular diastolic collapse in the early detection of cardiac tamponade: an experimental echocardiographic study. Circulation. 1985; 71:829-833.
    58 Sun Y, Beshara M, Lucariello RJ, et al. A comprehensive model for right-left heart interaction under the influence of pericardium and baroreflex. Am J Physiol. 1997;272:H1499-H1515.
    59 Tsang TS, Oh JK, Seward JB, et al. Diagnosis and management of cardiac tamponade in the era of echocardiography. Clin Cardiol. 1999;22:446-452.
    60 Lange RL, Tsagaris TJ. Time course of factors causing exaggerated respiratory variation of arterial blood pressure. J Lab Clin Med. 1964;63:431.
    61 Shabetai R, Fowler NO, Tenton J C. Pulsus paradoxus. J Clin Invest. 1965; 44:1882-1898.
    62 Gabe IT, Mason DT, Gault JH, et al. Effects of respiration on venous return and stroke volume in cardiac tamponade. Br. Heart J. 1970;32:592.
    63 Ruskin J, Bache RJ, Rembert JC, et al. Pressure flow studies in man: effect of respiration on left ventricular stroke volume. Circulation. 1973;48:79.
    64 Dornhorst AC, Howard P, Leathart GL. Pulsus paradoxus. Lancet. 1952;1:746
    65曹铁生,袁丽君,段云友,等.胸压变化对两个静脉回流系统不同作用力学原理.第四军医大学学报. 2002;23:1837-1840.
    66 Cao T, Yuan L, Duan Y. Mechanism study of Rispiration-related hemodynamics using in vitro and in vivo models. Circulation. 2003;108: 1035.
    67 Mitchell JR, Sas R, Zuege DJ, Doig CJ, Smith ER, Whitelaw WA, Tyberg JV, Belenkie I. Ventricular interaction during mechanical ventilation in closed-chest anesthetized dogs. Can J Cardiol 2005; 21(1):73-81.
    68 Neumann P, Schubert A, Heuer J. Hemodynamic effects of spontaneous breathing in the post-operative period. Acta Anaesthesiol Scand 2005;49:1443-1448.
    69 Miller JD, Smith CA, Hemauer SJ, Dempsey JA. The effects of inspiratory intrathoracic pressure production on the cardiovascular response tosubmaximal exercise in health and chronic heart failure. Am J Physiol Heart Circ Physiol 2006; 292:H580-H592.
    70 Swami A, Spodick DH. Pulsus paradoxus in cardiac tamponade: a pathophysiologic continuum. Clin. Cardiol 2003; 26(5): 215-217.
    71 Kasner M, Westermann D, Steendijk P, Gaub R, Wilkenshoff U, Weitmann K, Hoffmann W, Poller W, Schultheiss HP, Pauschinger M, Tsch?pe C. Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction: a comparative Doppler-conductance catheterization study. Circulation. 2007; 116(6): 637-647.
    72 Persson H, Lonn E, Edner M, Baruch L, Lang CC, Morton JJ, ?stergren J, McKelvie RS. Diastolic dysfunction in heart failure with preserved systolic function: Need for objective evidence results from the CHARM echocardiographic substudy–CHARMES. J Am Coll Cardiol 2007; 49(6):687–94.
    73 Zile MR, Baicu CF, Gaasch WH. Diastolic Heart Failure—Abnormalities in Active Relaxation and Passive Stiffness of the Left Ventricle. N Engl J Med. 2004; 350(19):1953-1959.
    74 Ouzounian M, Lee DS, Liu PP. Diastolic heart failure: mechanisms and controversies. Nat Clin Pract Cardiovasc Med. 2008; 5(7):375-86.
    75袁丽君,曹铁生,段云友.平静呼吸对正常人心内血流速度影响的超声心动图研究.中华超声影像学杂志. 2002;11:736-739.
    76李颖,曹铁生,袁丽君,等.平静呼吸对左室充盈的影响及其机制的超声心动图研究.中国超声医学杂志. 2006; 22:264-266.
    77李颖,曹铁生,袁丽君,等.平静呼吸对肺静脉血流的影响及其机制的超声心动图研究.中华超声影像学杂志. 2006; 15: 51-54.
    78袁丽君,曹铁生,段云友,等.阻力呼吸对正常人血流动力学的影响及其临床意义研究.中华超声影像学杂志. 2003; 12:347-350.
    79袁丽君;曹铁生;段云友,等.心包积液时呼吸对血流动力学影响的超声心动图研究.中华超声影像学杂志. 2004;13(2):96-99.
    80杨瑞静;曹铁生;袁丽君,等.呼吸对慢性阻塞性肺疾病心脏血流动力学影响的超声心动图研究.中华超声影像学杂志. 2006;15(4):277-208.
    81 Rebuck AS, Pengelly LD. Development of pulsus paradoxus in the presence of airways obstruction. N Engl J Med. 1973;288:66-69.
    82 Cao T, Yuan L, Duan Y, et al. Mechanism study of Rispiration-related hemodynamics using in vitro and in vivo models. Circulation.2003; 108:1035.
    83 Yuan L, Cao T, Duan Y, et al. Noninvasive assessment of influence of resistant respiration on blood flow velocities across the cardiac valves in human: a quantification study by echocardiography. Echocardiography. 2004;21: 391-398.
    84 Lijun Yuan, Tiesheng Cao, Yunyou Duan, Guodong Yang, Zuojun Wang, Litao Ruan. Noninvasive Assessment of Influence of Resistant Respiration on Blood Flow Velocities across the Cardiac Valves in Normal Man- a Quantification Study by Echocardiography. Echocardiography. 2004;21(5): 391-398.
    85 Cao T, Yuan L, Duan Y. A novel noninvasive quantification method of left ventricular diastolic function. JACC. 2007;4:213.
    86 MDSandra V. Abramson, MDJames B. Burke, MDFerrel Jo Pauletto,et al.Use of multiple views in the echocardiographic assessment of pulmonary artery systolic pressure J Am Soc Echocardiography.1995,8(1):55-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700