mRNA选择性加尾在卵巢癌中的作用及其机理探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     卵巢癌是病死率最高的妇科恶性肿瘤,尽管在诊断和治疗上已有很多改进,但仍然有75%卵巢癌患者在诊断时已属晚期,五年生存率仍徘徊在30%。因此深入研究卵巢癌发生发展的分子机制,对于提高卵巢癌的早期诊断、治疗和改善预后具有重要意义。目前大多数研究都是着眼于与肿瘤细胞增殖、分化和代谢相关通路及过程,有mRNA加工在卵巢癌中的研究很少。:mRNA的加工是细胞转录的一个重要过程,3’端poly(A)尾是真核生物mRNA主要特征,在调节mRNA的稳定性、细胞内转运、翻译中发挥重要作用,是调控基因表达的重要机制。在本研究中我们从mRNA加工出发,着重研究mRNA可变加尾在卵巢癌发生发展过程中发挥的作用,探索卵巢癌的发生发展的分子机制,寻找与卵巢癌相关的基因,为临床卵巢癌诊断和治疗提供生物学基础依据。
     研究目的
     1.优化检测poly(A)位点的PAS-Seq (PolyA Site-Sequencing)方法。
     2.探讨mRNA加尾位点在正常卵巢上皮细胞和卵巢癌细胞中的分布和差异。
     3.探索引起卵巢癌细胞mRNA选择性加尾变化的分子机理。4.探索3’端poly(A)尾加工因子CstF-2T表达异常在卵巢癌发生、转移和复发中的临床意义。
     研究方法
     1.提取1株正常卵巢细胞和7株卵巢癌细胞系中的细胞总RNA,并对总RNA进行质检,通过纯化出mRNA并将其片段化,经逆转录,引入接头,扩增和回收片段等步骤,构建DNA测序文库,常规测序验证文库质量。
     2.采用高通量测序,鉴定卵巢癌细胞中特异的poly(A)加尾位点变化。
     3.Westernblot方法检测CstF-2T蛋白在正常卵巢细胞和卵巢癌细胞的表达水平。
     4.采用PAS-Seq方法比较在卵巢癌细胞shRNA沉默CstF-2T前后,细胞mRNA选择性加尾变化,探讨卵巢癌细胞中CstF-2T蛋白表达对mRNA poly(A)位点选择的影响。
     5.采用免疫组织化学方法,检测CstF-2T蛋白在正常卵巢上皮、卵巢浆液性乳头状囊腺癌原发灶、淋巴结转移灶和复发灶的表达情况。研究结果
     1.RNA经定量和电泳检测,质量符合PAS-Seq实验要求,DNA文库制备的各项参数达达到测序上机要求,文库制备成功。
     2.APA在卵巢细胞中发生的频率较高,大约有30%的基因在卵巢细胞中含有2个poly(A)位点,部分基因含有更多的poly(A)位点。与正常卵巢相比,有APA的基因与卵巢癌细胞增殖、粘附、血管形成等生物学特性有关。
     3.CstF-2T蛋白在卵巢癌细胞中的表达水平明显高于正常卵巢细胞。
     4.在卵巢癌细胞中shRNA沉默CstF-2T后,基因mRNA poly(A)尾位点发生改变,有poly(A)位点变化的基因参与PI3K/Akt、MAPK和Wnt等与肿瘤密切相关的信号转导通路。
     5.CstF-2T蛋白在卵巢浆液性乳头状囊腺癌中的表达水平明显高于正常卵巢组织,并且CstF-2T蛋白在卵巢浆液性乳头状囊腺癌复发病灶中的表达高于原发病灶。
     结论
     1.成功地优化了检测poly(A)位点的PAS-Seq方法。PAS-Seq方法可以从全基因组水平大通量地分析mRNA poly(lA)加尾位点的转换,为开展鉴定卵巢癌特异lnRNA选择性加尾事件和开展后续机理研究提供重要的保证。
     2.我们获得了正常卵巢细胞和卵巢癌细胞中mRNA poly(A)加尾谱,在细胞水平上根据mRNA选择性加尾位点不同进行了聚类分析。Poly(A)位点选择的差异能够有效地识别卵巢癌细胞和正常卵巢细胞,并且为卵巢癌细胞亚型分类提供了一个潜在的指标。
     3.在卵巢癌细胞系ES2、SKOV3和IGROV1中鉴定受CstF-2T调控的mRNApoly(A)位点,为后续理解卵巢癌细胞mRNA加尾变化的分子机理提供重要信息。
     4.CstF-2T蛋白在卵巢浆液性乳头状囊腺癌复发病灶中的表达水平高于原发病灶,有可能作为在卵巢癌复发过程中出现的肿瘤异质性分子指标。
Background
     Ovarian cancer is the leading cause of death from gynecological cancers. Although considerable improvements have been made on the diagnosis and therapy, the majority of patients present with advanced stage disease, with an overall5-year rate of approximately30%. A better understanding of molecular pathogenesis of ovarian cancer will help to predict implications for early disease detection, develop strategies for rational intervention, and improve outcome. Currently, most researches focus on genetic events related to cell proliferation, differentiation and metabolism, the contribution of mRNA processing in ovarian cancer initiation and progression is poorly understood. The mRNA polyadenylation is an essential cellular process in eukaryotes, almost all eukaryotic mRNAs have a poly(A) tail at their3'ends. Poly(A) tails have shown to impact mRNA stability, translation, nuclear export and cytoplasmic localization. It is therefore that,3'end polyadenylation is a fundamental aspect for gene expression. Here we concentrate on mRNA polyadenylation in ovarian cancer and the insights that have emerged from this study may therefore hold diagnostic and therapeutic implications for ovarian cancer.
     Objectives
     1. To optimize the Poly(A) Site Sequencing technology.
     2. To explore the profiling of alternative polyadenylation(APA) sites in a human ovarian epithelial cell line and seven ovarian cancer cell lines.
     3. To investigate the complex mechanisms underlying APA sites switching in ovarian cancer cell lines.
     4. To estimate the possible significance of aberrant expression of CstF-2T protein in the pathogenesis, metastasis and recurrence of ovarian serous cystadenocarcinoma.
     Methods
     1. Libraries were constructed following several steps. Briefly, total RNA was isolated from a human normal ovarian epithelial cell and seven ovarian cancer cell lines respectively, then the polyadenylated mRNA was purified and fragmented, reverse transcription was conducted with an anchored oligo(d)T primer to generate the first-strand cDNA, then the improved PCR amplification was performed. The final PAS-Seq libraries were sequenced conventionally to ensure the libraries were feasible.
     2. The DNA libraries were sequenced on the Illumina HiSeq system. Bioinformatics analysis was used to investigate APA sites switching in ovarian cell lines.
     3. The expression of CstF-2T protein in human ovarian epithelial cells and ovarian cancer cells was detected by Westernblot.
     4. PAS-Seq technology was undertaken to investigate APA sites switching in ovarian cancer cells infected with shRNA CstF-2T virus, to verify whether expression of CstF-2T protein could affect APA sites switching.
     5. Immunohistochemical staining was applied to examine the expression of CstF-2T protein in normal ovary, serous cystadenocarcinoma, abdominal disseminated, lymphatic metastatic and recurrent specimens.
     Results
     1. The quality of total RNA was examined by qualification and electrophoresis. The DNA libraries were successfully constructed.
     2. APA sites switching events were prevalent in ovarian cell lines, over30%of all expressed genes produced alternatively polyadenylated mRNAs. Compared with human ovarian epithelial cells, genes with APA sites switching were associated with cell proliferation, adhesion, and angiogenesis et al.
     3. CstF-2T protein expressed higher in ovarian cancer cell lines.
     4. APA sites switching occurred in ovarian cancer cells infected with shRNA CstF-2T virus. Genes with APA switching were related to PI3K/Akt, MAPK, and Wnt signal pathways.
     5. The expression CstF-2T protein was overexpressed in ovarian serous cystadenocarcinoma specimens, with an increasing tendency in the recurrent lesions.
     Conclusions
     1. We successfully established the PAS-Seq method in our lab, which can detect APA sites switching at genome-wide levels.
     2. The profiling of APA switching was acquired which could help to construct heatmap analysis from ovarian cell lines. APA sites switching could distinguish human ovarian epithelial cells from ovarian cancer cell, also could help to subtype ovarian cancer cells.
     3. Elevation of CstF-2T protein could influence APA sites switching in ES2, SKOV3and IGROV1cell lines. That may provide new insights into the possible mechanisms underlying APA sites switching in ovarian cancer development and progression.
     4. CstF-2T protein was overexpressed in both ovarian cancer cell lines and human cystadenocarcinoma specimens. CstF-2T protein could be uses as a molecular biomarker of tumor heterogeneity in ovarian serous cystadenocarcionma.
引文
1. Colgan DF, Manley JL. Mechanism and regulation of mRNA polyadenylation. Genes Dev 1997,11:2755-2766.
    2. Keller W, Minvielle-Sebastia L. A comparison of mammalian and yeast pre-mRNA 3'-end processing. Curr Opin Cell Biol 1997,9:329-336.
    3. Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell 2011,43:853-866.
    4. Tian B, Hu J, Zhang H, Lutz CS. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 2005,33:201-212.
    5. Bartel DP. MicroRNAs:target recognition and regulatory functions. Cell 2009,136:215-233.
    6. Majoros WH, Ohler U. Spatial preferences of microRNA targets in 3' untranslated regions. BMC Genomics 2007,8:152.
    7. Chen CY, Shyu AB. AU-rich elements:characterization and importance in mRNA degradation. Trends Biochem Sci 1995,20:465-470.
    8. van Hoof A, Parker R. Messenger RNA degradation:beginning at the end. Curr Biol 2002,12:R285-287.
    9. Lewis JD, Gunderson SI, Mattaj IW. The influence of 5' and 3' end structures on pre-mRNA metabolism. J Cell Sci Suppl 1995,19:13-19.
    10. Jacobson A, Peltz SW. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem 1996,65:693-739.
    11. Wickens M, Anderson P, Jackson RJ. Life and death in the cytoplasm: messages from the 3' end. Curr Opin Genet Dev 1997,7:220-232.
    12. Flavell SW, Kim T-K, Gray JM, Harmin DA, Hemberg M, Hong EJ, et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 2008,60:1022-1038.
    13. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3' untranslated regions and fewer microRNA target sites. Science 2008,320:1643-1647.
    14. Mayr C, Bartel DP. Widespread shortening of 3' UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009,138:673-684.
    15. Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, et al. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science 2008,321:956-960.
    16. Schuster SC. Next-generation sequencing transforms today's biology. Nat Methods 2008,5:16-18.
    17. Shepard PJ, Choi E-A, Lu J, Flanagan LA, Hertel KJ, Shi Y. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 2011,17:761-772.
    18. Lutz CS. Alternative polyadenylation:a twist on mRNA 3'end formation. ACS Chem Biol 2008,3:609-617.
    19. Zhao J, Hyman L, Moore C. Formation of mRNA 3'ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biolo R 1999,63:405-445.
    20. Edmonds M. A history of poly A sequences:from formation to factors to function. Prog Nucleic Acid Res Mol Biol 2002,71:285-389.
    21. Keller W, Minvielle-Sebastia L. A comparison of mammalian and yeast pre-mRNA3'-end processing. Curr Opin Cell Biol 1997,9:329-336.
    22. Edmonds M. A history of poly A sequences:from formation to factors to function. Prog Nucleic Acid Res Mol Biol 2002,71:285-389.
    23. Sachs A. The role of poly (A) in the translation and stability of mRNA. Curr Opin Cell Biol 1990,2:1092-1098.
    24. Proudfoot NJ, Furger A, Dye MJ. Integrating mRNA processing with transcription. Cell 2002,108:501-512.
    25. Shatkin AJ, Manley JL. The ends of the affair:capping and polyadenylation. Nat Struct Biol 2000,7:838-842.
    26. Maniatis T, Reed R. An extensive network of coupling among gene expression machines. Nature 2002,416:499-506.
    27. Yang Q, Doublie S. Structural biology of poly(A) site definition. Wiley Interdiscip Rev RNA 2011,2:732-747.
    28. Gruber AR, Martin G, Keller W, Zavolan M. Cleavage factor Im is a key regulator of 3'UTR length. RNA Biol 2012,9:1405-1412.
    29. Charlesworth A, Meijer HA, de Moor CH. Specificity factors in cytoplasmic polyadenylation. Wiley Interdiscip Rev RNA 2013,4:437-461.
    30. Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Pro Natl Acad Sci USA 2009,106:7028-7033.
    31. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010,79:351-379.
    32. Andreassi C, Riccio A. To localize or not to localize:mRNA fate is in 3'UTR ends. Trends in cell biology 2009,19:465-474.
    33. Lai EC. Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 2002,30.
    34. Legendre M, Ritchie W, Lopez F, Gautheret D. Differential repression of alternative transcripts:a screen for miRNA targets. PLoS Comput Biol 2006,2:e43..
    35. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3'untranslated regions and fewer microRNA target sites. Science 2008,320:1643-1647.
    36. Alwine JC, Kemp DJ, Parker BA, Reiser J, Renart J, Stark GR, et al. Detection of specific RNAs or specific fragments of DNA by fractionation in gels and transfer to diazobenzyloxymethyl paper. Methods Enzymol 1978,68:220-242.
    37. LeBowitz JH, Smith HQ, Rusche L, Beverley SM. Coupling of poly (A) site selection and trans-splicing in Leishmania. Genes Dev 1993,7:996-1007.
    38. Aviv H, Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proceedings of the National Academy of Sciences 1972,69:1408-1412.
    39. Albretsen C, Kalland KH, Haukanes BI, Havarstein LS, Kleppe K. Applications of magnetic beads with covalently attached oligonucleotides in hybridization:isolation and detection of specific measles virus mRNA from a crude cell lysate. Anal Biochem 1990,189:40-50.
    40. Homes E, Korsnes L. Magnetic DNA hybridization properties of oligonucleotide probes attached to superparamagnetic beads and their use in the isolation of poly(A) mRNA from eukaryotic cells. Genet Anal Tech Appl 1990,7:145-150.
    41. Jakobsen KS, Breivold E, Homes E. Purification of mRNA directly from crude plant tissues in 15 minutes using magnetic oligo dT microspheres. Nucleic Acids Res 1990,18:3669.
    42. Morris AR, Bos A, Diosdado B, Rooijers K, Elkon R, Bolijn AS, et al. Alternative cleavage and polyadenylation during colorectal cancer development. Clin Cancer Res 2012,18:5256-5266.
    43. Singh P, Alley TL, Wright SM, Kamdar S, Schott W, Wilpan RY, et al. Global changes in processing of mRNA 3'untranslated regions characterize clinically distinct cancer subtypes. Cancer Res 2009,69:9422-9430.
    44. Lembo A, Di Cunto F, Provero P. Shortening of 3'UTRs correlates with poor prognosis in breast and lung cancer. PLoS One 2012,7:e31129.
    45. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010,465:1033-1038.
    46. Mercer TR, Wilhelm D, Dinger ME, Solda G, Korbie DJ, Glazov EA, et al. Expression of distinct RNAs from 3'untranslated regions. Nucleic Acids Res 2011,39:2393-2403.
    47. Singh P, Alley TL, Wright SM, Kamdar S, Schott W, Wilpan RY, et al. Global changes in processing of mRNA 3'untranslated regions characterize clinically distinct cancer subtypes. Cancer Res 2009,69:9422-9430.
    48. Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, et al. Differential genome-wide profiling of tandem 3'UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 2011,21:741-747.
    49. Aznavoorian S, Murphy AN, Stetler-Stevenson WG, Liotta LA. Molecular aspects of tumor cell invasion and metastasis. Cancer 1993,71:1368-1383.
    50. Yilmaz M, Christofori G. Mechanisms of motility in metastasizing cells. Mol Cancer Res 2010,8:629-642.
    51. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 2004,4:118-132.
    52. Friedl P, Wolf K. Tumour-cell invasion and migration:diversity and escape mechanisms. Nat Rev Cancer 2003,3:362-374.
    53. Marhaba R, Zoller M. CD44 in cancer progression:adhesion, migration and growth regulation. J Mol Histol 2004,35:211-231.
    54. Naor D, Sionov RV, Ish-Shalom D. CD44:structure, function, and association with the malignant process. Adv Cancer Res 1997,71:241-319.
    55. Ponta H, Sherman L, Herrlich PA. CD44:from adhesion molecules to signalling regulators. Nat Rev Cancer 2003,4:33-45.
    56. Knowles HJ, Harris AL. Hypoxia and oxidative stress in breast cancer. Hypoxia and tumourigenesis. Breast Cancer Res 2001,3:318-322.
    57. Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 2002,277:23111-23115.
    58. Harris AL. Hypoxia— key regulatory factor in tumour growth. Nat Rev Cancer 2002,2:38-47.
    59. Brahimi-Horn MC, Chiche J, Pouyssegur J. Hypoxia and cancer. J Mol Med 2007,85:1301-1307.
    60. Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003,3:721-732.
    61. Gordan JD, Thompson CB, Simon MC. HIF and c-Myc:sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 2007,12:108-113.
    62. Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber H-P, et al. Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 2004,6:485-495.
    63. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer:a changing paradigm. Nat Re Cancer 2009,9:153-166.
    64. Grana X, Reddy EP. Cell cycle control in mammalian cells:role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 1995,11:211-219.
    65. Tsai L-H, Lees E, Faha B, Harlow E, Riabowol K. The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene 1993,8:1593.
    66. Elledge SJ. Cell cycle checkpoints:preventing an identity crisis. Science 1996,274:1664-1672.
    67. Bates S, Bonetta L, MacAllan D, Parry D, Holder A, Dickson C, et al. CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene 1994,9:71-79.
    68. Tam SW, Theodoras AM, Shay JW, Draetta GF, Pagano M. Differential expression and regulation of Cyclin D1 protein in normal and tumor human cells:association with Cdk4 is required for Cyclin D1 function in G1 progression. Oncogene 1994,9:2663-2674.
    69. Lukas J, Bartkova J, Rohde M, Strauss M, Bartek J. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity. Mol Cell Biol 1995,15:2600-2611.
    70. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E, et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003,3:185-197.
    71. Wiestner A, Tehrani M, Chiorazzi M, Wright G, Gibellini F, Nakayama K, et al. Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood 2007,109:4599-4606.
    72. Takagaki Y, Manley JL. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol Cell 1998,2:761-771.
    .73. Chuvpilo S, Zimmer M, Kerstan A, Glockner J, Avots A, Escher C, et al. Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity 1999,10:261-269.
    74. Shell SA, Hesse C, Morris SM, Milcarek C. Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly (A) site selection. J Biol Chem 2005,280:39950-39961.
    75. Dass B, Tardif S, Park JY, Tian B, Weitlauf HM, Hess RA, et al. Loss of polyadenylation protein τCstF-64 causes spermatogenic defects and male infertility. Proc Nat ACad Sci USA 2007,104:20374-20379.
    76. Ji Z, Tian B. Reprogramming of 3'untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One 2009,4:e8419.
    77. Dass B, McDaniel L, Schultz RA, Attaya E, MacDonald CC. The gene CSTF2T, encoding the human variant CstF-64 polyadenylation protein tauCstF-64, lacks introns and may be associated with male sterility. Genomics 2002,80:509-514.
    78. Hockert KJ, Martincic K, Mendis-Handagama S, Borghesi LA, Milcarek C, Dass B, et al. Spermatogenetic but not immunological defects in mice lacking the τCstF-64 polyadenylation protein. JReprod immunol 2011,89:26-37.
    79. Dhillon A, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene 2007,26:3279-3290.
    80. Fang JY, Richardson BC. The MAPK signalling pathways and colorectal cancer. Lancet Oncol 2005,6:322-327.
    81. English JM, Cobb MH. Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 2002,23:40-45.
    82. Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res 2002,12:9-18.
    83. Nelson WJ, Nusse R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 2004,303:1483-1487.
    84. Huelsken J, Behrens J. The Wnt signalling pathway. J Cell Sci 2002,115:3977-3978.
    85. Polakis P. Wnt signaling and cancer. Genes Dev 2000,14:1837-1851.
    86. Karim RZ, Tse GM, Putti TC, Scolyer RA, Lee CS. The significance of the Wnt pathway in the pathology of human cancers. Pathology 2004,36:120-128.
    87. Luu HH, Zhang R, Haydon RC, Rayburn E, Kang Q, Si W, et al. Wnt/beta-catenin signaling pathway as novel cancer drug targets. Curr Cancer Drug Targets 2004,4:653-671.
    88. Cantley LC. The phosphoinositide 3-kinase pathway. Science 2002,296:1655-1657.
    89. Yuan T, Cantley L. PI3K pathway alterations in cancer:variations on a theme. Oncogene 2008,27:5497-5510.
    90. Liang J, Slingerland JM. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle Lands Bioscience 2003,2:339-345.
    91. Wong KK, Engelman JA, Cantley LC. Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 2010,20:87-90.
    92. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol2010,28:1075-1083.
    93. Caridi G, Pezzolo A, Bertelli R, Gimelli G, Di Donato A, Candiano G, et al. Mapping of the human COL5A1 gene to chromosome 9q34.3. Hum Genet 1992,90:174-176.
    94. Sun M, Chen S, Adams SM, Florer JB, Liu H, Kao WW, et al. Collagen V is a dominant regulator of collagen fibrillogenesis:dysfunctional regulation of structure and function in a corneal-stroma-specific Co15a1-null mouse model. J Cell Sci 2011,124:4096-4105.
    95. Ewald JA, Downs TM, Cetnar JP, Ricke WA. Expression microarray meta-analysis identifies genes associated with Ras/MAPK and related pathways in progression of muscle-invasive bladder transition cell carcinoma. PLoS One 2013,8:e55414..
    96. Cheon DJ, Tong Y, Sim MS, Dering J, Berel D, Cui X, et al. A Collagen-Remodeling Gene Signature Regulated by TGF-beta Signaling Is Associated with Metastasis and Poor Survival in Serous Ovarian Cancer. Clin Cancer Res 2014,20:711-723.
    97. Kahai S, Vary CP, Gao Y, Seth A. Collagen, type V, al (COL5A1) is regulated by TGF-p in osteoblasts. Matrix biology 2004,23:445-455.
    98. Monarez R, Macdonald C, Dass B. Polyadenylation proteins CstF-64 and tauCstF-64 exhibit differential binding affinities for RNA polymers. Biochem. 72007,401:651-658.
    99. Liu D, Brockman JM, Dass B, Hutchins LN, Singh P, McCarrey JR, et al. Systematic variation in mRNA 3'-processing signals during mouse spermatogenesis. Nucleic Acids Res 2007,35:234-246.
    100. Villadsen R. In search of a stem cell hierarchy in the human breast and its relevance to breast cancer evolution. Apmis 2005,113:903-921.
    101. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage Ⅲ and stage Ⅳ ovarian cancer. N Engl J Med 1996,334:1-6.
    102. Bookman MA, Greer BE, Ozols RF. Optimal therapy of advanced ovarian cancer:carboplatin and paclitaxel versus cisplatin and paclitaxel (GOG158) and an update on GOG0182-ICON5. Int J Gynecol Cancer 2003,13 Suppl 2:149-155.
    103. Armstrong DK. Relapsed ovarian cancer:challenges and management strategies for a chronic disease. Oncologist 2002,7 Suppl 5:20-28.
    104. Bast RC, Jr., Markman M. Chemotherapy:A new standard combination for recurrent ovarian cancer? Nat Rev Clin Oncol 2010,7:559-560.
    105. Merlo LM, Pepper JW, Reid BJ, Maley CC. Cancer as an evolutionary and ecological process. Nat Rev Cancer 2006,6:924-935.
    106. Khalique L, Ayhan A, Weale M, Jacobs I, Ramus S, Gayther S. Genetic intra-tumour heterogeneity in epithelial ovarian cancer and its implications for molecular diagnosis of tumours. JPathol 2007,211:286-295.
    1. Brown CE, Sachs AB. Poly (A) tail length control in Saccharomyces cerevisiae occurs by message-specific deadenylation. Mol Cell Biol 1998,18:6548-6559.
    2. Proudfoot NJ. How RNA polymerase Ⅱ terminates transcription in higher eukaryotes. Trends Biochem Sci 1989,14:105-110.
    3. MacDonald CC, Wilusz J, Shenk T. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol 1994,14:6647-6654.
    4. Takagaki Y, Manley JL. RNA recognition by the human polyadenylation factor CstF. Mol Cell Biol 1997,17:3907-3914.
    5. Colgan DF, Manley JL. Mechanism and regulation of mRNA polyadenylation. Genes Dev 1997,11:2755-2766.
    6. Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev Genet 2013,14:496-506.
    7. Wahle E. Poly(A) tail length control is caused by termination of processive synthesis. JBiol Chem 1995,270:2800-2808.
    8. Dantonel JC, Murthy KG, Manley JL, Tora L. Transcription factor TFIID recruits factor CPSF for formation of 3'end of mRNA. Nature 1997,389:399-402.
    9. Wilusz J, Shenk T. A 64 kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell 1988,52:221-228.
    10. Takagaki Y, Seipelt RL, Peterson ML, Manley JL. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 1996,87:941-952.
    11. Monarez R, Macdonald C, Dass B. Polyadenylation proteins CstF-64 and tauCstF-64 exhibit differential binding affinities for RNA polymers. Biochem. J 2007,401:651-658.
    12. Dass B, Tardif S, Park JY, Tian B, Weitlauf HM, Hess RA, et al. Loss of polyadenylation protein τCstF-64 causes spermatogenic defects and male infertility. Proc Natl Acad Sci USA 2007,104:20374-20379.
    13. Hockert KJ, Martincic K, Mendis-Handagama S, Borghesi LA, Milcarek C, Dass B, et al. Spermatogenetic but not immunological defects in mice lacking the-τCstF-64 polyadenylation protein. JReprod Immunol 2011,89:26-37.
    14. Liu D, Brockman JM, Dass B, Hutchins LN, Singh P, McCarrey JR, et al. Systematic variation in mRNA 3'-processing signals during mouse spermatogenesis. Nucleic Acids Res 2007,35:234-246.
    15. Simonelig M, Elliott K, Mitchelson A, O'Hare K. Interallelic complementation at the suppressor of forked locus of Drosophila reveals complementation between suppressor of forked proteins mutated in different regions. Genetics 1996,142:1225-1235.
    16. Takagaki Y, Manley JL. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 1994,372:471-474.
    17. McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, et al. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 1997,385:357-361.
    18. McCracken S, Longman D, Johnstone IL, Caceres JF, Blencowe BJ. An evolutionarily conserved role for SRm160 in 3'-end processing that functions independently of exon junction complex formation. J Biol Chem 2003,278:44153-44160.
    19. Tian B, Hu J, Zhang H, Lutz CS. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 2005,33:201-212.
    20. Di Giammartino DC, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell 2011,43:853-866.
    21. Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res 2005,33:7138-7150.
    22. Fabian MR, Sundermeier TR, Sonenberg N. Understanding how miRNAs post-transcriptionally regulate gene expression. Prog Mol Subcell Biol 2010,50:1-20.
    23. Mayr C, Bartel DP. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009,138:673-684.
    24. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3'untranslated regions and fewer microRNA target sites. Science 2008,320:1643-1647.
    25. Takagaki Y, Manley JL. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol Cell 1998,2:761-771.
    26. Chuvpilo S, Zimmer M, Kerstan A, Glockner J, Avots A, Escher C, et al. Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity 1999,10:261-269.
    27. Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR,3rd, et al. Molecular architecture of the human pre-mRNA 3'processing complex. Mol Cell 2009,33:365-376.
    28. Ji Z TB. Reprogramming of 3'untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One 2009.
    29. Ule J, Stefani G, Mele A, Ruggiu M, Wang X, Taneri B, et al. An RNA map predicting Nova-dependent splicing regulation. Nature 2006,444:580-586.
    30. Danckwardt S, Kaufmann I, Gentzel M, Foerstner KU, Gantzert AS, Gehring NH, et al. Splicing factors stimulate polyadenylation via USEs at non-canonical 3'end formation signals. EMBO J 2007,26:2658-2669.
    31. Honore B, Baandrup U, Vorum H. Heterogeneous nuclear ribonucleoproteins F and H/H'show differential expression in normal and selected cancer tissues. Exp Cell Res 2004,294:199-209.
    32. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008,456:470-476.
    33. Liu F, Marquardt S, Lister C, Swiezewski S, Dean C. Targeted 3'processing of antisense transcripts triggers Arabidopsis FLC chromatin silencing. Science 2010,327:94-97.
    34. Alt FW, Bothwell AL, Knapp M, Siden E, Mather E, Koshland M, et al. Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3'ends. Cell 1980,20:293-301.
    35. Early P, Rogers J, Davis M, Calame K, Bond M, Wall R, et al. Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA processing pathways. Cell 1980,20:313-319.
    36. Yao P, Potdar AA, Arif A, Ray PS, Mukhopadhyay R, Willard B, et al. Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression. Cell 2012,149:88-100.
    37. Kislauskis EH, Singer RH. Determinants of mRNA localization. Curr Opin Cell Biol 1992,4:975-978.
    38. Jung H, Yoon BC, Holt CE. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair. Nat Rev Neurosci 2012,13:308-324.
    39. Shepard PJ, Choi EA, Lu J, Flanagan LA, Hertel KJ, Shi Y. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 2011,17:761-772.
    40. Smibert P, Miura P, Westholm JO, Shenker S, May G, Duff MO, et al. Global patterns of tissue-specific alternative polyadenylation in Drosophila. Cell Rep 2012,1:277-289.
    41. Legendre M, Ritchie W, Lopez F, Gautheret D. Differential repression of alternative transcripts:a screen for miRNA targets. PLoS Comput Biol 2006,2:e43.
    42. Wirsing A, Senkel S, Klein-Hitpass L, Ryffel GU. A systematic analysis of the 3'UTR of HNF4A mRNA reveals an interplay of regulatory elements including miRNA target sites. PLoS One 2011,6:e27438.
    43. Boutet SC, Cheung TH, Quach NL, Liu L, Prescott SL, Edalati A, et al. Alternative polyadenylation mediates microRNA regulation of muscle stem cell function. Cell Stem Cell 2012,10:327-336.
    44. Hwang J, Maquat LE. Nonsense-mediated mRNA decay (NMD) in animal embryogenesis:to die or not to die, that is the question. Curr Opin Genet Dev 2011,21:422-430.
    45. Amrani N, Ganesan R, Kervestin S, Mangus DA, Ghosh S, Jacobson A. A faux 3'-UTR promotes aberrant termination and triggers nonsense-mediated mRNA decay. Nature 2004,432:112-118.
    46. Hogg JR, Goff SP. Upfl senses 3'UTR length to potentiate mRNA decay. Cell 2010,143:379-389.
    47. Yepiskoposyan H, Aeschimann F, Nilsson D, Okoniewski M, Muhlemann O. Autoregulation of the nonsense-mediated mRNA decay pathway in human cells. RNA 2011,17:2108-2118.
    48. Bababeygy SR, Quiros PA. Isolated trochlear palsy secondary to Lyme neuroborreliosis. Int Ophthalmol 2011,31:493-495.
    49. Pinto PA, Henriques T, Freitas MO, Martins T, Domingues RG, Wyrzykowska PS, et al. RNA polymerase II kinetics in polo polyadenylation signal selection. EMBO J 2011,30:2431-2444.
    50. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3'untranslated regions and fewer microRNA target sites. Science 2008,320:1643-1647.
    51. Ji Z, Luo W, Li W, Hoque M, Pan Z, Zhao Y, et al. Transcriptional activity regulates alternative cleavage and polyadenylation. Mol Syst Biol 2011,7:69.
    52. Nagaike T, Logan C, Hotta I, Rozenblatt-Rosen O, Meyerson M, Manley JL. Transcriptional activators enhance polyadenylation of mRNA precursors. Mol Cell 2011,41:409-418.
    53. de la Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M, Pelisch F, et al. A slow RNA polymerase II affects alternative splicing in vivo. Mol Cell 2003,12:525-532.
    54. Spies N, Nielsen CB, Padgett RA, Burge CB. Biased chromatin signatures around polyadenylation sites and exons. Mol Cell 2009,36:245-254.
    55. Lee CY, Chen L. Alternative polyadenylation sites reveal distinct chromatin accessibility and histone modification in human cell lines. Bioinformatics 2013,29:1713-1717.
    56. Lei M, La H, Lu K, Wang P, Miki D, Ren Z, et al. Arabidopsis EDM2 promotes IBM1 distal polyadenylation and regulates genome DNA methylation patterns. Proc NatlAcad Sci USA 2014,111:527-532.
    57. Wang X, Duan CG, Tang K, Wang B, Zhang H, Lei M, et al. RNA-binding protein regulates plant DNA methylation by controlling mRNA processing at the intronic heterochromatin-containing gene IBM1. Proc Natl Acad Sci USA 2013,110:15467-15472.
    58. Eulgem T, Tsuchiya T, Wang XJ, Beasley B, Cuzick A, Tor M, et al. EDM2 is required for RPP7-dependent disease resistance in Arabidopsis and affects RPP7 transcript levels. Plant J 2007,49:829-839.
    59. Tsuchiya T, Eulgem T. An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene through intronic retrotransposon domestication. Proc Natl Acad Sci USA 2013,110:3535-3543.
    60. Saze H, Shiraishi A, Miura A, Kakutani T. Control of genie DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana. Science 2008,319:462-465.
    61. Beaudoing E, Gautheret D. Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. Genome Res 2001,11:1520-1526.
    62. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, et al. Complementary DNA sequencing:expressed sequence tags and human genome project. Science 1991,252:1651-1656.
    63. Zhang H, Lee JY, Tian B. Biased alternative polyadenylation in human tissues. Genome Biol 2005,6:R100.
    64. Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3' untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci USA 2009,106:7028-7033.
    65. Smibert P, Miura P, Westholm JO, Shenker S, May G, Duff MO, et al. Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila. Cell Rep 2012,1:277-289.
    66. Costessi L, Devescovi G, Baralle FE, Muro AF. Brain-specific promoter and polyadenylation sites of the β-adducin pre-mRNA generate an unusually long 3'-UTR. Nucleic Acids Res 2006,34:243-253.
    67. Qu X, Qi Y, Qi B. Generation of multiple mRNA transcripts from the novel human apoptosis-inducing gene hap by alternative polyadenylation utilization and the translational activation function of 3'untranslated region. Arch Biochem Biophys 2002,400:233-244.
    68. Yu M, Sha H, Gao Y, Zeng H, Zhu M, Gao X. Alternative 3'UTR polyadenylation of Bzwl transcripts display differential translation efficiency and tissue-specific expression. Biochem Biophy Res Co 2006,345:479-485.
    69. Cheng Y, Miura RM, Tian B. Prediction of mRNA polyadenylation sites by support vector machine. Bioinformatics 2006,22:2320-2325.
    70. Akhtar MN, Bukhari SA, Fazal Z, Qamar R, Shahmuradov IA. POLYAR, a new computer program for prediction of poly (A) sites in human sequences. BMC Genomics 2010,11:646.
    71. Kalkatawi M, Rangkuti F, Schramm M, Jankovic BR, Kamau A, Chowdhary R, et al. Dragon PolyA Spotter:predictor of poly (A) motifs within human genomic DNA sequences. Bioinformatics 2012,28:127-129.
    72. Gruber AR, Martin G, Keller W, Zavolan M. Means to an end:mechanisms of alternative polyadenylation of messenger RNA precursors. Wiley Interdiscip Rev RNA 2013,5:183-96.
    73. Ji X, Wan J, Vishnu M, Xing Y, Liebhaber SA. aCP poly (C) binding proteins act as global regulators of alternative polyadenylation. Mol Cell Biol 2013,33:2560-2573.
    74. Darmon SK, Lutz CS. Novel upstream and downstream sequence elements contribute to polyadenylation efficiency. RNA Biol 2012,9:1255-1265.
    75. Hans H, Alwine JC. Functionally significant secondary structure of the simian virus 40 late polyadenylation signal. Mol Cell Biol 2000,20:2926-2932.
    76. Khaladkar M, Smyda M, Hannenhalli S. Epigenomic and RNA structural correlates of polyadenylation. RNA Biol 2011,8:529.
    77. Baltz AG, Munschauer M, Schwanhausser B, Vasile A, Murakawa Y, Schueler M, et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 2012,46:674-690.
    78. Ule J, Jensen K, Mele A, Darnell RB. CLIP:a method for identifying protein-RNA interaction sites in living cells. Methods 2005,37:376-386.
    79. Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS, Li X, et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 2013,499:172-177.
    80. Arnold P, Scholer A, Pachkov M, Balwierz PJ, Jorgensen H, Stadler MB, et al. Modeling of epigenome dynamics identifies transcription factors that mediate Polycomb targeting. Genome Res 2013,23:60-73.
    81. Suzuki H, Forrest AR, van Nimwegen E, Daub CO, Balwierz PJ, Irvine KM, et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 2009,41:553-562.
    82. Flavell SW, Kim TK, Gray JM, Harmin DA, Hemberg M, Hong EJ, et al. Genome-wide analysis of MEF2 transcriptional program reveals synaptic target genes and neuronal activity-dependent polyadenylation site selection. Neuron 2008,60:1022-1038.
    83. Ozsolak F, Milos PM. RNA sequencing:advances, challenges and opportunities. Nat Rev Genet 2011,12:87-98.
    84. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, et al. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 2008,320:1344-1349.
    85. Mangone M, Manoharan AP, Thierry-Mieg D, Thierry-Mieg J, Han T, Mackowiak SD, et al. The landscape of C. elegans 3'UTRs. Science 2010,329:432-435.
    86. Fox-Walsh K, Davis-Turak J, Zhou Y, Li H, Fu XD. A multiplex RNA-seq strategy to profile poly(A+) RNA:application to analysis of transcription response and 31 end formation. Genomics 2011,98:266-271.
    87. Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen R, et al. A quantitative atlas of polyadenylation in five mammals. Genome Res 2012,22:1173-1183.
    88. Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, et al. Differential genome-wide profiling of tandem 3'UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 2011,21:741-747.
    89. Jan CH, Friedman RC, Ruby JG, Bartel DP. Formation, regulation and evolution of Caenorhabditis elegans 3'UTRs. Nature 2011,469:97-101.
    90. Hafner M, Renwick N, Brown M, Mihailovic A, Holoch D, Lin C, et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA 2011,17:1697-1712.
    91. Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E, Monaghan AP, et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 2010,143:1018-1029.
    92. Rogers J, Early P, Carter C, Calame K, Bond M, Hood L, et al. Two mRNAs with different 3'ends encode membrane-bound and secreted forms of immunoglobulin mu chain. Cell 1980,20:303-312.
    93. Setzer DR, McGrogan M, Nunberg JH, Schimke RT. Size heterogeneity in the 3'end of dihydrofolate reductase messenger RNAs in mouse cells. Cell 1980,22:361-370.
    94. Edwalds-Gilbert G, Veraldi KL, Milcarek C. Alternative poly(A) site selection in complex transcription units:means to an end? Nucleic Acids Res 1997,25:2547-2561.
    95. Yan J, Marr TG. Computational analysis of 3'-ends of ESTs shows four classes of alternative polyadenylation in human, mouse, and rat. Genome Res 2005,15:369-375.
    96. Sherstnev A, Duc C, Cole C, Zacharaki V, Hornyik C, Ozsolak F, et al Direct sequencing of Arabidopsis thaliana RNA reveals patterns of cleavage and polyadenylation. Nat Struct Mol Biol 2012,19:845-852.
    97. Ozsolak F, Kapranov P, Foissac S, Kim SW, Fishilevich E, Monaghan AP, et al. Comprehensive polyadenylation site maps in yeast and human reveal pervasive alternative polyadenylation. Cell 2010,143:1018-1029.
    98. Shell SA, Hesse C, Morris SM, Milcarek C. Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly (A) site selection. JBiol Chem 2005,280:39950-39961.
    99. Martincic K, Campbell R, Edwalds-Gilbert G, Souan L, Lotze MT, Milcarek C. Increase in the 64-kDa subunit of the polyadenylation/cleavage stimulatory factor during the GO to S phase transition. Proc Natl Acad Sci USA 1998,95:11095-11100.
    100. Wiestner A, Tehrani M, Chiorazzi M, Wright G, Gibellini F, Nakayama K, et al. Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood 2007,109:4599-4606.
    101. Mayr C, Bartel DP. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009,138:673-684.
    102. Fu Y, Sun Y, Li Y, Li J, Rao X, Chen C, et al. Differential genome-wide profiling of tandem 3'UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res 2011,21:741-747.
    103. Wright S. Surfaces of selective value revisited. Am Nat 1988:115-123.
    104. Demicheli R, Coradini D. Gene regulatory networks:a new conceptual framework to analyse breast cancer behaviour. Ann oncol 2011,22:1259-1265.
    105. Singh P, Alley TL, Wright SM, Kamdar S, Schott W, Wilpan RY, et al. Global changes in processing of mRNA 3'untranslated regions characterize clinically distinct cancer subtypes. Cancer Res 2009,69:9422-9430.
    106. Morris AR, Bos A, Diosdado B, Rooijers K, Elkon R, Bolijn AS, et al. Alternative cleavage and polyadenylation during colorectal cancer development. Clin Cancer Res 2012,18:5256-5266.
    107. Lembo A, Di Cunto F, Provero P. Shortening of 3'UTRs correlates with poor prognosis in breast and lung cancer. PLoS One 2012,7:e31129.
    108. Tian P, Sun Y, Li Y, Liu X, Wan L, Li J, et al. A Global Analysis of Tandem 3' UTRs in Eosinophilic Chronic Rhinosinusitis with Nasal Polyps. PLoS One 2012,7:e48997.
    109. Sheng Y, Chattopadhyay M, Whitelegge J, Valentine JS. SOD1 aggregation and ALS:role of metallation states and disulfide status. Curr Top Med Chem 2012,12:2560-2572.
    110. Koromilas AE, Sexl V. The tumor suppressor function of STAT1 in breast cancer. JAKSTAT.2013 2(2):e23353.
    111. Park JY, Li W, Zheng D, Zhai P, Zhao Y, Matsuda T, et al. Comparative analysis of mRNA isoform expression in cardiac hypertrophy and development reveals multiple post-transcriptional regulatory modules. PLoS One 2011,6:e22391.
    112. Abdel WN, GIBBS J, MASON R. Regulation of gene expression by alternative polyadenylation and mRNA instability in hyperglycaemic mesangial cells. Biochem. J 1998,336:405-411.
    113. Duan H, Cherradi N, Feige J-J, Jefcoate C. cAMP-dependent posttranscriptional regulation of steroidogenic acute regulatory (STAR) protein by the zinc finger protein ZFP36L1/TISllb. Mol Endocrinol 2009,23:497-509.
    114. Zhao D, Duan H, Kim Y-C, Jefcoate CR. Rodent StAR mRNA is substantially regulated by control of mRNA stability through sites in the 3'-untranslated region and through coupling to ongoing transcription. J Steroid Biochem 2005,96:155-173.
    115. Okuhara K, Abe S, Kondo T, Fujita K, Koda N, Mochizuki H, et al Four Japanese patients with adrenal hypoplasia congenita and hypogonadotropic hypogonadism caused by DAX-1 gene mutations:mutant DAX-1 failed to repress steroidogenic acute regulatory protein (StAR) and luteinizing hormone beta-subunit gene promoter activity. Endocrj 2008,55:97-103.
    116. Powell BR, Buist NR, Stenzel P. An X-linked syndrome of diarrhea, polyendocrinopathy, and fatal infection in infancy. J Pediatr 1982,100:731-737.
    117. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001,27.
    118. Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome:a model of immune dysregulation. Curr Opin Allergy Clin Immunol 2002,2:481-487.
    119. Mercer F, Unutmaz D. The biology of FoxP3:a key player in immune suppression during infections, autoimmune diseases and cancer. Adv Exp Med Biol 2009,665:47-59.
    120. Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 2007,446:685-689.
    121. d'Hennezel E, Ben-Shoshan M, Ochs HD, Torgerson TR, Russell LJ, Lejtenyi C, et al. FOXP3 forkhead domain mutation and regulatory T cells in the IPEX syndrome. NEngl J Med 2009,361(17):1710-3.
    122. Bennett CL, Brunkow ME, Ramsdell F, O'Briant KC, Zhu Q, Fuleihan RL, et al. A rare polyadenylation signal mutation of the FOXP3 gene (AAUAAA→ AAUGAA) leads to the IPEX syndrome. Immunogenetics 2001,53:435-439.
    123. Wang J, Li X, Jia Z, Tian Y, Yu J, Bao L, et al. Reduced FOXP3 expression causes IPEX syndrome onset:An implication from an IPEX patient and his disease-free twin brother. Clin Immunol.2010 137(1):178-180.
    124. Ruegg S, Hagen ML, Hohl U, Kappos L, Fuhr P, Plasilov M, et al. Oculopharyngeal muscular dystrophy-an under-diagnosed disorder? Swiss med wkly 2005,135:574.
    125. Davies JE, Wang L, Garcia-Oroz L, Cook LJ, Vacher C, O'Donovan DG, et al. Doxycycline attenuates and delays toxicity of the oculopharyngeal muscular dystrophy mutation in transgenic mice. Nat Med 2005,11:672-677.
    126. Davies JE, Rubinsztein DC. Over-expression of BCL2 rescues muscle weakness in a mouse model of oculopharyngeal muscular dystrophy. Hum Mol Genet 2011,20:1154-1163.
    127. de Klerk E, Venema A, Anvar SY, Goeman JJ, Hu O, Trollet C, et al. Poly (A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Res 2012,40:9089-9101.
    128. Kole R, Krainer AR, Altman S. RNA therapeutics:beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 2012,11:125-140.
    129. Vorlova S, Rocco G, LeFave CV, Jodelka FM, Hess K, Hastings ML, et al. Induction of antagonistic soluble decoy receptor tyrosine kinases by intronic polyA activation. Mol Cell 2011,43:927-939.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700