水稻OsCesA4和OsSCP基因的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa)是世界上非常重要的粮食作物之一。但是由于全球环境的变化,水稻产量和品质受到了严重的威胁,这就使如何获得优良水稻品种变得十分迫切。因此,研究水稻中起重要调控作用的基因,用于水稻的遗传改良,具有广阔的应用前景和农业发展意义。本研究进行了水稻OsCesA4和OsSCP基因的功能鉴定,取得了以下研究结果:
     1.对水稻OsCesA4基因进行了生物信息学分析。通过OsCesA4基因启动子驱动的GUS基因表达分析,发现OsCesA4基因在根、茎、叶、鞘和穗中均有表达。OsCesA4基因的表达对NaCl和高温比较敏感,对PEG、ABA和低温不敏感。OsCesA4基因的纯合缺失突变体植株矮小,生长周期延长,生育力下降,叶尖枯萎,茎、叶、鞘和穗出现脆性,并表现出茎和叶的细胞学变化;OsCesA4突变体光合速率和气孔导度显著下降,胞间CO_2浓度和蒸腾速率无显著性差异;OsCesA4突变体叶片的叶绿素a、叶绿素b、类胡萝卜素和总叶绿素含量与野生型日本晴无显著性差异;OsCesA4突变体的幼苗、叶的硅质含量显著性升高。构建了OsCesA4的RNAi载体,并转入了农杆菌。
     2.对水稻OsSCP基因进行了生物信息学分析。构建了OsSCP基因的启动子载体,并转入农杆菌。通过RT-PCR发现OsSCP基因在根、茎、叶、鞘和穗中均有表达,在叶和鞘中表达高,穗中最低。水稻OsSCP纯合缺失突变体对水稻正常的生长发育、生殖和光合作用无明显影响。水稻OsSCP基因对NaCl、高温、干旱逆境和ABA比较敏感的,对PEG和低温不敏感。
Rice (Oryza sativa) is a very important food crop in the world. However, due to changes in the global environment, rice yield and quality are threated seriouly, which makes the creation of stress resistant rice varieties becoming very urgent. Therefore, research on important rice regulating gene for the genetic improvement of rice has broad application prospects. Functional Characterization of Rice OsCesA4 and OsSCP genes were done in this work and the following results wre obtained:
     1. The OsCesA4 gene expressions in root, stem, leaf, sheath and spike was observed from the OsCesA4 gene promoter driving GUS expression. OsCesA4 gene was sensitive to NaCl and high temperature stresses, but not sensitive to PEG, ABA and low temperature stresses. The null mutation of OsCesA4 gene resulted in decrease in plant height, longer growth cycle, declined fertility, tip wilt; brittle of stems, leaves, sheath and panicle as well as stem and leaf cytological changes. The photosynthetic rate and Stomatal conductance were also significantly decreased and but the intercellular CO_2 concentration and transpiration rate were not significantly different in photosynthesis. But the chlorophyll a, chlorophyll b, carotenoids and total chlorophyll content had no significant difference. The silica content in the seedlings and leaves of the mutants were increased significantly. The OsCesA4 gene RNAi vector was construced and transferred into Agrobacterium.
     2. The OsSCP gene expressions in root, stem, leaf, sheath and spike was analyzed by RT-PCR. The expressions were high in leaves and sheaths. The lowest expression was in spike. The OsSCP gene null mutation did not make many changes in growth and development, fertility and reproduction and photosynthesis. The OsSCP gene was found more sensitive to NaCl, high temperature, drought and ABA, but not sensitive to PEG and low temperature.
引文
[1]郭榕,李勇.一种新的基因克隆方法--消减杂交差异显示分析方法[J].国际遗传学杂志,2006,29(3):381-384.
    [2]Liang P,Pardee A B.Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction[J].Science,1992,257:967-971.
    [3]Hubank M,Schatz DG.Identifying differences in mRNA expression by representational difference analysis of cDNA[J].Nucleic Acids Res,1994,22:5640-5648.
    [4]Li Y,Lu Y Y.Isolation of diallyl trisulfide inducible differential lyexpressed gene sinhumang as triccancercells by modified cDNA representational difference analysis[J].DNA Cell Biol,2002,21:771-780.
    [5]任志莹,杨立国,肖军,等.植物基因分离的抑制消减杂交PCR[J].辽宁农业科学,2008,1:41-43.
    [6]骆蒙,孔秀英,霍纳新,等.小麦抗白粉侵染初期的表达序列标签分析[J].遗传学报,2002,29(6):525-530.
    [7]Tian Z D,Liu J,Xie C H,et al.Cloning of PhotoPOTHR Gene and Its Expression in response to Inletion by Phytophthora infestans and Other Abiotie Stimuli[J].Acta Botanica siniea,2003,45(8):959-965.
    [8]Fire A,Xu S,Montgomery M,et al.Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J].Nature,1998,391:806-811.
    [9]Nancy A E.RNA goesmobile[J].Plant Cell,2002,14:1433-1436.
    [10]Frankish H.Consortium uses RNAi to uncover[J].Gene's funtion.Lancet.2003,361:584.
    [11]Rohr J,Sarkar N,Balenger S,et al.Tandeminverted repeat system for selection of effective transgenic RNAi strains in Chlamydomonas[J].Plant J,2004,40(4):611-621.
    [12]Hiei Y,Ohta S,Komari T,et al.Efficient transformation of rice(Oryz a sativa L.) mediated by Agrobaterium and sequence analysis of boundaries of the T-DNA[J].Plant J,1994,6:271-282.
    [13]Azpiroz-Leehan R,Feldmann K A.T-DNA insertion mutagenesis in A rabidopsis:going back and forth[J].Trends Genet,1997,13:152-156.
    [14]Lindsey K,Wei W,Clarke M.C,et al.Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants[J].Transgenic Res,1993,2:33-47.
    [15]Laufs P,Autran D,Traas J.A chromosomal paracentric inversion associated with T-DNA integration in A rabidopsis[J].Plant J,1999,18:131-139.
    [16]Nacry P,Camilleri C,Courtial B,et al.Major chromosomal rearrangements induced by T-DNAtransformation in A rabidopsis[J].Genetics,1998,149:641-650.
    [17]Ohba T,Yoshioka Y,Machida C,et al.DNA rearrangement associated with the integration of T-DNA in tobacco:An example for multiple duplications of DNA around the integration target[J].Plant J,1995,7:157-164.
    [18]Azpiroz Leehan R,Feldmann K A.T-DNA insertion mutagenesis in Arabidopsis:going back and forth[J].Trends Genet,1997,13:152-156.
    [19]Krysan P J,Sussman M R.Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport[J].Proc Natl Acad Sci USA,1996,93:8145-8150.
    [20]Yamazaki M,Tsugawa H,Miyao A,et al.The rice transposon Tos17 prefers low copy sequence as integration targets[J].Mol1 Genl Genet,2001,265:336-344.
    [21]Mitsuhara I,Otsuki Y,Ohashi Y.Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants.Plant Cell Physiol,1996,37:49.
    [22]Verdaguer B,Kochko A,Fux C I,et al.Functional organization of the cassava vein mosaic virus (CsVMV) promoter.Plant Mol Biol,1998,37:1055-1067.
    [23]Mcelroy D,Zhang W,Cao J,et al.Isolation of an effcient actin proomoter for use in rice transformation[J].Plant Cell,1990,2:163.
    [24]Christensen A H,Sharrock R A,Quail P H,et al.Maize polyubiquitin genes:structure thermal perturhation of expression and transcript splicing,and promoter activity following transfer to protoplasts by electroporation[J].Plant Mol Biol,1992,118:675.
    [25]皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径[J].中国生物工程杂志,2003,23(1):1-4.
    [26]Borisjuk N C,Borisjuk L G,Logendra S,et al.Production of recombinant proterins in plant root exudates[J].Nature Biotech,1999,17:466-469.
    [27]魏建华,宋艳茹.木质素生物合成途径及调控的研究进展[J].植物学报,2001,43(8):771.
    [28]Bell-Lelong D A,Cusumano J C,Meyer K,et al.Cinnamate-4-hydroxylase expression in arabidopsis[J].Plant Physiol,1997,113:729-738.
    [29]Taniguchi M,Izawa K,Ku MSB,et al.The promoter for the maize C4 pyruvate,orthophosphate dikinase gene directs cell-and tissue-specific transcription in transgenic maize plants[J].Plant Cell Physiol,2000,41(1):42.
    [30]Mariani C,De Beuckeleer M,Truettner J,et al.Induction of male sterility in plants by a chimaeric ribonuclease gene[J].Nature,1990,347:737.
    [31]Mariani C,Gossele V,De Beuckeleer M,et al.A chimaeric ribonuclease-inhibitor gene restores fertility to male-sterile plants[J].Nature,1992,357:384.
    [32]李胜国,刘玉乐,朱锋,等.基因工程雄性不育烟草的获得[J].植物学报,1995,37(8):659.
    [33]周雪荣,彭仁旺,方荣祥,等.表达核糖核酸酶基因的雄性不育油菜的获得[J].遗传学报,1997,24(6):531.
    [34]张晓国,刘玉乐,康良仪,等.水稻花药特异表达基因启动子的扩增及克隆[J].武汉大学学报自然科学版,1997,43(4):480.
    [35]刘大文,谢友菊,王守才,等.拟南芥菜花约绒毡层启动子的克隆和序列分析[J].作物学报,2000,26(4):406.
    [36]Vasconcelos M,Tirrizo L,Krishnan S,et al.Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene[J].Plant Sci,2003,164:371-378.
    [37]Datta K,et al.Bioengineered'golden'indica rice cultivars withβ-carotene metabolism in the endosperm with hygromycin and mannose selection systems[J].Plant Biotech J,2003, 1 (2) : 81
    [38]Gilmartin PM,Memel INK JH, Iratsuka K S,et al.Characterization of a Gene Encoding a DNA Binding Protein with Specificity for a Light-Responsive Element [J].Plant Cell, 1992, 4: 839-849.
    [39]Foster R,Izawa T,Chua N.Plant bZIP proteins gather atACGT elements[J].FASEB,1994, 8: 192-200.
    [40]Williama M E,Foster R,Chua N.Sequences Flanking the Hexameric G-Box Core CACGTG Affect the Specificity of Protein Binding[J].Plant Cell, 1992,4:485-496.
    [41]Xiao H,Lis J T. Promoter-associated Pausing in Promoter Architecture and Postinitiation Transcriptional Regulation[J].Science, 1988,239:1138-1141.
    [42]Czarnecka E,Key J L,Gurley W B. Regulatory domains of the Gmhsp17.52E heat shock promoter of soybean[J].Mol Cell Biol,1989,9:3457-3464.
    [43]Jiang C,Iu B,Singh J.Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus[J].Plant Mol Biol,1996,30:679-684.
    [44]Bawtels D,Antonella Furin I,Iugram J,et al.Responses of plants to dehydration stress: a molecular analysis[J].Plant Mol Biol,1996,20:111-118.
    [45]Orlando V.Mapping chromosomal proteins in vivo by formal dehyde cross linked-chromatin immunoprecitation[J].Trends Biochem Sci,2000,25:99-104.
    [46]Praz V,Perier R,Bonnard C,et al.The Eukaryotic Promoter Database,EPD: new entry types and links to gene expression data[J].Nucleic Acids Res. 2002,30(1): 322-324.
    [47]Higo K,Ugawa Y,Iwamoto M,et al.Plant cis-acting regulatory DNA elements ( PLACE)database: 1999[J].Nuc!eic Acids Res, 1999,27:297-300.
    [48]Lescot M,Dehais P,Thijs G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Res,2002, 30: 325-327.
    [49]Delmer D P,Cellulose biosynthesis:exciting times for a difficult field of study[J].Annu Rev Plant Physiol Plant Mol Biol,1999.50:245-276.
    [50]Saxena I M,Lin F C,Brown R M Jr.Identification of a new gene in an ope cellulose biosynthesis in Acetobacterxylinum[J].Plant Mol Biol, 1991,16(6):947-954.
    [51]Saxena I M,Brown R M Jr.Are the reversibly glycosyltrated polypeptides implicated in plant cell wall biosynthesis non-processive β-glycosyl transferases ?[J].Trends Plant Sci, 1999,4:6-7.
    [52] Wong H C,Fear A L,Calhoon R D,et al.Genetic organization of the cellulose synthase operon in acetobacter xylinum[J].Proc Natl Acad Sci USA, 1990.87 (20):8130-8134.
    [53]Saxena IM,Brown R MJr,Fevre M,et al.Multidomain architecture of beta-glycosyl transferases: implications for mechanism of action[J].J Bacteriol, 1995,177(6): 1419-1424.
    [54]Pear J,Kawagoe Y,Schrechengost W.Higher plants contain homologs of the bacterial CelA genes encoding the catalytic sub-unit of the cellulose synthase[J].Proc Natl Acad Sci USA,1996, 93:12637-12642.
    [55]Kawagoe Y,Delmer D P.pathway and genes in involved in cellulose biosynthesis[J].Genet Eng, 1997,19:63-87.
    [56]Kawagoe Y,Delmer D P.Cotton CelAl has a LIM-like Zn binding domain in the N-terminal cytoplasmic region[J].Plant Physio, 1997b, 114:85.
    [57]Kurek I,Kawagoe Y,Jacob-wilk D.Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains[J].Proc Natl Acad sci USA, 2002, 99:11109-11114.
    [58]Molhoj M,Ulvskov P,Degan D. Characterization of functional soluble form of Brassia napusmembrane-anchored end-1,4-β-glucanase heterogeneously expressed in Pichia pastoris[J]. plant Phyiol,2001,127:678-684.
    [59]Richmond TA,Somerville CR.The cellulose synthase superfamily[J].Plant Physiol,2000,124: 495-498.
    [60]Turner S R,Somerville C R.Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J].Plant Cell, 1997,9(5):689-701.
    [61]Taylor NG,Scheible WR,Cutler S,et al.the irregular xylem 3 locus of Arabidopsis encodes a cellulose synthase catalytic subunits are required for secondary cellwall synthesis[J].Plant cell, 1999,11:769-779.
    [62]Joshi C P.Xylem-specific and tension stress-responsive expression of cellulose synthase genes from aspen trees[J].Appl Biochem Biotechnol, 2003,105:17-25.
    [63]Goubet F, Misrahi A, Park SK, et al. AtCSLA7, a cellulose synthase-like putative glycosyltransferase, is important for pollen tube growth and embryogenesis in Arabidopsis [J]. Plant Physiol, 2003,131(2):547-57.
    [64]Beeckman T,Przemeck G K,Stamatiou G,et al.Genetic complexity of cellulose synthase a gene function in Arabidopsis embryogenesis[J].Plant Physiol,2002, 130(4): 1883-1893.
    [65]Richard E Williamson,Joanne E Burn,Charles H hocart. Towards the mechism of cellulose synthesis[J].Trends in Plant Sci,2002,10:461-467.
    [66]Wang X,Cnops G,Vanderhaeghen R,et al. AtCSLD3,A Cellulose Synthase-Like Gene Important for Root Hair Growth in Arabidopsis[J].Plant Physiol,2001, 126:575-586.
    [67]Kokubo A,Kuraishi S,Sakurai N.Culm strength of barley: Correlation among maximum bending stress, cell wall dimensions and cellulose content[J].PlantPhysiol,1989,91:876-882.
    [68]Kokubo A,Sakurai N,Kuraishi S,et al.Culm brittleness of barley (Hordeum vulgare L.) mutants is caused by smaller number of cellulose molecules in cell wall[J].Plant Physiol,1991, 97: 509-514.
    [69]Turner S R,Somerville C R.Collapsed xylem phenotype of Arabidopsis in the secondary cell wall[J].Plant Cell, 1997, 9:689-701.
    [70]Qian Q,Li Y H,Zeng D,et al.Isolation and genetic characterization of a fragile plant mutant rice (Oryza sativa L.)[J]. Chin Sci Bull,2001,46:2082-2085.
    [71]Yunhai Li,Qian Qian,Yihua Zhou,et al.BRITTLE CULMI,Which Encodes a COBRA-Like Protein,Affects the Mechanical Properties of Rice Plants[J].The Plant Cell,2003,15,2020-2031.
    [72]苏衍菁,严长杰,王小山,等.脆性突变水稻细胞壁成分及其超微结构的分析[J].草地学报,2008,16(6),594-599.
    [73]张梅芳,张景六.插入含Ds因子的T-DNA产生的水稻脆秆突变株的遗传和分子分析[J].植物生理与分子生物学学报,2002,28(2):111-116.
    [74]沈革志,王新其,王江,等.水稻脆杆突变体bcm581-1茎杆形态结构观察、理化测定和遗传分析[J].实验生物学报,2002,35(4):307-312.
    [75]Katsuyuki Tanaka,Kazumasa Murata,Muneo Yamazaki,et al.Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall[J].Plant Physiology,2003,133(1):73.
    [76]Remington SJ,Breddam K.Carboxypeptidases C and D[J].Methids Enzymol,1994,244:231-248.
    [77]BreddamK.Serine carboxypeptidases[J].A Review Carlsberg Res Commun,1986,51:83-12.
    [78]Mortensen Uh,Olesen K,breddam.Carboxypeptidase C including carboxypeptidase Y[J].Handbook of proteolytic enzymes Academic Press,132:389-393.
    [79]Degan D F,Rocher A,Cameron-mills V,et al.The expression of serin carboxypeptidases during maturation and germination of the barley grain[J].Proc Natl Acad Sci USA,1994,91(17):8200-8213.
    [80]Sorensen S B,Svendsen I,Breddam K.Primary strucre of carboxy prptidase Ⅱ from malted barley[J].Calsberg Res Commun,1987,52:285-295.
    [81]Breddam K,Sorensen SB,Svendsen I.Primary structure and enzymatic properties of cearboxypeptidase Ⅱ from wheat bran[J].Carlsberg Res Commun,1987,52:297-311.
    [82]Mahoney JA,Ntolosi B,Dasva RP,et al.Cloning and characterization of CPVL,a novel serineearboxypeptidase,from human macrophages[J].Genomics,2001,72:243-251.
    [83]Vendrell J,Aviles FX.Carboxypeptidases.In:TurkV(ed)Proteases:new perspectives[J].Basel:Birkhauser-Verlag,1999,2:13-34.
    [84]Parussini F,Garcin M,Mucci J,et al.Characterization of a lysosomal serine carboxypeptidase from trypanosoma cruzi[J].Mol Biochem Parasitol,2003,131:11-23.
    [85]Sorensen S B,Svendsen I,Breddam K.Primary st ructure of carboxypeptidase Ⅲ from malted barley[J].Carlsberg Research Communications,1989,54:193-202.
    [86]Bullock T L,Branchaud B,Remington S J.Structure of the complex of L-benzylsuccinate with wheat serine carboxypeptidase Ⅱ at 2.02A resolution[J].Biochemistry,1994,33:11127-11134.
    [87]Bullock T L,Breddam K,Remington S J.Peptide aldehyde complexes wit h wheat serine carboxypeptidase Ⅱ:implications for the catalytic mechanism and substrate specificity[J].Journal of Molecular Biology,1996,255:714-725.
    [88]Li J,Lease K A,Tax F E,et al.BRS1,a serine carboxypeptidase,regulates BRI1 signaling in Arabidopsis thaliana[J].Proceeding of National Academic Science USA,2001,98(10): 5916-5921.
    [89]Hause B,Meyer K,Viitanen P V,et al.Immunolocalization of 1-O-sinapoylglucose:malate sinapoylt ransferase in Arabidopsis thaliana [J].Planta,2002,215(1):26-32.
    [90]Shirley A M, Chapple C.Biochemical characterization of sinapoylglucose: choline sinapoylt ransferase,aserine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism[J].Journal of Biology and Chemistry,2003,278(22):19870-19877.
    [91]Bradley D.lsolation and characterization of a gene encoding a carboxypeptidase Y-like protein from Arabidopsis thaliana[J].Plant Physiology,1992,98:1526-1529.
    [92]Lehfeldt C,Shirley A M,Meyer K,et al.Cloning of the SNG1 gene of Arabidopsis reveals a role for a serine carboxypeptidase-like protein as an acyltransferase in secondary metabolism[J]. Plant Cell,2000,12(8): 1295-1306.
    [93]Shirley A M,McMichael C M,Chapple C.The sng-mutant of Arabidopsis is defective in the gene encoding the serine carboxypeptidase-like protein sinapoylglucose:choline sinapoylt ransferase[J].Plant Journal,2001,28(1): 83-94.
    [94]Washio K,Ishikawa K.Cloning and sequencing of the gene for type I carboxypeptidase in rice[J].Biochimica et Biophysica Acta, 1994,1199:311 -314.
    [95]Washio K,Ishikawa K. St ructure and expression during the germination of rice seeds of t he gene for a carboxypeptidase[J].Plant Molecular Biology, 1992,19:631 -640.
    [96]Washio K,Ishikawa K.Organ-specific and hormone-dependent expression of genes for serine carboxypeptidases during development and following germination of rice grains[J].Plant Physiology, 1994,5:1275-1280.
    [97]Mehta R A,Mattoo A K.Isolation and identification of ripening-related tomato fruit carboxypeptidase[J].Plant Physiology, 1996,110:875-882.
    [98]Mehta R A,Warmbardt R D,Mattoo A K.Tomato fruit carboxypeptidase-properties, induction upon wounding and immunocytochemical localization[J].Plant Physiology, 1996,110:883-892.
    [99]Moura D S,Bergey D R,Ryan C A.Characterization and localization of a wound2inducible type I serine carboxypeptidase from leaves of tomato plants( L ycopersicon esculent um Mill)[J]. Planta,2001,212(2):222-230.
    [100]Jones C G,Lycett G W,Tucker G A. Protease inhibitor studies and cloning of a serine carboxypeptidase cDNA from germinating seeds of pea ( Pisum sativ um L. )[J]. European Journal of Biochemistry,1996,235(3):574-578.
    [101]Cercos M,Urbez C,Carbonell J.A serine carboxypeptidase gene( PsCP), expressed in early steps of reproductive and vegetative development in Pisum sativum, is induced by gibberellins[J]. Plant Molecular Biology,2003,51(2):165-174.
    [102]Granat SJ,wilson KA,Wilson AL.New serine carboxypeptidase in mung bean seeding xotyledons[J].J plant Physiol,2003,160:1263-1266.
    [103]Huizhi Liu,Xiaoe Wang,Huijuan Zhang,et al. A rice serine carboxypeptidase-like gene OsBISCPLI is involved in regulation of defense responses against biotic and oxidative stress[J].Gene,2008,420(1):57-65.
    [104]FraserC.M,Rider,L.W,Chapple,et al.An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family[J].Plant Physiol,2005,138:1136-1148.
    [105]Baulcombe DC,Barker RF,Jarvis MG.A gibberellin responxive wheat gene has homology to yeast carboxypeptidase Y[J].J Biol Chem,1987(28):13726-13734.
    [106]Fernando Dominguez,Maria Cruz Gonzalez,Francisco J.A germination-related gene encoding a serine carboxypeptidase is expressed during the differentiation of the vascular tissue in wheat grains and seedlings[J].Planta,2002,215:727-734.
    [107]Dal Degan F,Rocher A,Cameron-Mills V,et al.The expression of serine carboxypeptidases during maturation and gemination of the barley grain[J].Proc Natl Acad Sci USA,1994,91:8209-8213.
    [108]Granat SJ,Wilson KA,Tan-Wilson AL.New serine carboxypeptidases in mung bean seedling cotyledons[J].J Exp Bot,2003,160:1263-1266.
    [109]Dominguez F,Cejudo FJ.Germination-related genes encoding proteolytic enzymes are expressed in the nucellus of developing wheat grains[J].Plant J,1998,15:569-574.
    [110]Dominguez F,Gonzalez MC,Cejudo FJ.A germinationrelated gene encoding a serine carboxypeptidase is expressed during the differentiation of the vascular tissue in wheat grains and seedlings[J].Planta,2005,215:727-734.
    [111]Steffens JC.Acyltransferases in protease's clothing[J].Plant Cell,2000,12:1253-1255.
    [112]Milkowski C,Strack D.Serine carboxypeptidase-like acyltransferases[J].Phytochemistry,2004,65:517-524.
    [113]Aifen Zhou,Jia Li.Arabidopsis BRS1 Is a Secreted and Active Serine Carboxypeptidase[J].J bological chemistry,2005,280(42):3555-35561.
    [114]Walker-Simmons M,Ryan CA.Isolation and properties of carboxypeptidase from leaves of wounded tomato plants[J].Phytochemistry,1980,19:43-47.
    [115]冯英,刘庆坡,贾佳,等.拟南芥丝氨酸羧肽酶类蛋白家族的基因组学分析[J].遗传学报,2005,32(8):864-873.
    [116]冯英,俞朝.水稻与拟南芥全基因组丝氨酸羧肽酶类蛋白家族比较分析[J].浙江大学学报(农业与生命科学版),2009,35(1):1-15.
    [117]Jefferson R A,Kavanagh T A,Bevan M W.GUS fusions:beta-glucuronidase as a sensitive and versatile gene fusion maker in higher plants[J].EMBO J,1987,6:3901-3907.
    [118]Turner S R,Somerville C R.Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J].Plant Cell,1997,9:689-701.
    [119]戴伟民,张克勤,段彬伍,等.水稻硅质含量的快速检测[J].中国水稻科学,2005,19(5):460-462.
    [120]韦存虚,谢佩松,周卫东,等.水稻脆性突变体叶的解剖结构和化学特性[J].作物学报,2008,34(8):1417-1423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700