利用陆海杂种BC_1群体构建棉花遗传连锁图谱及产量和纤维品质性状相关QTL的初步定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花生产在我国国民经济中起着重要的作用。棉属包括46个二倍体种和5个四倍体种,其中四倍体陆地棉(Gosspium hirsutum L.)和海岛棉(Gossypium barbadense L.)分别占世界棉花产量的90%和8%左右,二倍体亚洲棉(Gossypium arboreum L.)和草棉(Gossypium herbaceum L.)共占2%左右。陆地棉产量高,适应广,而海岛棉品质优,产量低。结合陆地棉和海岛棉的优良性状,是当前棉花品种改良的方法之一。本研究利用优异的陆地棉栽培品种中棉所36和海岛棉品系海1杂交,中棉所36为轮回亲本,构建含BC_1F_1、BC_2F_1和BC_1S_1三个世代的回交群体,利用BC_1F_1分离群体以SSR标记构建连锁图谱,采用复合区间作图方法(CIM)对产量性状和纤维品质性状进行QTL定位研究,以将海岛棉优异基因导入陆地棉优异栽培品种,来拓宽陆地棉狭窄的遗传基础,为品种改良提供更丰富的资源材料。
     1.用亲本和F_1对新开发的2102对SSR引物进行多态性筛选,共筛选到317对含有海1显性带的引物,占筛选引物总数的15.08%;最终利用其中的275对引物对BC_1F_1群体进行扩增,获得306个SSR标记差异位点。连锁分析表明(LOD=6.5),有254个标记位点连锁,分布在42个连锁群中,覆盖2252.36 cM,约占棉花基因组的50.05%;平均每个连锁群有6.08个标记,覆盖53.63 cM;标记间平均间距为8.87 cM。
     2.利用BC_1F_1、BC_2F_1和BC_1S_1三个不同世代分离群体产量性状数据,共定位16个产量性状QTL,解释表型变异5.77%~19.86%。其中,衣分6个,铃重6个,籽指4个。有9个增效基因来自陆地棉亲本中棉所36,7个增效基因来自海岛棉亲本海1,说明了表型性状较差的品种同样可能含有可用于性状改良的增效基因。控制衣分的3个QTL可在不同的世代稳定检测到,效应稳定,增效基因均来自高值亲本陆地棉,为进一步分子标记辅助选择奠定了基础。
     3.依据BC_1F_1、BC_2F_1和BC_1S_1三个不同世代的纤维品质数据,共定位纤维品质5个性状的31个QTL。其中,长度5个QTL,强度4个QTL,麦克隆值8个QTL,整齐度8个QTL,伸长率6个QTL,每个QTL分别解释6.43%-18.84%的表型变异。有3个纤维长度和1个与纤维强度的QTL可在两个不同世代中稳定检测到。
Cotton has been playing an important role in the economy of China. Cotton genus comprises of about 46 diploid and 5 tetraploid species, two tetraploid species, G. hirsutum L. and G. barbadense L., accounted for 90 and 8%, two diploid species, G. herbaceum L. and G. arboreum L., totally accounted for 2%, respectively, of the world's cotton production.
     The yield of G hirsutum L. is higher than that of G barbadense L., but the fiber quality of G barbadense L. is better than the G. hirsutum L. It is one of the important ways to Combine the fine traits of G hirsutum L. and G. barbadense L for improving cotton varieties. In order to introgress elite QTL alleles of G barbadense L. for fiber yield and quality into G. hirsutum L. and enlarge the narrow genetic base of G. hirsutum L. and provide more new germplasm resources for the variety development, the commercial G. hirsutum L. variety'CCRI36'and G. barbadense L.'Hai 1'were respectively used as recurrent and donor parent to produce backcross populations, including BC1F1, BC1S1 and BC2F1. QTL analysis of yield-related trait and fiber quality on three phenotypic data sets were proceeded by the Composite Interval Mapping method.
     1.A total of 2102 pairs of SSR primer were used to screen polymorphism among the parents CCRI36, Hai 1 and their F1, which resulted in 317 pairs of polymorphic primer with the special band for Hai 1, and the polymorphism primer accounted for 15.08% of the total primer, and 275 of them were used to screen the BC1F1 population. Linkage test (LOD=6.5) indicated 254 of 306 polymorphic locus derived from 275 pairs of primer could be mapped into 42 linkage groups and covered a total genetic distance of 2252.36cM, approximately 50.05% of cotton genome. The number of the marker locus per linkage group was 6.08, which spanned 53.63cM of the cotton genome. And the average distance of the neighboring marker locus were 8.87cM.
     2.16 QTLs for yield-related traits were detected from the three generations of BC1F1, BC2F1, and BC1S1 using CIM. QTL numbers for lint percentage, boll weight and seed index were 6,6 and 4, respectively, which accounted for 5.77%~19.86% of phenotypic variance. Among the 16 QTLs,9 with positive additive effect derived from CCRI36 and 7 QTLs with negative additive effect from Hail, which indicated the materials with poor phenotypic characteristics may contain the useful gene for improving the same traits.3 QTLs for lint percentage could be stably detected in the different generations, and from high-value parent of CCRI36, which should be useful for the marker-assisted selection.
     3.31 QTLs for fiber quality traits were mapped among the three generations. QTL numbers for fiber length, strength, micronaire, uniformity and elongation ratio were 5, 4,8,8,6, respectively, which could explain 6.43%~18.84% of phenotypic variance. Three QTLs for fiber length and one QTL for fiber strength could be detected in the two generations.
引文
[1]Wendel JF, Albert VA. Phylogenetics of the cotton genus (Gossypium):Character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systemic and biogeographic implication. Syst Bot,1992,17:115-143.
    [2]Tanksley S. D., Nelson J.C. Advanced backcross QTL analysis:a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. [J]. Thero Appl Genet,1996,92(2):191-203.
    [3]Zaitzev GS. A contribution to the classification of the genus Gossypium L. Bull. Appl. Bot., Genet. Plant Breeding,1928,18:1-65. (in Russian, in English on p.39-65)
    [4]Beasley OJ.The origin of the American tetraploid Gossypium species. Am. Nat, 1940,74:285-286.
    [5]Beasley OJ. Meiotic chromosome behavior in species hybrids, haploids, and induced polyploids of Gossypium. Genetics,1942,27:25-54.
    [6]Fryxell PA.The natural history of the cotton tribe.Texas A&M University Press, College Station, Texas,1979.
    [7]Fryxell PA. A revised taxonomic interpretion of Gossypium (Malvaceae). Rheedea,1992, 2:108-165.
    [8]Wendel J. F., Schnabel A, Seleman T. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. [J]. Molecular Phylogenetics and Evolution,1995,4(3):298-313.
    [9]Jonathan F. Wendel and Richard C. Cronn. Polyploidy and the evolutionary history of cotton. [J]. Advances in Agronomy,2003,78:139-186.
    [10]Junkang Rong, Colette Abbey, John E. Bowers, and et al. A 3347-locus genetic recombination map of sequence tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). [J]. Genetics,2004,166:389-417.
    [11]Baker R. J., Longmire J. L., Van den Bussche R. A. Organization of repetitive dements in the upland cotton genome (Gossypium hirsutum). [J]. Journal of Heredity,1995,86:178-185.
    [12]Zhao Xin-ping, Wing R A, Paterson A. H. Cloning and characterization of the majority of repititive DNA in cotton (Gossypium L.). [J]. Genome,1995,38(6):1177-1188.
    [13]项时康,余楠,胡育昌,等。论我国棉花质量现状.棉花学报,1999,11(1):1-10.
    [14]Miller PA, Rawlings JO. Breakup of initial linkage blocks through intermating in a cotton breeding program. Crop Sci,1967,7:199-204.
    [15]Meredith WR Jr, Bridge RR.Breakup of linkage blocks in cotton, Gossypium hirsutum L. Crop Sci,1971,11:695-698.
    [16]Cateland D, Schwendiman J.Diallel crossing between American and African cotton plant varieties. Behavior of six characteristics of fiber, approach to genetics components and their possible implications for improvement. Cotton Fib. Ttrop,1976,31:349-367.
    [17]Culp TW, Harrell DC. Breeding quality cotton at the Pee Dee Experiment Station, Florence, SC,USDA Publ,ARS-S-30,1974.
    [18]Harrell DC, Culp TW.Effects of yield components on lint yield of Upland cotton with high fiber strength. Crop Sci,1976,16:205-208.
    [19]Scholl R L, Miller P A. Genetic associations between yield and fiber strength in upland cotton. Crop Sci,1976,16:780-783.
    [20]Al-jibouri HA,Miller PA,Robinson HF.Genotypic and environmental variances and covariances in an upland cotton cross of interspecific origin. Agric. J,1958,50:633-636.
    [21]Culp TW.Simultaneous improvement of lint yield and fiber quality in upland cotton. In Benedict (ed) Cotton Fiber Cellose:Structure, Function,& Utilization Conf,1992,p247-288.
    [22]El-zik KM, Thaxton PM.Simutaneous genetic improvement of fiber strength, yield, and resistance to pest of MAR cottons. In Benedict (ed) Cotton Fiber Cellose:Structure, Function,& Utilization Conf,1992,p315-322.
    [23]Green CC, Culp TW. Potential for the simultaneous improvement of yield, fiber quality, and yarn strength in upland cotton. Crop Sci,1990,30:66-69.
    [24]Kohel RJ.Cotton germplasm resources and the potentials for improved fiber productivity and quality. In Basara AS (ed). Cotton fiber:developmental biology, quality improvement, and testile processing,1999,p 167-182.
    [25]钱思颖,黄骏骐,周宝良,等。陆地棉(G. hirsutum L.)克劳茨基棉(G. klotzschianum Anderss)的研究和利用.江苏农业学报,1996,12(4):18-22.
    [26]Terri Grodzicker, Carl Anderson, Phillip A. Sharp, and et al. Conditional Lethal Mutants of Adenovirus 2-Simian Virus 40 Hybrids Ⅰ. Host Range Mutants of Ad2+ND1. [J]. Journal of Virology,1974,13(6):1237-1244.
    [27]John G K. Williams, Anne R. Kubelik, Kenneth J. Livak, and et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. [J].Nucleic Acids Res.,1990,18: 6531-6535.
    [28]Kan YW,Dozy AM.Polymorphism of DNA sequence adjacent to human beta-globin structural gene:relationship to sickle mutation.Proc Natl Acad Sci USA,1978,75(11):5631-5635.
    [29]Jeffreys A.DNA sequence variants in the G gamma-, A gamma-, delta- and beta-globin genes of man.Cell,1979,18(1):1-10.
    [30]Connell JP, Pammi S, Iqbal MJ,and et al.A high through-put procedure for capturing microsatellites from complex plant genomes. Plant Mol. Biol,1998,16:341-349.
    [31]E Zietkiewicz, A Rafalski, and D Labuda. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J].Genomics,1994,20(2):176-183.
    [32]E Zietkiewicz, A Rafalski, and D Labuda. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification [J].Genomics,1994,20(2):176-183.
    [33]Konieczny A and Ausubel FM. A procedure for mapping Arabidophsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J,1993,4:403-410.
    [34]Li G., Qurios C. F. Sequence-related amplified polymorphism (SRAP), A new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. [J]. Theor. Appl. Gene.,2001,103:455-461.
    [35]A. J. Reinisch, J. M. Dong, C. L. Brubaker, and et al. A Detailed RFLP Map of Cotton, Gossypium hirsutum x Gossypium barbadense:Chromosome Organization and Evolution in a Disomic Polyploid Genome. [J]. Genetics,1994,138:829-847.
    [36]方宣钧,吴为人,唐纪良编著。作物DNA标记辅助育种[M].北京:科学出版社,2000:1-5.
    [37]Liu S, Saha S, Stelly D, and et al. Chromosomal assignment of microsatellite loci in cotton. [J]. Journal of Heredity,2000,91(4):326-32.
    [38]Mei M, Syed NH, Gao W, and et al..Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). [J]. Theor. Appl. Genet,2004,108:280-291.
    [39]James E. Frelichowski Jr, Michael B. Palmer, Dorrie Main, and et al. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends [J]. Mol Gen Genomics,2006, 275:479-491.
    [40]Kai Wang, Xianliang Song, Zhiguo Han, and et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. [J]. Theor Appl Genet,2006,113:73-80.
    [41]Soller M., Brody T., Genizi A. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. [J]. Thero. Appl. Genet.,1976,47:35-39.
    [42]Lander E. S., Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. [J]. Genetics,1989,121:185-199.
    [43]Zeng Z. B. Theoretical basis of separation of multiple linkage gene effects on mapping quantitative trait loci. [J]. Proc. Natl. Sci.,1993,90:10972-10976.
    [44]Zeng Z B. Precision mapping of quantitative trait loci. [J].Genetics.1994,136:1457-1468.
    [45]Jansen R. C. Interval mapping of multiple quantitative trait loci. [J]. Genetics,1993,135: 205-211.
    [46]Kao C. H., Zeng Z. B., Teasdale R. D. Multiple interval mapping for quantitative trait loci. [J].Genetics,1999,152:1203-1216.
    [47]Zhu Jun, Weir B. S. Mixed model approaches for genetic analysis of quantitative traits. [C]. Proceedings of International Conference on Mathematical Biology,1998:321-330.
    [48]Soller M, Beckmann JS. Marker-based mapping of quantitative trait loci using replicated progenies. Thero Appl Genet.,1990,67:25-33.
    [49]Simpson SP. Detection of linkage between quantitative trait loci and restriction fragment length polymorphisms using inbred lines. Theor Appl Genet,1989,77:815-819
    [50]Scholl R L, Miller P A. Genetic associations between yield and fiber strength in upland cotton. Crop Sci,1976,16:780-783.
    [51]Rodolphe F and Lefort M. A multi-marker model for detecting chromosomal segments displaying QTL activity. Genetics,1993,134:1277-1288.
    [52]Lander E. S. and Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. [J]. Genetics,1989,121:185-199.
    [53]Jansen RC. Interval mapping of multiple quantitative trait loci. Genetics, 1993,135:205-211.
    [54]Zeng Z B. Precision mapping of quantitative trait loci. [J].Genetics.1994,136:1457-1468.
    [55]Stuber CW, Moll RH., Goodman MM., and et al. Allozyme frequency changes associated with selection for increased grain yield in maizs (Zea mays L.). Genetics,1980,95:225-236.
    [56]Keightley PD, Bulfield G. Detection of quantitative trait loci from frequency changes of marker alleles under selection. Genet Res,1993,62:195-203.
    [57]Darvasi A and Soller M. Selective DNA pooling for determination of linkage between a marker and a quantitative trait locus. Genetics,1994,138:1365~1373.
    [58]Jensen J. Estimation of recombination parameters between a quantitative trait locus (QTL) and two marker gene loci.Theor. Appl. Genet,1989,78:613-618.
    [59]Knapp SJ, Bridges WC Jr, Brikes D. Mapping quantitative trait loci using molecular marker linkage maps. Theor. Appl. Genet,1990,79:583-592.
    [60]Kao CH, Zeng ZB. General formulae for obtaining the MLEs and the asymptotic variance-covariance matrix in mapping quantitative trait loci when using the EM algorithm. Biometrics,1997,53:653-665.
    [61]Zeng ZB, Kao CH, Basten CJ.1999. Estimating the genetic architecture of quantitative traits. Genet Res.74:279-289.
    [62]Bernacchi D, T Beck-Bunn, D Emmatty, and et al. Advanced backcross QTL analysis of tomato. Ⅱ. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor. Appl. Genet.,1998,97:170-180.
    [63]Meredith, WR Jr. Use of molecular markers in cotton breeding. Proc. World Cotton Res. Conf. 1994,p303-308.
    [64]Yu J, Park YH, Lazo GH, and et al. Molecular cotton genome with molecular markers. Beltwide Cotton Conferences.1997:447.
    [65]Wright RJ, Thaxton PM, El-Zik KM, and et al. D-Subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyoid formation has created novel anenues for evolution. Genetics,1998,149:1987-1996.
    [66]Guo WZ, Zhang TZ, Pan JJ, and et al. Identifiacation of RAPD marker linked with fertility-restoring gene of cytoplasmic male sterile lines in upland cotton. Chinese Sci. Bull.,1998, 43:52-54.
    [67]Liu L, Guo WZ, Zhu XF, and et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theor. Appl. Genet.,2003,106:461-469.
    [68]Wright RJ, Thaxton PM, El-Zik KH, and et al. Molecular mapping of genes affecting pubescence of cotton. J. Hered,1999,90:215-219.
    [69]Jiang CX, Wright RJ, Woo SS, and et al. QTL analysis of leaf morphology in tetraploid Gossypium (cotton). Theor. Appl. Genet.,2000,100:409-418.
    [70]Shappley ZW, Jenkins JN, Zhu J, and et al. Quantitative trait loci associated with agronomic and fiber traits of upland cotton. J Cot Sci,1998,2:153-163.
    [71]Khan MA, Myers GO, Stewart JM, and et al. A addition of new markers to the treispecific cotton map.1999 Beltwide cotton conferences.1999, p1331.
    [72]Ren LH, Guo WZ, Zhang TZ. Identification of quantitative trait (QTLs) affecting yield and fiber properties in chromosome 16 in cotton using substitution line. Acta Botanica Sinica, 2002,44(7):815-820.
    [73]Ulloa M, Cantrell RG, Percy RG, and et al. QTL Analysis of Stomatal Conductance and Relationship to Lint Yield in an Interspecific Cotton. J. Cotton Sci,2000,4:10-18.
    [74]Jiang C.X., Wright R. J., K.M. El-Zik, and et al.. Polyploid formation created unique convenues for response to selection in Gossypium (cotton). [J]. Proc. Natl. Sci.1998,95: 4419-4424.
    [75]Ullao M, Meredith WR Jr. Genetic linkage map and QTL analysis agronomic and fiber quality traits in an intraspecific population. J. Cotton Sci.,2000,4:161-170.
    [76]WU Mao-Qing, ZHANG Xian-Long, NIE Yi-Chun, and et al. Localization of QTLs for Yield and Fiber Quality Traits of Tetraploid Cotton Cultivar[J]. Acta Gerietica Sinica,2003,30 (5): 443-452.
    [77]易成新,张天真,郭旺珍。陆地棉衣分QTL的形态和RAPD分子标记筛选[J].作物学报,2001,27(6):781-786.
    [78]Yu J, Kohel RJ. Update of the cotton genome mapping. Proc. Beltwide Cotton Conf.1999, p485.
    [79]Kohel RJ, Yu J, Parki YH, and et al. Molecular mapping and characterization of traits controlling fiber quality in cotton. Euphytica,2001,121:163-172.
    [80]Zhang TZ, Yuan YL, Yu J, and et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection. Theor. Appl. Genet.,2003,106:262-268.
    [81]袁有禄,张天真,郭旺珍,等。棉花高强纤维性状QTLs的分子标记筛选及其定位[J].遗传学报,2001,28(12):1151-1161.
    [82]张天真,袁有禄,郭旺珍。棉花高强纤维QTLs的微卫星标记筛选.中国农业科学,2001,28(12):1151-1161.
    [83]Kohel RJ. Cotton germplasm resources and the potentials for improved fiber productivity and quality. In Basara AS (ed). Cotton fiber:developmental biology, quality improvement, and testile processing.1999,p167-182.
    [84]Yu J, Park YH, Lazo GH, and et al. Molecular mapping of the cotton genome:QTL analysis of fiber quality properties. Beltwide Cotton Conferences.1998,p485
    [85]陆朝福,李晓兵,朱立煌,等。用PCR技术诊断水稻的白叶枯病抗性.遗传学报,1996,23(2):110-116.
    [86]陈升,张启发。分子标记辅助选择改良杂交水稻的白叶枯病抗性(英文).华中农业大学学报,2000,19(3):183-189.
    [87]何光华,朱云发,裴炎,等。利用极大似然法分析野败型杂交籼稻恢复基因的遗传.西北农业学报,2000,13(2):14-18.
    [88]刘志勇,孙其信,李洪杰,等。小麦抗白粉病基因Pm21的分子鉴定和标记辅助选择.遗传学报,1999,26(6):673-682.
    [89]许勇,张海英,康国斌,等。分子标记技术在西瓜甜瓜上的应用研究进展.中国西瓜甜瓜,1999,4:34-38.
    [90]郭蓓,邱丽娟,邵桂花,等。大豆耐盐基因的PCR标记.中国农业科学,2000,33(1):10~16.
    [91]柳李旺,朱协飞,郭旺珍,等。分子标记辅助选择聚合棉花Rfl育性恢复基因和抗虫Bt基因.分子植物育种,2003,1(1):48-52.
    [92]郭旺珍,张天真,朱协飞,等。分子标记辅助选择的修饰回交聚合育种方法及其在棉花上的应用.作物学报,2005,31(8):963-970.
    [93]Tanksley SD, Grandillo TM and Fulton. Advanced backcross QTL analysis in a cross between elite processing line of tomato and its wild relatives L. primpinellifolium. Thero. Apll. Genet.,1996,92:213-224.
    [94]张保才。AB-QTL法定位海岛棉优异纤维品质基因和抗黄萎病基因[D].中国农业科学院[硕士学位论文].北京:2006.
    [95]Andrew H. Paterson, Curt L. Brubaker and Jonathan F. Wendel. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. [J].1993,11(2): 122-127.
    [96]Joseph Sambrook, David W. Russell.;黄培堂等译。分子克隆实验指南(第3版)[M].北京:科学出版社,2002:424-435,1579-1583.
    [97]SPSS for Windows, Rel. Chicago:SPSS Inc.11.0.1.2001.
    [98]van Ooijen, J. W, and R. E. Voorrips,2001, Joinmap Version 3.0:Software for the Calculation of Genetic Linkage Maps. CPRO-DLO, Wageningen, The Netherlands.
    [99]Kosambi DD. The estimation of map distances from recombination values. Ann Eugen, 1944,12:172-175
    [100]李爱国.AB-QTL法定位海岛棉产量及纤维品质基因[硕士学位论文].湖南:湖南农业大学,2008.
    [101]刘广平.棉纤维发育和形态特征及海岛棉纤维品质基因定位[硕士学位论文].湖南:湖南农业大学,2008.
    [102]Kai Wang, Xianliang Song, Zhiguo Han, et al.Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping, Theor Appl Genet,2006,113(1):73-80.
    [103]Avishag Levi, Andrew H. Paterson, Vered Barak, and etal..Field evaluation of cotton near-isogenic lines introgressedwith QTL for productivity and drought related traits.[J]. Mol Breeding,2009,23:179-195
    [104]Voorrips, R.E. MapChart:Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity,2002,93 (1):77-78.
    [105]Wangzhen Guo, Caiping Cai, Changbiao Wang, and et al. A Microsatellite-Based,Gene-Rich Linkage Map Reveals Genome Structure,Function and Evolution in Gossypium,Genetics,2007, 176(1):527-541.
    [106]Brubaker CL and Wendel JF. Reevaluating the origin of domesticated cotton (Gossypium hirsutum:Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am. J. Bot.,1994,81:1309-1326.
    [107]Multani DS and Lyon BR. Genetic fingerprinting of Australian cotton cultivars with RAPD makers. Genome,1995,38:1005-1008.
    [108]Iqbal MJ, Aziz N, Saeed NA, and et al. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor. Appl. Genet.,1997,94:139-144.
    [109]Iqbal MJ, Reddy OUK, El-Zik KM, and et al. A genetic bottleneck in the'evolution under domestication' of upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor. Appl. Genet.,2001,103:547-554.
    [110]Reddy OUK, Brooks TD, El-Zik KM, and et al. Development and use of PCR-based technologies for cotton mapping.2000 Beltwide Cotton Conferences.2000,p483.
    [111]Lu H, Romero-Severson J and Bernardo R. Chromosomal regions associated with segregation distortion in maize (J). Theoretical Applied Genetics,2002,105:622~628.
    [112]Sibov S T, de Souza Jr C L, Garcia A A F, and et al.Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers.1. Map construction and localization of loci showing distorted segregation (J). Hereditas,2003,139:96~106.
    [113]Harushima Y, Kurata N, Yano M, and et al.Detection of segregation distortions in an indica-japonica rice cross using a high-resolution molecular map (J). Theoretical Applied Genetics, 1996,92:145~150.
    [114]Xu Y, Zhu L, Xiao J,and et al.Chromosomal regions associated with segregation distortion of molecular markers in F2, backcross, double haploid, and recombinant inbred populations in rice (Oryza sativa L.) (J). Molecular and General Genetics,1997,253:535~545.
    [115]Matsushita S, Iseki T, Fukuta Y, and et al.Characterization of segregation distortion on chromosome 3 induced in wide hybridization between indica and japonica type rice varieties (J). Euphytica,2003,134:27~32.
    [116]Shappley Z. W., Jenkins JN, Meredith WR Jr, and et al.. An RFLP linkage map of upland cotton, Gossypium hirsutum L.[J]. Theor. Appl. Genet.1998,97:756~761.
    [117]Li Wu, Lin Zhongxu, Zhang Xianlong. A Novel Segregation Distortion in Intraspecific Population of Asian Cotton (Gossypium arboretum L.)Detected by Molecular Markers, Journal of Genetics and Genomics,2007,34(7):634-640. Chinese Journal in English.
    [118]Lorieux M, Goffinet B, Perrier X, and et al. Maximum-likelihood models for mapping genetic markers showing segregation distortion.1. Backcross populations [J].. Theor Appl Genet, 1995a,90:73-80.
    [119]Lorieux M, Perrier X, Goffinet B, and et al. Maximum-likelihood modles for mapping genetic markers showing segregation distortion.2. F2 populations [J]. Theor Appl Genet,1995b, 90:81-89.
    [120]王永军,吴晓雷,贺超英,等。大豆作图群体检验与调整后构建的遗传图谱[J].中国农业科学,2003,36(11):1254-1260.
    [121]吴晓雷,贺超英,王永军,等。大豆遗传图谱的构建和分析[J].遗传学报,2001,28(11):1051-1061.
    [122]彭勇,梁永书,王世全。水稻SSR标记在RI群体的偏分离分析[J].分子植物育种,2006,4(6):786-790.
    [123]Murigneux A, Baud S., Beckert M. Molecular and morphological evaluation of doubled-haploid lines in maize.2. Comparison with single-seed descent lines [J]. Theor Appl Genet 1993,87:278-287.
    [124]Reinisch AJ, Dong JM, Brubaker CL, and et al. A detailed RFLP map of cotton, Gossypium hirsutumxGossypium barbadance:chromosome organization and evolution in disomic polyploid genome. Genetics,1994,138:829-847.
    [125]Brubaker CL, Paterson AH, Wendel JF. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome,1999,42:184-203.
    [126]Zhang J, Guo WZ, Zhang TZ. Molecular linkage map of allotetraploid (Gossypium hirsutum L.xGossypium barbadense L.) with a haploid population. Theor. Appl. Genet.,2002,105: 1166-1174.
    [127]Lacape JM., Nguyen TB., Thibivilliers S, and et al. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum xGossypium barbadense backcross population. Genome,2003,46:612-626.
    [128]Han Z G, Guo W Z, Song X L and et al. Genetic mapping of EST-derived microsatellites from the diploid Gossypium arboreum in allotetraploid cotton [J]. Molecular Genetics and Genomics,2004,272:308-327.
    [129]Zheng-Sheng Zhang, Yue-Hua Xiao, Ming Luo, and et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.) [J]. Euphytica,2005,144:91-99.
    [130]Xinlian Shen, Wangzhen Guo, Tianzhen Zhang and et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton [J]. Euphytica,2007, 155:371-380.
    [131]I. Y. Abdurakhmonov, Z. T. Buriev, S. Saha and et al. Microsatellite markers associated with lint percentage trait in cotton, Gossypium hirsutum. [J]. Euphytica,2007,156:141-156.
    [132]Dao-Hua He, Zhong-Xu Lin, Xian-Long Zhang, and et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense [J]. Euphytica,2007,153:181-197.
    [133]Hong-Bin Zhang, Yaning Li, BaohuaWang, and et al. Recent Advances in Cotton Genomics [J]. International Journal of Plant Genomics,2008:1-20.
    [134]Baohua Wang, Wangzhen Guo, Xiefei Zhu, and et al. QTL mapping of fiber quality in an elite hybrid derived-RIL population of upland cotton [J]. Euphytica,2006,152:367-378.
    [135]Junkang Rong, F. Alex Feltus, Vijay N. Waghmare, and et al. Meta-analysis of Polyploid Cotton QTL Shows Unequal Contributionsof Subgenomes to a Complex Network of Genes and Gene Clusters Implicated in Lint Fiber Development [J]. Genetics,2007,176:2577-2588.
    [136]李莲。陆海杂种高代回交重组近交系纤维品质、产量、抗病性状的分子标记研究[D].中国农业科学院[硕士学位论文].北京:2007.
    [137]Lacape J M, Nguyen T B, Brigitte C, et al. QTL Analysis of Cotton Quqlity Using Multiple Gossypium hirsutum×Gossypium barbadense Backcross Generations[J]. Crop Science,2005, 45(1):123-140.
    [138]Jean-Marc Lacape, J. Jacobs, T. Arioli, et al.A new interspecific, Gossypium hirsutum × G. barbadense,RIL population:towards a uniWed consensus linkage map of tetraploid cotton. Theor Appl Genet,2009,DOI 10.1007/s00122-009-1037-y.
    [139]Xiao-gang Li, Biao Liu, Sondre Heia, et al.The effect of root exudates from two transgenic insect-resistant cotton lines on the growth of Fusarium oxysporum.Transgenic Res, 2009,9(1):235-245.
    [140]Zheng-Sheng Zhang, Mei-Chun Hu,Jian Zhang, et al.Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). Mol Breeding,2009, DOI 10.1007/s11032-009-9271-1
    [141]Xinlian Shen, Wangzhen Guo, Tianzhen Zhang and et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton [J]. Euphytica,2007, 155:371-380.
    [142]I. Y. Abdurakhmonov, Z. T. Buriev, S. Saha and et al. Microsatellite markers associated with lint percentage trait in cotton, Gossypium hirsutum. [J]. Euphytica,2007,156:141-156.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700