PGC-1α调节黄体生成素和醛固酮合成以及葡萄糖激酶表达的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分PGC-1α协同SF-1调节黄体生成素和醛固酮合成的研究
     过氧化物酶体增殖激活受体γ共激活因子1α(PGC-1α)能共刺激多种转录因子从而调节能量代谢进程。核受体类固醇激素生成因子(SF-1)在垂体、性腺、肾上腺等内分泌组织中高表达,转录调控多种关键基因,同时调节下丘脑-垂体-性腺轴多水平的激素合成。为探索PGC-1α在类固醇激素合成及垂体激素分泌中的作用,本课题以小鼠垂体促性腺αT3-1细胞为研究模型,过表达PGC-1α后,通过real-time PCR实验检测到LHβ和αGSU在水mRNA平的表达量升高,又进一步通过酶联免疫吸附试验(ELISA)证明,PGC-1α刺激αT3-1细胞分泌的黄体生成素增加。分析LHp启动子序列,发现-127 bp~-119 bp位点存在一个SF-1结合元件突变该元件后,双荧光报告实验证明SF-1和PGC-1α对LHβ启动子的刺激作GSE (gonadotrope-specific element),用全部消失。染色质免疫沉淀实验证明PGC-1α与SF-1共定位在LHβ启动子区含GSE元件的区域,并促进LHβ转录。为进一步证明PGC-1α对SF-1的共刺激作用,分析了二者相互作用的分
     子机制。哺乳动物双杂交实验和免疫共沉淀实验证明PGC-1α与SF-1能在体内形成复合物,进一步实验证明二者能直接相互作用。该作用GST pull-down发生在PGC-1α的N端1~180氨基酸区域(含LXXLL模体,142~146氨基酸)与SF-1 C端187~462氨基酸区之间。构建不同长度的SF-1基因表达片段发现,只有当SF-1的最适激活结构域和AF-2结(proximal activation domain)构域同时存在时,PGC-1α和SF-1才能直接结合。肾上腺皮质是最主要的类固醇激素合成部位,细胞色素P450家族成员在
     此参与胆固醇代谢、类固醇激素合成的多个催化反应。Cyp11b2基因编码的蛋白质产物负责催化醛固酮合成的最后三步反应,是醛固酮合成的限速酶。在小鼠肾上腺皮质Y-1细胞中,real-time PCR实验证明,PGC-1α能促使Cyp11b2,Cyp11b1和P450scc基因在mRNA水平表达上调,ELISA实验进一步检测到PGC-1α协同SF-1促进细胞醛固酮的分泌。
     另一方面,通过双荧光报告实验检测到PGC-1α与雌激素受体相关受体家族成员ERRα和ERRγ共同促进SF-1转录,在过表达PGC-1α的αT3-1细胞和Y-1细胞中,SF-1在mRNA水平和蛋白质水平的表达量均显著提高。综上所述,本课题揭示了PGC-1α在类固醇激素和促性腺激素合成中具有重要的调节作用,分析了其刺激激素合成的分子机制,提示PGC-1α可能通过SF-1调节性腺和肾上腺的发育以及性别分化。
     第二部分PGC-1α协同ERRα调节葡萄糖激酶表达的研究
     过氧化物酶体增殖激活受体γ共激活因子1α(PGC-1α)是细胞能量代谢的关键调节子。它通过共激活多种核受体和转录因子,调节适应性产热、肝糖异生、脂肪酸氧化及线粒体生物合成等生理进程。葡萄糖激酶是一种存在于哺乳动物肝脏和胰腺中分子量为50 KDa的蛋白质,也被称为Ⅳ型己糖激酶,是糖酵解过程中第一个限速酶。它在调节肝脏葡萄糖利用中发挥重要的作用,并接受胰岛素信号刺激。
     本课题研究发现,大鼠葡萄糖激酶(glucokinase,Gck)启动子区存在一个保守的雌激素受体相关受体的结合元件ERRE(-52 bp~-39 bp),双荧光报告实验分析了截短和位点突变的Gck启动子,证明PGC-1α和ERRα能利用该元件刺激Gck启动子的活性。EMSA实验进一步证明ERRα能在体外结合ERRE元件,ChIP实验则证实PGC-1α和ERRα共同定位在大鼠肝细胞Gck启动子含该元件的区域,表明PGC-1α和ERRα通过ERRE元件促进大鼠肝脏Gck基因转录。大鼠肝原代细胞感染PGC-1α和ERRα腺病毒后,Gck基因在mRNA和蛋白质水平表达量均明显上调。同时,Gck的催化活性大大增加,这表明PGC-1α和ERRα在调节葡萄糖代谢方面发挥着重要的作用。PGC-1α和ERRα对Gck的促进作用还可以增强胰岛素刺激的效应。最后,引入ERRα特异的siRNA (siERRα)和拮抗剂XCT790抑制ERRα表达后,胰岛素诱导的Gck表达受到影响,充分证明了ERRα介导了胰岛素诱导的Gck表达。综上所述,本研究发现了PGC-1α和ERRα对Gck的促进作用及对肝脏葡萄糖代谢的影响,证明ERRα在胰岛素刺激葡萄糖激酶通路中的作用,并可以促进Ⅱ型糖尿病葡萄糖稳态的形成。
Peroxisome proliferators-activated receptor y coactivator-la (PGC-la) is capable of coactivating a number of nuclear receptors and other transcription factors involved in the regulation of multiple metabolic processes. The orphan nuclear receptor steroidogenic factor 1 (SF-1) is highly expressed in the pituitary, gonad and adrenal gland. To date, it is the only transcription factor demonstrated to play the key roles at all levels of the hypothalamic-pituitary-steroidogenic tissue axis.
     In the present study, we demonstrated that PGC-la interacts with and coactivates SF-1 to induce LHβand aGSU gene expression, subsequently leading to the increased secrection of LH in pituitary gonadotrope-derivedαT3-1 cells. PGC-la-induced activation of LHβexpression occurs at its transcription level that is mediated by an SF-1 binding element (GSE) mapped in the promoter region of LHβgene. Our ChIP assays confirm the binding of SF-1 to PGC-la-responsive element and that PGC-la is presumably recruited to LHβpromoter region through interaction with SF-1. Mammalian two-hybrid and coimmunoprecipitation (CoIP) assays demonstrated PGC-la interaction with SF-1 in vivo. Furthermore, GST pull-down experiments indicated PGC-la interacts with SF-1 through its N-terminal fragment (1-180 amino acid) containing containing LXXLL domain and that SF-1 interacts with PGC-1αthrough its C-terminal fragment (187-462 amino acid) containing proximal activation domain and AF-2 domain. Additionally, PGC-1αalso stimulates the expression of Cyp11b2, Cyp11b1 and P450scc, as well as synthesis of aldosterone in adrenal cortex-derived Y-1 cells. In addition to coactivation of SF-1, PGC-1αwas demonstrated to induce SF-1 gene expression in αT3-1 and Y-1 cells.
     Based on these data, we proposed a model of mechanism of PGC-1αaction on LH synthesis and steroidogenesis in cells. PGC-la coactivates ERRs or other factors to induce SF-1 gene expression, meanwhile, it interacts directly with and coactivates SF-1 to stimulate its target genes. Given that SF-1 is a key regulator of endocrine function within hypothalamic-pituitary-gonadal reproductive axis and adrenal cortex, it is reasonable to propose that PGC-la may play important roles in steroidogenesis, gonad development and sex differentiation in these tissues through SF-1. Our studies revealed the potential role of PGC-1αand suggested PGC-1αhas much broader effects in endocrine system, more than energy metabolism, glucose and fatty acid metabolism.
     Peroxisome proliferator-activated receptor coactivator-1α(PGC-1α) is a key regulator of cellular energy metabolism, and regulates processes such as adaptive thermogenesis, hepatic gluconeogenesis, fatty acid oxidation and mitochondrial biogenesis by coactivating numerous nuclear receptors and transcription factors. Here, we demonstrate the presence of ERRa binding site in the regulatory sequence of the glucokinase gene and that PGC-1αcoactivates ERRαto stimulate the transcription of glucokinase. Simultaneous over-expression of PGC-1αand ERRa potently induced the glucokinase gene expression and its enzymatic activity in primary hepatocytes; however, expression of either PGC-1αor ERRαalone had no significant effect. Electrophoretic mobility shift and chromatin immuno-precipitation assays revealed the interaction of ERRαwith the glucokinase promoter. Finally, the knockdown of endogenous ERRαwith specific siRNA (siERRα) or pharmacological inhibition of ERRαwith XCT790 attenuated insulin-induced glucokinase expression. Taken together, this research identifies glucokinase as a novel target of PGC-1α/ERRα, and underscores the regulatory function of ERRαin insulin-dependent enzyme regulation.
引文
1. Finck BN, Kelly DP. PGC-1 coactivators:inducible regulators of energy metabolism in health and disease. J Clin Invest,2006,116:615-622.
    2. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha):transcriptional coactivator and metabolic regulator. Endocr Rev,2003,24:78-90.
    3. Schreiber SN, Knutti D, Brogli K, et al. The transcriptional coactivator PGC-1 regulates the expression and activity of the orphan nuclear receptor estrogen-related receptor alpha (ERRalpha). J Biol Chem,2003,278: 9013-9018.
    4. Huss JM, Kopp RP, Kelly DP. Peroxisome proliferator-activated receptor coactivator-1 alpha (PGC-1 alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and-gamma. Identification of novel leucine-rich interaction motif within PGC-1 alpha. J Biol Chem,2002,277: 40265-40274.
    5. Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell,1998,92:829-839.
    6. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol,2000,20:1868-1876.
    7. Puigserver P, Rhee J, Donovan J, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1 alpha interaction. Nature,2003,423: 550-555.
    8. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 1999,98:115-124.
    9. Lin J, Wu PH, Tarr PT, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-lalpha null mice. Cell,2004,119:121-135.
    10. Leone TC, Lehman JJ, Finck BN, et al. PGC-lalpha deficiency causes multi-system energy metabolic derangements:muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol,2005,3:e101.
    11. Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab,2005,1:361-370.
    12. Hoivik EA, Lewis AE, Aumo L, et al. Molecular aspects of steroidogenic factor 1 (SF-1). Mol Cell Endocrinol,2009.
    13. Parker KL, Schimmer BP. Steroidogenic factor 1:a key determinant of endocrine development and function. Endocr Rev,1997,18:361-377.
    14. Ingraham HA, Lala DS, Ikeda Y, et al. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev,1994,8: 2302-2312.
    15. Sadovsky Y, Crawford PA, Woodson KG, et al. Mice deficient in the orphan receptor steroidogenic factor 1 lack adrenal glands and gonads but express P450 side-chain-cleavage enzyme in the placenta and have normal embryonic serum levels of corticosteroids. Proc Natl Acad Sci U S A,1995,92:10939-10943.
    16. Crawford PA, Polish JA, Ganpule G, et al. The activation function-2 hexamer of steroidogenic factor-1 is required, but not sufficient for potentiation by SRC-1. Mol Endocrinol,1997,11:1626-1635.
    17. Ito M, Yu RN, Jameson JL. Steroidogenic factor-1 contains a carboxy-terminal transcriptional activation domain that interacts with steroid receptor coactivator-1. Mol Endocrinol,1998,12:290-301.
    18. Gizard F, Lavallee B, DeWitte F, et al. The transcriptional regulating protein of 132 kDa (TReP-132) enhances P450scc gene transcription through interaction with steroidogenic factor-1 in human adrenal cells. J Biol Chem,2002,277: 39144-39155.
    19. Grasfeder LL, Gaillard S, Hammes SR, et al. Fasting-induced hepatic production of DHEA is regulated by PGC-1alpha, ERRalpha, and HNF4alpha. Mol Endocrinol,2009,23:1171-1182.
    20. Jorgensen JS, Quirk CC, Nilson JH. Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone. Endocr Rev,2004,25:521-542.
    21. Halvorson LM, Kaiser UB, Chin WW. Stimulation of luteinizing hormone beta gene promoter activity by the orphan nuclear receptor, steroidogenic factor-1. J Biol Chem,1996,271:6645-6650.
    22. Keri RA, Nilson JH. A steroidogenic factor-1 binding site is required for activity of the luteinizing hormone beta subunit promoter in gonadotropes of transgenic mice. J Biol Chem,1996,271:10782-10785.
    23. Ikeda Y, Luo X, Abbud R, et al. The nuclear receptor steroidogenic factor 1 is essential for the formation of the ventromedial hypothalamic nucleus. Mol Endocrinol,1995,9:478-486.
    24. Sadovsky Y, Dorn C. Function of steroidogenic factor 1 during development and differentiation of the reproductive system. Rev Reprod,2000,5:136-142.
    25. Mornet E, Dupont J, Vitek A, et al. Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11) beta). J Biol Chem,1989,264: 20961-20967.
    26. Clyne CD, Zhang Y, Slutsker L, et al. Angiotensin Ⅱ and potassium regulate human CYP11B2 transcription through common cis-elements. Mol Endocrinol, 1997,11:638-649.
    27. Domalik LJ, Chaplin DD, Kirkman MS, et al. Different isozymes of mouse 11 beta-hydroxylase produce mineralocorticoids and glucocorticoids. Mol Endocrinol,1991,5:1853-1861.
    28. Luo J, Sladek R, Carrier J, et al. Reduced fat mass in mice lacking orphan nuclear receptor estrogen-related receptor alpha. Mol Cell Biol,2003,23: 7947-7956.
    29. Orlicky DJ, Schaack J. Adenovirus transduction of 3T3-L1 cells. J Lipid Res, 2001,42:460-466.
    30. Kanaya E, Shiraki T, Jingami H. The nuclear bile acid receptor FXR is activated by PGC-1 alpha in a ligand-dependent manner. Biochem J,2004,382: 913-921.
    31. Tcherepanova I, Puigserver P, Norris JD, et al. Modulation of estrogen receptor-alpha transcriptional activity by the coactivator PGC-1. J Biol Chem, 2000,275:16302-16308.
    32. Handschin C, Kobayashi YM, Chin S, et al. PGC-1 alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev,2007,21:770-783.
    33. Salisbury TB, Binder AK, Grammer JC, et al. Maximal activity of the luteinizing hormone beta-subunit gene requires beta-catenin. Mol Endocrinol, 2007,21:963-971.
    34. Delerive P, Wu Y, Burris TP, et al. PGC-1 functions as a transcriptional coactivator for the retinoid X receptors. J Biol Chem,2002,277:3913-3917.
    35. Knutti D, Kaul A, Kralli A. A tissue-specific coactivator of steroid receptors, identified in a functional genetic screen. Mol Cell Biol,2000,20:2411-2422.
    36. Bassett MH, Zhang Y, Clyne C, et al. Differential regulation of aldosterone synthase and 11beta-hydroxylase transcription by steroidogenic factor-1. J Mol Endocrinol,2002,28:125-135.
    37. Laganiere J, Tremblay GB, Dufour CR, et al. A polymorphic autoregulatory hormone response element in the human estrogen-related receptor alpha (ERRalpha) promoter dictates peroxisome proliferator-activated receptor gamma coactivator-1 alpha control of ERRalpha expression. J Biol Chem,2004, 279:18504-18510.
    38. Mootha VK, Handschin C, Arlow D, et al. Erralpha and Gabpa/b specify PGC-1 alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A,2004,101:6570-6575.
    39. Shen JH, Ingraham HA. Regulation of the orphan nuclear receptor steroidogenic factor 1 by Sox proteins. Mol Endocrinol,2002 16:529-540.
    40. Kawakami Y, Tsuda M, Takahashi S, et al. Transcriptional coactivator PGC-1 alpha regulates chondrogenesis via association with Sox9. Proc Natl Acad Sci U S A,2005,102:2414-2419.
    41. Ferre T, Riu E, Bosch F, et al. Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. Faseb J,1996,10:1213-1218.
    42. Niswender KD, Shiota M, Postic C, et al. Effects of increased glucokinase gene copy number on glucose homeostasis and hepatic glucose metabolism. J Biol Chem,1997,272:22570-22575.
    43. Magnuson MA. Glucokinase gene structure. Functional implications of molecular genetic studies. Diabetes,1990,39:523-527.
    44. Iynedjian PB. Mammalian glucokinase and its gene. Biochem J,1993,293 (Pt 1):1-13.
    45. Printz RL, Magnuson MA, Granner DK. Mammalian glucokinase. Annu Rev Nutr,1993,13:463-496.
    46. Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature,2000,413:131-138.
    47. Michael LF, Wu Z, Cheatham RB, et al. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc Natl Acad Sci U S A,2001,98: 3820-3825.
    48. Giguere V, Yang N, Segui P, et al. Identification of a new class of steroid hormone receptors. Nature,1988,331:91-94.
    49. Heard DJ, Norby PL, Holloway J, et al. Human ERRgamma, a third member of the estrogen receptor-related receptor (ERR) subfamily of orphan nuclear receptors:tissue-specific isoforms are expressed during development and in the adult. Mol Endocrinol,2000,14:382-392.
    50. Sladek R, Bader JA, Giguere V. The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. Mol Cell Biol,1997,17:5400-5409.
    51. Vega RB, Kelly DP. A role for estrogen-related receptor alpha in the control of mitochondrial fatty acid beta-oxidation during brown adipocyte differentiation. J Biol Chem,1997,272:31693-31699.
    52. Kamei Y, Ohizumi H, Fujitani Y, et al. PPARgamma coactivator lbeta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci U S A,2003,100: 12378-12383.
    53. Schreiber SN, Emter R, Hock MB, et al. The estrogen-related receptor alpha (ERRalpha) functions in PPARgamma coactivator 1 alpha (PGC-1alpha)-induced mitochondrial biogenesis. Proc Natl Acad Sci U S A, 2004,101:6472-6477.
    54. Wang YJ, Liu HL, Guo HT, et al. Primary hepatocyte culture in collagen gel mixture and collagen sandwich. World J Gastroenterol,2004,10:699-702.
    55. Berger K, Lindh R, Wierup N, et al. Phosphodiesterase 3B is localized in caveolae and smooth ER in mouse hepatocytes and is important in the regulation of glucose and lipid metabolism. PLoS One,2009,4:e4671.
    56. Trus MD, Zawalich WS, Burch PT, et al. Regulation of glucose metabolism in pancreatic islets. Diabetes,1981,30:911-922.
    57. Davidson AL, Arion WJ. Factors underlying significant underestimations of glucokinase activity in crude liver extracts:physiological implications of higher cellular activity. Arch Biochem Biophys,1987,253:156-167.
    58. Kim SY, Kim HI, Park SK, et al. Liver glucokinase can be activated by peroxisome proliferator-activated receptor-gamma. Diabetes,2004,53 Suppl 1: S66-70.
    59. Roth U, Curth K, Unterman TG, et al. The transcription factors HIF-1 and HNF-4 and the coactivator p300 are involved in insulin-regulated glucokinase gene expression via the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem,2004,279:2623-2631.
    60. Wende AR, Huss JM, Schaeffer PJ, et al. PGC-1alpha coactivates PDK4 gene expression via the orphan nuclear receptor ERRalpha:a mechanism for transcriptional control of muscle glucose metabolism. Mol Cell Biol,2005,25: 10684-10694.
    61. Foretz M, Guichard C, Ferre P, et al. Sterol regulatory element binding protein-lc is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci U S A,1999,96: 12737-12742.
    62. Kim SY, Kim HI, Kim TH, et al. SREBP-lc mediates the insulin-dependent hepatic glucokinase expression. J Biol Chem,2004,279:30823-30829.
    63. Gregori C, Guillet-Deniau I, Girard J, et al. Insulin regulation of glucokinase gene expression:evidence against a role for sterol regulatory element binding protein 1 in primary hepatocytes. FEBS Lett,2006,580:410-414.
    64. Herzog B, Cardenas J, Hall RK, et al. Estrogen-related receptor alpha is a repressor of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem,2006,281:99-106.
    65. Willy PJ, Murray IR, Qian J, et al. Regulation of PPARgamma coactivator 1alpha (PGC-1alpha) signaling by an estrogen-related receptor alpha (ERRalpha) ligand. Proc Natl Acad Sci U S A,2004,101:8912-8917.
    66. Girard J, Ferre P, Foufelle F. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu Rev Nutr,1997, 17:325-352.
    67. Iynedjian PB, Jotterand D, Nouspikel T, et al. Transcriptional induction of glucokinase gene by insulin in cultured liver cells and its repression by the glucagon-cAMP system. J Biol Chem,1989,264:21824-21829.
    68. Niswender KD, Postic C, Jetton TL, et al. Cell-specific expression and regulation of a glucokinase gene locus transgene. J Biol Chem,1997,272: 22564-22569.
    69. Iynedjian PB. Identification of upstream stimulatory factor as transcriptional activator of the liver promoter of the glucokinase gene. Biochem J,1998,333 (Pt 3):705-712.
    70. Stoeckman AK, Towle HC. The role of SREBP-lc in nutritional regulation of lipogenic enzyme gene expression. J Biol Chem,2002,277:27029-27035.
    71. Giguere V. To ERR in the estrogen pathway. Trends Endocrinol Metab,2002, 13:220-225.
    72. Tremblay AM, Wilson BJ, Yang XJ, et al. Phosphorylation-dependent sumoylation regulates estrogen-related receptor-alpha and-gamma transcriptional activity through a synergy control motif. Mol Endocrinol,2008, 22:570-584.
    73. St-Pierre J, Drori S, Uldry M, et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell,2006, 127:397-408.
    74. Rangwala SM, Li X, Lindsley L, et al. Estrogen-related receptor alpha is essential for the expression of antioxidant protection genes and mitochondrial function. Biochem Biophys Res Commun,2007,357:231-236.
    75. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature,2006,440:944-948.
    1. Mora R, Bonilha VL, Marmorstein A, et al. Caveolin-2 localizes to the golgi complex but redistributes to plasma membrane, caveolae, and rafts when co-expressed with caveolin-1. J Biol Chem,1999,274:25708-25717.
    2. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol,2000,1:31-39.
    3. Fan JY, Carpentier JL, van Obberghen E, et al. Morphological changes of the 3T3-L1 fibroblast plasma membrane upon differentiation to the adipocyte form. J Cell Sci,1983,61:219-230.
    4. Scherer PE, Lewis RY, Volonte D, et al. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem,1997,272:29337-29346.
    5. Scheiffele P, Verkade P, Fra AM, et al. Caveolin-1 and-2 in the exocytic pathway of MDCK cells. J Cell Biol,1998,140:795-806.
    6. Way M, Parton RG. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett,1995,376:108-112.
    7. Scherer PE, Okamoto T, Chun M, et al. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci U S A,1996, 93:131-135.
    8. Engelman JA, Zhang XL, Lisanti MP. Genes encoding human caveolin-1 and-2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett,1998,436:403-410.
    9. Razani B, Combs TP, Wang XB, et al. Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem,2002,277:8635-8647.
    10. Razani B, Engelman JA, Wang XB, et al. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem, 2001,276:38121-38138.
    11. Stan RV. Structure of caveolae. Biochim Biophys Acta,2005,1746:334-348.
    12. Monier S, Parton RG, Vogel F, et al. VIP21-caveolin, a membrane protein constituent of the caveolar coat, oligomerizes in vivo and in vitro. Mol Biol Cell, 1995,6:911-927.
    13. Dupree P, Parton RG, Raposo G, et al. Caveolae and sorting in the trans-Golgi network of epithelial cells. EMBO J,1993,12:1597-1605.
    14. Williams TM, Lisanti MP. The caveolin proteins. Genome Biol,2004,5:214.
    15. Kogo H, Ishiguro K, Kuwaki S, et al. Identification of a splice variant of mouse caveolin-2 mRNA encoding an isoform lacking the C-terminal domain. Arch Biochem Biophys,2002,401:108-114.
    16. Rybin VO, Grabham PW, Elouardighi H, et al. Caveolae-associated proteins in cardiomyocytes:caveolin-2 expression and interactions with caveolin-3. Am J Physiol Heart Circ Physiol,2003,285:H325-332.
    17. Parolini I, Sargiacomo M, Galbiati F, et al. Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the golgi complex. J Biol Chem,1999,274: 25718-25725.
    18. Sowa G, Pypaert M, Fulton D, et al. The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation. Proc Natl Acad Sci U S A,2003,100:6511-6516.
    19. Wang XB, Lee H, Capozza F, et al. Tyrosine phosphorylation of caveolin-2 at residue 27:differences in the spatial and temporal behavior of phospho-Cav-2 (pY19 and pY27). Biochemistry,2004,43:13694-13706.
    20. Shajahan AN, Timblin BK, Sandoval R, et al. Role of Src-induced dynamin-2 phosphorylation in caveolae-mediated endocytosis in endothelial cells. J Biol Chem,2004,279:20392-20400.
    21. Li S, Okamoto T, Chun M, et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem,1995,270:15693-15701.
    22. Razani B, Wang XB, Engelman JA, et al. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol,2002,22:2329-2344.
    23. Zaas DW, Swan ZD, Brown BJ, et al. Counteracting signaling activities in lipid rafts associated with the invasion of lung epithelial cells by Pseudomonas aeruginosa. J Biol Chem,2009,284:9955-9964.
    24. Le Lay S, Krief S, Farnier C, et al. Cholesterol, a cell size-dependent signal that regulates glucose metabolism and gene expression in adipocytes. J Biol Chem,2001,276:16904-16910.
    25. Chamberlain LH. Inhibition of isoprenoid biosynthesis causes insulin resistance in 3T3-L1 adipocytes. FEBS Lett,2001,507:357-361.
    26. Moreno M, Molina H, Amigo L, et al. Hepatic overexpression of caveolins increases bile salt secretion in mice. Hepatology,2003,38:1477-1488.
    27. Lopez IP, Milagro FI, Marti A, et al. Gene expression changes in rat white adipose tissue after a high-fat diet determined by differential display. Biochem Biophys Res Commun,2004,318:234-239.
    28. Lopez IP, Milagro FI, Marti A, et al. High-fat feeding period affects gene expression in rat white adipose tissue. Mol Cell Biochem,2005,275:109-115.
    29. Bray GA. The epidemic of obesity and changes in food intake:the Fluoride Hypothesis. Physiol Behav,2004,82:115-121.
    30. Das M, Gabriely I, Barzilai N. Caloric restriction, body fat and ageing in experimental models. Obes Rev,2004,5:13-19.
    31. Cohen AW, Razani B, Wang XB, et al. Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol,2003,285:C222-235.
    32. Kim S, Pak Y. Caveolin-2 regulation of the cell cycle in response to insulin in Hirc-B fibroblast cells. Biochem Biophys Res Commun,2005,330:88-96.
    33. Kwon H, Jeong K, Hwang EM, et al. Caveolin-2 regulation of STAT3 transcriptional activation in response to insulin. Biochim Biophys Acta,2009, 1793:1325-1333.
    34. Kwon H, Pak Y. Prolonged tyrosine kinase activation of insulin receptor by pY27-caveolin-2. Biochem Biophys Res Commun,2010,391:49-55.
    35. Sagara Y, Mimori K, Yoshinaga K, et al. Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer,2004,91:959-965.
    36. Elsheikh SE, Green AR, Rakha EA, et al. Caveolin 1 and Caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br J Cancer,2008,99:327-334.
    37. Savage K, Leung S, Todd SK, et al. Distribution and significance of caveolin 2 expression in normal breast and invasive breast cancer:an immunofluorescence and immunohistochemical analysis. Breast Cancer Res Treat,2008,110: 245-256.
    38. Webley WC, Norkin LC, Stuart ES. Caveolin-2 associates with intracellular chlamydial inclusions independently of caveolin-1. BMC Infect Dis,2004,4: 23.
    39. Zaas DW, Duncan MJ, Li G, et al. Pseudomonas invasion of type I pneumocytes is dependent on the expression and phosphorylation of caveolin-2. J Biol Chem,2005,280:4864-4872.
    40. Langlois S, Cowan KN, Shao Q, et al. Caveolin-1 and-2 interact with connexin43 and regulate gap junctional intercellular communication in keratinocytes. Mol Biol Cell,2008,19:912-928.
    41. Parker S, Walker DS, Ly S, et al. Caveolin-2 is required for apical lipid trafficking and suppresses basolateral recycling defects in the intestine of Caenorhabditis elegans. Mol Biol Cell,2009,20:1763-1771.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700