1.糖皮质激素对巨噬细胞H2S生成的调节 2.内毒素耐受导致肾上腺功能不全的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感染应激时,炎症反应可通过激活HPA轴促进肾上腺皮质分泌大量糖皮质激素(glucocorticoids, GCs)。GCs的抗炎作用已为人们所熟知,也是它成为临床上治疗多种急、慢性炎症性疾病的一线药物的主要原因。然而近年来的研究表明GCs在某些情况下还具有促进炎症反应的作用,学者们认为这是GCs限制其自身作用的一种方式,从而避免其发挥过度的抗炎和免疫抑制效应、减少副作用。然而有关GCs调节抗炎-促炎平衡的具体机制仍未完全阐明。
     虽然GCs在机体面临炎症反应时对于维持内环境的稳定起着重要作用,但是大量临床资料表明在包括脓毒症在内的重症炎症性疾病患者常出现肾上腺功能不全的表现,患者GCs基础分泌水平降低或对促肾上腺皮质激素(adrenocorticotrophic hormone, ACTH)刺激反应低下,而且GCs分泌不足通常还伴随患者死亡率显著增高。因此,明确炎症性疾病时肾上腺功能不全的机制对重症炎症性疾病的治疗具有非常重要的意义。
     在本论文的第一部分,我们首先发现巨噬细胞不仅可以产生已知具有显著促炎作用的气体分子一氧化氮(nitric oxide, NO),同时还可生成新型气体分子硫化氢(hydrogen sulfide, H2S),而且后者可以通过抑制NO的生成而具有一定抗炎作用。在进一步的工作中,我们还发现GCs可同时抑制巨噬细胞生成NO和H2S,并重点探讨了GCs抑制H2S生成的作用机制。这一部分的工作为阐明GCs在调节抗炎一促炎平衡中的作用机制提供了重要的实验依据。
     已有研究表明,微量内毒素(lipopolysaccharide, LPS)预处理单核细胞/巨噬细胞等天然免疫细胞后可以导致该细胞对后续的内毒素刺激反应低下,这种现象被称之为“内毒素耐受”。目前内毒素耐受导致脓毒症时免疫受抑的观点已被广泛接受,,在本论文的第二部分,我们提出内毒素耐受可能也发生在肾上腺水平,从而导致了脓毒症时肾上腺的低反应性。为验证这种假说,我们首先观察了LPS对大鼠肾上腺束状带-网状带(zona fasciculata-reticularis, F/R)细胞皮质酮分泌和皮质酮相关调节蛋白和代谢酶表达的影响,继而探讨了LPS预处理对LPS和ACTH诱导的F/R细胞皮质酮生成的影响及其作用机制。
     主要实验结果如下:
     一、巨噬细胞内H2S的生成及功能
     1.RT-PCR和western blot结果显示巨噬细胞上有内源性硫化氢合成酶胱硫醚-γ-裂解酶CSE mRNA和蛋白的表达,而无CBS mRNA和蛋白的表达。H2S的实时定量检测结果也显示巨噬细胞能够产生内源性的H2S。
     2.荧光实时定量PCR和western blot结果显示内毒素LPS能够剂量依赖性地诱导巨噬细胞内CSE的mRNA和蛋白表达。H2S的实时定量检测结果也显示LPS能够显著增加内源性H2S的生成。提示在革兰氏阴性菌导致的炎症反应中,巨噬细胞是内源性H2S生成的来源之一
     3.一氧化氮测定和western blot结果显示H2S的前体L-半胱氨酸(L-cysteine)和外源性的H2S供体NaHS均显著抑制了LPS诱导的NO的生成和诱导性一氧化氮合酶(inducible nitric oxide synthase, iNOS)表达,而CSE的抑制剂DL-propargylglycine (PAG)则显著阻断了L-半胱氨酸的作用。用siRNA阻断CSE基因表达能显著促进LPS诱导的NO生成和iNOS表达,而CSE过表达则能显著抑制LPS诱导的NO生成和iNOS表达。提示H2S可能可以通过抑制NO生成而发挥抗炎作用。
     二、糖皮质激素对H2S生成的调节及机制
     1.荧光实时定量PCR、western blot、H2S检测、NO检测结果显示,地塞米松能够剂量依赖性地抑制LPS诱导的巨噬细胞内CSE mRNA和蛋白表达及H2S生成量,同时也能显著抑制iNOS蛋白表达及NO生成量。提示这一作用可能是糖皮质激素在炎症过程中调节促炎、抗炎平衡的重要机制之一。
     2.荧光实时定量PCR、western blot、H2S检测结果显示NO前体L-精氨酸(L-arginine, L-arg)剂量依赖性地促进LPS诱导的CSE表达和H2S生成,而NOS抑制剂NG-nitro-L arginine methyl ester (L-NAME)则剂量依赖性地抑制LPS诱导的CSE表达和H2S生成。提示地塞米松可能通过抑制NO生成而间接抑制CSE表达和H2S生成。
     3.荧光实时定量PCR、western blot、H2S检测结果显示,在L-NAME存在时地塞米松仍然能够显著抑制LPS诱导的CSE表达和H2S生成。提示地塞米松还可以通过不依赖于NO的方式直接抑制CSE表达和H2S生成。
     4.荧光实时定量PCR结果显示地塞米松使原代腹腔巨噬细胞CSE mRNA稳定性显著降低。我们以往荧光素酶报告基因检测的结果显示地塞米松显著抑制RAW264.7巨噬细胞中LPS诱导的CSE启动子转录激活。提示糖皮质激素可能通过不同的机制抑制原代巨噬细胞和巨噬细胞系的CSE表达,GCs对CSE表达的调节机制可能具有细胞特异性。
     三、LPS对大鼠原代F/R细胞皮质酮生成的影响及机制
     1.免疫荧光组织化学和细胞化学结果显示LPS的受体toll样受体4(toll-like receptor 4, TLR4)可表达于肾上腺组织和原代培养的F/R细胞,提示LPS可能可以通过与TLR4结合而直接作用于肾上腺。
     2.皮质酮检测、荧光实时定量PCR和western blot结果显示LPS能够刺激原代F/R细胞分泌皮质酮,同时可诱导类固醇合成急性调节蛋白(steroidogenic acute regulatory protein, StAR)、细胞色素P450 11β-羟化酶(cytochrome P450 11β-hydroxylase, CYP11B1)表达,但LPS并不影响F/R细胞中胆固醇侧链裂解酶(p450 side chain cleavage enzyme, CYP11A1)、3β-羟化类固醇脱氢酶(3β-hydroxysteroid dehydrogenase, HSD3B)和细胞色素P450 21β-羟化酶(cytochrome P450 21β-hydroxylase, CYP21)的表达。ACTH则可以促进StAR和所有皮质酮合成相关酶(CYP11A1,HSD3B,CYP21和CYP11B1)的表达。上述结果表明ACTH和LPS在诱导皮质酮生成的过程中所涉及到的调节蛋白或代谢酶并不相同,因此两者作用于肾上腺皮质细胞后所介导的细胞内信号转导机制可能并不一致。
     四、LPS预处理对LPS/ACTH诱导的F/R细胞皮质酮生成的影响及机制
     1.皮质酮检测结果显示LPS预处理原代培养的F/R细胞后,该细胞接受后续LPS和ACTH二次刺激时皮质酮生成量显著减少。这一结果提示LPS预处理可能导致在肾上腺皮质细胞中产生了内毒素耐受,这可能是脓毒症时肾上腺功能不全的机制之一。
     2. Western blot结果显示LPS能够抑制TLR4蛋白表达。同时荧光实时定量PCR和western blot结果也显示F/R细胞经LPS预处理后,后续LPS诱导的StAR和代谢酶CYP11B1表达也都被完全抑制了。结合上述结果,我们认为LPS预处理后TLR4表达被抑制可能是F/R细胞对二次LPS刺激反应性低下的主要原因。
     3. Western blot结果显示LPS抑制了F/R细胞中ACTH受体的表达。然而荧光实时定量PCR和western blot结果显示LPS预处理仅抑制了后续ACTH诱导的CYP11A1,HSD3B和CYP21的表达,但对ACTH诱导的StAR和CYP11B1表达并无显著影响。上述结果表明肾上腺ACTH-R表达降低可能仅仅是LPS预处理导致肾上腺皮质对ACTH反应性降低的部分原因,其他可能参与的机制仍有待后续研究。
     4.LPS预处理抑制了后续LPS刺激诱导的StAR和CYP11B1的表达,此外还抑制了后续ACTH刺激诱导的CYP11A1,HSD3B和CYP21的表达。由于正常肾上腺皮质中糖皮质激素的储备量非常少,因此类固醇合成酶的表达水平对于维持肾上腺皮质对ACTH的正常反应性非常关键。由此可见,诱导或激活上述被LPS预处理所抑制的类固醇代谢酶可能可以成为临床治疗脓毒症诱导的肾上腺皮质功能不全的有效治疗手段。
     结论:本研究表明在炎症过程中巨噬细胞是H2S生成的来源之一,H2S可能通过抑制NO生成发挥抗炎作用,抑制H2S和NO的生成可能是GC调节炎症中促炎抗炎因子平衡的一种机制。脓毒症时机体产生内毒素耐受可能是肾上腺功能不全的机制之一;诱导或激活相关合成酶表达可能可以成为临床治疗脓毒症诱导的肾上腺皮质功能不全的有效治疗手段。
In severe infectious diseases, inflammatory responses strongly activate the HPA axis and stimulate the release of adrenocorticotropic hormone (ACTH), which in turn stimulates the secretion of glucocorticoids (GCs) from the adrenal cortex. It is well known that GCs have anti-inflammatory effects, which is the main reason for the clinical usage of GCs to treat acute and chronic inflammatory diseases. However, GCs have also been shown to exert pro-inflammatory effects in some cases. Scientists have proposed that GCs could balance between pro- and anti-inflammatory mediators and control their own strength, so as to reduce the side effects of GCs. So far, the mechanisms involved remain to be further elucidated.
     Although GCs play an important role in maintaining the homeostasis during inflammation, reversible adrenal insufficiency has been frequently diagnosed in critically ill patients with sepsis who have either low basal cortisol levels or low cortisol responses to adrenocorticotrophic hormone (ACTH) stimulation. Moreover, corticosteroid insufficiency is always associated with a high mortality rate. Therefore, it seems to be of great significance to clarify the mechanisms responsible for the occurrence of adrenal insufficiency in severe inflammatory diseases.
     In the first part of present study, we found that macrophages produced not only the well-known pro-inflammatory gaseous transmitter nitric oxide (NO), but also the newly recognized gas molecule hydrogen sulfide (H2S). In addition, H2S exerts certain anti-inflammatory effects by inhibiting NO production. We also found that GCs decreased the production of both NO and H2S, and we further investigated the mechanisms involved in the inhibitory effects of GCs on H2S production. These findings provide important experimental evidence for the mechanisms by which GCs coordinate the balance between pro- and anti-inflammatory mediators during inflammation.
     It was found that prior exposure of innate immune cells like monocytes/ macrophages to minute amounts of endotoxin caused them to become refractory to subsequent endotoxin challenge, a phenomenon called "endotoxin tolerance". Now, it is generally accepted that endotoxin tolerance contributes to immunosuppression during sepsis. Therefore, in the second part of this study, we hypothesized that endotoxin tolerance might have occurred in the adrenal gland and led to hyporesponsiveness of adrenal gland during sepsis. To test this, we firstly observed the effect of LPS on corticosterone production in the rat adrenal zona fasciculata-reticularis (F/R) cells and explored the synthetic pathways involved. Then, we studied the effect of LPS pretreatment on LPS- and ACTH-induced corticosterone production in F/R cells.
     Main results:
     1.Capacity of H2S biosynthesis in macrophages and the local functions of endogenous H2S
     1)Macrophages expressed H2S-forming enzyme cystathionine-gamma-lyase (CSE) and produced H2S.
     2)Lipopolysaccharide (LPS) increased CSE expression and H2S production rate. This suggests that macrophages be one of H2S producing sources during Gram-negative bacteria-induced inflammation.
     3)L-cysteine reduced LPS-induced nitric oxide (NO) production. CSE inhibitor blocked the inhibitory effect of L-cysteine. CSE knockdown increased, whereas CSE overexpression decreased LPS-induced NO production. Thus, it would suggest that H2S might exert anti-inflammatory effects by inhibiting NO production in macrophages during LPS-induced inflammation.
     2.Regulation of H2S Production by Glucocorticoids in Macrophages
     1)Dexamethasone suppressed LPS-induced CSE expression and H2S production rate as well NO production. This may be a mechanism by which glucocorticoids coordinate the balance between pro- and anti-inflammatory mediators during inflammation.
     2)L-arginine increased whereas NG-nitro-L-arginine methyl ester (L-NAME) decreased LPS-induced CSE expression and H2S production. These suggest that NO is an important endogenous stimulus in the formation of H2S during LPS-induced inflammation.
     3)Dexamethasone plus L-NAME significantly decreased LPS-induced CSE expression and H2S production compared to L-NAME. This suggests that dexamethasone may directly inhibit CSE expression and H2S production besides NO-dependent way.
     4)Dexamethasone reduced CSE mRNA stability in primary macrophages, and our previous resultes sugguested that dexamethasone decreased CSE promoter activity in RAW 264.7 macrophages. These suggest that dexamethasone inhibition of CSE expression is through different mechanisms in primary macrophages and macrophage cell line and the mechanism of action of glucocorticoid on CSE expression might be related to cell types.
     3. Regulation of corticosterone production by LPS in rat primary F/R cells.
     1)Toll-like receptor 4 (TLR4) and P450 11β-hydroxylase (CYP11B1) were co-localized in adrenal gland and primary F/R cells.
     2)LPS stimulates corticosterone production and expression of StAR and CYP11B1 in primary F/R cells, but did not affect the mRNA and protein levels of CYP11A1. ACTH dose-dependently increased both mRNA and protein levels of StAR and all the synthetic enzymes, CYP11A1, HSD3B, CYP21 and CYP11B1. Notably, the synthetic enzymes involved in ACTH stimulation differed from those in LPS stimulation, which indicates that the intracellular signaling mechanisms responsible for ACTH and LPS stimulation of corticosteroid production may be different.
     4. Regulation of LPS/ACTH-induced corticosterone production by LPS pretreatment.
     1)LPS pretreatment caused a significant decrease in corticosterone production in response to subsequent LPS or ACTH stimulation in primary F/R cells. These results indicated that endotoxin tolerance might also occur in adrenal gland during sepsis, and endotoxin tolerance of adrenal gland during sepsis is one of mechanisms for adrenocortical insufficiency.
     2) We found that TLR4 expression was significantly decreased by LPS over a 24 h period of treatment, which was consistent with down-regulation of corticosterone production and the expression of StAR and CYP11B1 in response to second stimulation of LPS. These data indicate that reduced TLR4 expression may account for hypo-responsiveness to second stimulation of LPS in adrenal gland.
     3)The present study also demonstrated that LPS caused decreased ACTH-R in F/R cells, and LPS pretreatment decreased expression of some(CYP11A1、HSD3B、CYP21), but not all steroidogenic enzymes and proteins, suggesting that reduced ACTH-R in adrenal gland just partly account for hypo-responsiveness to ACTH, and additional mechanisms whereby LPS pretreatment induces hypo-responsiveness to ACTH in adrenal gland might exist.
     4) The present study indicates that LPS pretreatment suppress both LPS- and ACTH-induced expression of steroidogenic enzymes. The stored GCs can maintain normal rates of secretion for only a few minutes in the absence of continuing biosynthesis. Therefore, any disruption in glucocorticoid biosynthesis will immediately affect the response of adrenal cortex to various stresses. Our findings suggest that induction and activation of these steroid metabolic enzymes can be a promising treatment strategy for adrenocortical insufficiency during sepsis.
     Conclusions:
     Our results suggest that macrophages are one of H2S producing sources. H2S might exert anti-inflammatory effects by inhibiting NO production. Dexamethasone may directly inhibit CSE expression and H2S production besides NO-dependent way. Inhibition of H2S and NO production may be a mechanism by which glucocorticoids coordinate the balance between pro- and anti-inflammatory mediators during inflammation.Endotoxin tolerance of adrenal gland during sepsis is one of mechanisms for adrenocortical insufficiency, and activation of synthetic enzymes can be a promising treatment strategy.
引文
1. Jurney TH, Cockrell JL Jr, Lindberg JS, et al:Spectrum of serum cortisol response to ACTH in ICU patients:Correlation with degree of illness and mortality. Chest 1987; 92:292-295
    2. Reincke M, Allolio B, Wurth G, et al:The hypothalamic-pituitary-adrenal axis in critical illness: Response to dexamethasone and corticotropin-releasing hormone. JClin Endocrinol Metab 1993; 77:151-156
    3. Prigent H, Maxime V, Annane D:Clinical review:corticotherapy in sepsis. Crit Care:2004; 8:122-129
    4. Venkataraman S, Munoz R, Candido C, et al:The hypothalamic-pituitary-adrenal axis in critical illness. Rev Endocr Metab Disord 2007;8:365-373
    5. Dhabhar FS, Miller AH, McEwen BS, Spencer RL (1996) Stress-induced changes in blood leukocyte distribution. Role of adrenal steroid hormones. J Immunol 157:1638-1644
    6. Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, Bucala R (1995) MIF as a glucocorticoid-induced modulator of cytokine production. Nature 377:68-71
    7. Meagher LC, Cousin JM, Seckl JR, Haslett C (1996) Opposing effects of glucocorticoids on the rate of apoptosis in neutrophilic and eosinophilic granulocytes. J Immunol 156:4422-4428
    8. Sivertson KL, Seeds MC, Long DL, Peachman KK, Bass DA (2007) The differential effect of dexamethasone on granulocyte apoptosis involves stabilization of Mcl-1L in neutrophils but not in eosinophils. Cell Immunol 246:34-45
    9. Liles WC, Dale DC, Klebanoff SJ(1995) Glucocorticoids inhibit apoptosis of human neutrophils. Blood 86:3181-3188
    10. Marik PE, Zaloga GP:Adrenal Insufficiency in the critically ill:A new look at an old problem. Chest 2002; 122:1784-1796
    11. Marik PE, Kiminyo K, Zaloga GP:Adrenal insufficiency in critically ill patients with human immunodeficiency virus. Crit Care Med 2002; 30:1267-1273
    12. Marik PE, Zaloga GP:Adrenal insufficiency during septic shock. Crit Care Med 2003; 31:141-145
    13. Annane D, Sebille V, Troche G, et al:A 3-level prognostic classification in septic shock based on cortisol levels and cortisol response to corticotropin. JAMA 2000; 283:1038-1045
    14. Carlson DE, Chiu WC, Scalea TM:Cecal ligation and puncture in rats interrupts the circadian rhythms of corticosterone and adrenocortical responsiveness to adrenocorticotrophic hormone. Crit Care Med 2006;34:1178-1184
    15. Moore PK, Bhatia M, Moochhala S (2003) Hydrogen sulfide:from the smell of the past to the mediator of the future? Trends Pharmacol Sci 24:609-611
    16. Wang R (2002) Two's company, three's a crowd:can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792-1798
    17. Bhatia M (2005) Hydrogen Sulfide as a Vasodilator. IUBMB Life 57:603-606
    18. Qingyou Z, Junbao D, Weijin Z, Hui Y, Chaoshu T, Chunyu Z (2004) Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension. Biochem Biophys Res Commun 317:30-37
    19. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008-6016
    20. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. Faseb J 19:1196-1198
    21. Hui Y, Du J, Tang C, Bin G, Jiang H (2003) Changes in arterial hydrogen sulfide (H(2)S) content during septic shock and endotoxin shock in rats. J Infect 47:155-160
    22. Zhi L, Ang AD, Zhang H, Moore PK, Bhatia M (2007) Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-kappaB pathway. J Leukoc Biol 81:1322-1332
    23. Collin M, Anuar FB, Murch O, Bhatia M, Moore PK, Thiemermann C (2005) Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol 146:498-505
    24. 10.Bhatia M, Wong FL, Fu D, Lau HY, Moochhala SM, Moore PK (2005) Role of hydrogen sulfide in acute pancreatitis and associated lung injury. Faseb J 19:623-625
    25. Whiteman M, Armstrong JS, Chu SH, Jia-Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK (2004) The novel neuromodulator hydrogen sulfide:an endogenous peroxynitrite 'scavenger'? J Neurochem 90:765-768
    26. Fiorucci S, Antonelli E, Distrutti E, Rizzo G, Mencarelli A, Orlandi S, Zanardo R, Renga B, Di Sante M, Morelli A, Cirino G, Wallace JL (2005) Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129:1210-1224
    27. Zanardo RC,Brancaleone V,Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118-2120
    28. 14.Mariggio MA, Pettini F, Fumarulo R(1997) Sulfide influence onpolymorphonuclear functions: a possible role for Ca2+ involvement. Immunopharmacol Immunotoxicol 19:393-404
    29. Mariggio MA, Minunno V, Riccardi S, Santacroce R, De Rinaldis P, Fumarulo R(1998) Sulfide enhancement of PMN apoptosis. Immunopharmacol Immunotoxicol 20:399-408
    30. Hu LF, Wong PT, Moore PK, Bian JS (2007) Hydrogen sulfide attenuates lipopolysaccharide-induced inflammation by inhibition of p38 mitogen-activated protein kinase in microglia. J Neurochem 100:1121-1128
    31. Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids:molecular mechanisms. Clin Sci (Lond) 94:557-572
    32. Pitzalis C, Pipitone N, Perretti M (2002) Regulation of leukocyte-endothelial interactions by glucocorticoids. Ann N Y Acad Sci 966:108-118
    33. Tuckermann JP, Kleiman A, McPherson KG, Reichardt HM (2005) Molecular mechanisms of glucocorticoids in the control of inflammation and lymphocyte apoptosis. Crit Rev Clin Lab Sci 42:71-104.
    34. Van Molle W, Libert C (2005) How glucocorticoids control their own strength and the balance between pro- and anti-inflammatory mediators. Eur J Immunol 35:3396-3399
    35. Wilckens T, De Rijk R (1997) Glucocorticoids and immune function:unknown dimensions and new frontiers. Immunol Today 18:418-424
    36. Nathan C (2002) Points of control in inflammation. Nature 420:846-852
    37. Ravasi T, Wells C, Forest A, Underhill DM, Wainwright BJ, Aderem A, Grimmond S, Hume DA (2002) Generation of diversity in the innate immune system:macrophage heterogeneity arises from gene-autonomous transcriptional probability of individual inducible genes. J Immunol 168:44-50
    38. Oh GS, Pae HO, Lee BS, Kim BN, Kim JM, Kim HR, Jeon SB, Jeon WK, Chae HJ, Chung HT (2006) Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic Biol Med 41:106-119
    39. Heasman SJ, Giles KM, Ward C, Rossi AG, Haslett C, Dransfield I (2003) Glucocorticoid-mediated regulation of granulocyte apoptosis and macrophage phagocytosis of apoptotic cells:implications for the resolution of inflammation. J Endocrinol 178:29-36
    40. Yeager MP, Pioli PA, Wardwell K, Beach ML, Martel P, Lee HK, Rassias AJ, Guyre PM (2008) In vivo exposure to high or low cortisol has biphasic effects on inflammatory response pathways of human monocytes. Anesth Analg 107:1726-1734
    41. Yona S, Gordon S (2007) Inflammation:Glucocorticoids turn the monocyte switch. Immunol Cell Biol 85:81-82
    42. Li L, Whiteman M, Moore PK (2009) Dexamethasone inhibits lipopolysacharide-induced hydrogen sulfide biosynthesis in intact cells and in an animal model of endotoxic shock. J Cell Mol Med 13:2684-2692
    43. Lei H, Ju DW, Yu Y, Tao Q, Chen G, Gu S, Hamada H, Cao X (2000) Induction of potent antitumor response by vaccination with tumor lysate-pulsed macrophages engineered to secrete macrophage colony-stimulating factor and interferon-gamma. Gene Ther 7:707-713
    44. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408
    45. Jeroschewski P, Steuckart C, Kuhl M (1996) An amperometric micro-sensor for the determination of H2S in aquatic environments. Anal Chem 68:4351-4357
    46. Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Darley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341:40-51
    47. Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104:17977-17982
    48. Tapley D, Buettner G, Shick J (1999) Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications. Biol Bull 196:52-56
    49. Hsu DZ, Wang ST, Deng JF, Liu MY (2005) Epinephrine protects against severe acute gastric bleeding in rats:role of nitric oxide and glutathione. Shock 23:253-257
    50. Twentyman PR,Luscombe M(1987) A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 56:279-285
    51. Korhonen R, Lahti A, Hamalainen M, Kankaanranta H, Moilanen E (2002) Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages. Mol Pharmacol 62:698-704
    52. Lowicka E, Beltowski J (2007) Hydrogen sulfide (H2S)-the third gas of interest for pharmacologists. Pharmacol Rep 59:4-24
    53. Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26:13-19
    54. Bhatia M (2005) Hydrogen sulphide is a mediator of carrageenan-induced hindpaw oedema in the rat. Br J Pharmacol 145:141-144
    55. Zhang H, Zhi L, Moochhala SM, Moore PK, Bhatia M (2007) Endogenous hydrogen sulfide regulates leukocyte trafficking in cecal ligation and puncture-induced sepsis. J Leukoc Biol 82:894-905
    56. Li L, Salto-Tellez M, Tan CH, Whiteman M, Moore PK (2009) GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 47:103-13.
    57. Moilanen E, Whittle BJR, Moncada S(1999) Nitric oxide as a factor in inflammation. In: Inflammation:Principles and Clinical Correlations, pp.787-800, Gallin JI and Snyderman R (ed.), Lippincott Williams & Wilkins, Philadelphia.
    58. Zhong GZ, Chen FR, Cheng YQ, Tang CS,Du JD(2003) The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J Hypertens 21:1879-1885
    59. Anuar F, Whiteman M, Siau JL, Kwong SE, Bhatia M, Moore PK (2006) Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat.Br J Pharmacol 147:966-974
    60. Walker G, Pfeilschifter J, Kunz D (1996) Mechanisms of suppression of inducible nitric-oxide synthase (iNOS) expression in interferon (IFN)-gamma-stimulated RAW 264.7 cells by dexamethasone. Evidence for glucocorticoid-induced degradation of iNOS protein by calpain as a key step in post-transcriptional regulation. J Biol Chem 272:16679-16687
    61. Cadepond F,Ulmann A, Baulieu EE (1997) RU486 (mifepristone):mechanisms of action and clinical uses. Annu Rev Med 48:129-156
    62. Hayashi R, Wada H, Ito K, Adcock IM (2004) Effects of glucocorticoids on gene transcription. Eur J Pharmacol 500:51-62
    63. Wallace JL (2007) Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol Sci 28:501-505
    64. Dimopoulou I, Tsagarakis S:Hypothalamic-pituitary dysfunction in critically ill patients with traumatic and nontraumatic brain injury. Intensive Care Med 2005;31:1020-1028
    65. Tsai MH, Peng YS, Chen YC, et al:Adrenal insufficiency in patients with cirrhosis, severe sepsis and septic shock. Hepatology 2006;43:673-681
    66. Lipiner-Friedman D, Sprung CL, Laterre PF, et al:Adrenal function in sepsis:the retrospective Corticus cohort study. Crit Care Med 2007;35:1012-1018
    67. Marik PE, Pastores SM, Annane D, et al:Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients:consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med 2008; 36:1937-1949
    68. Angus DC, Linde-Zwirble WT, Lidicker J, et al:Epidemiology of severe sepsis in the United States:analysis of incidence, outcome, and associated costs of care. Crit Care Med 2001; 29:1303-1310
    69. Glauser MP, Zanetti G, Baumgartner JD, et al:Septic shock:pathogenesis. Lancet 1991; 338:732-736
    70. Dinarello CA:Cytokines as mediators in the pathogenesis of septic shock. Curr Top Microbiol Immunol 1996;216:134-165
    71. Beishuizen A, Thijs LG:Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. J Endotoxin Res 2003;9:3-24
    72. Kakucska I, Qi Y, Clark BD, et al:Endotoxin-induced corticotropin-releasing hormone gene expression in the hypothalamic paraventricular nucleus is mediated centrally by interleukin-1. Endocrinology 1993;133:815-821
    73. Givalois L, Siaud P, Mekaouche M, et al:Early hypothalamic activation of combined Fos and CRH41 immunoreactivity and of CRH41 release in push-pull cannulated rats after systemic endotoxin challenge. Mol Chem Neuropathol 1995;26:171-186
    74. Singru PS, Sanchez E, Acharya R, et al:Mitogen-activated protein kinase contributes to lipopolysaccharide-induced activation of corticotropin-releasing hormone synthesizing neurons in the hypothalamic paraventricular nucleus. Endocrinology 2008; 149:2283-2292
    75. Elenkov IJ, Kovacs K, Kiss J, et al:Lipopolysaccharide is able to bypass corticotrophin-releasing factor in affecting plasma ACTH and corticosterone levels:evidence from rats with lesions of the paraventricular nucleus. J Endocrinol 1992; 133:231-236
    76. Elenkov IJ, Kiss J, Stark E, et al:CRF-dependent and CRF-independent mechanisms involved in hypophysial-adrenal system activation by bacterial endotoxin. Acta Physiol Hung 1992; 79:355-363
    77. Bethin KE, Vogt SK, Muglia LJ:Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc Natl Acad Sci U S A 2000;97:9317-9322
    78. Vakharia K, Hinson JP:Lipopolysaccharide directly stimulates cortisol secretion by human adrenal cells by a cyclooxygenase-dependent mechanism. Endocrinology 2005;146:1398-1402
    79. Enriquez de Salamanca A, Garcia R:Rat glomerulosa cells in primary culture and E. coli lipopolysaccharide action. J Steroid Biochem Mol Biol 2003;85:81-88
    80. Beeson PB:Development of tolerance to typhoid bacterial pyrogen and its abolition by reticuloendothelial blockade. Proc Soc Exp Biol Med 1946; 61:248-250
    81. Neter E:Endotoxins and the immune response. Curr Top Microbiol Immunol 1969; 47:82-124
    82. West MA, Heagy W:Endotoxin tolerance:a review. Crit Care Med 2002; 30:S64-73
    83. Simpson ER, Waterman MR:Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH. Annu Rev Physiol 1988; 50:427-440
    84. Mattos GE, Lotfi CF:Differences between the growth regulatory pathways in primary rat adrenal cells and mouse tumor cell line. Mol Cell Endocrinol 2005;245:31-42
    85. Engeland WC, Ennen WB, Elayaperumal A, et al:Zone-specific cell proliferation during compensatory adrenal growth in rats. Am J Physiol Endocrinol Metab 2005;288:E298-306
    86. Sirianni R, Rehman KS, Carr BR, et al:Corticotropin-releasing hormone directly stimulates cortisol and the cortisol biosynthetic pathway in human fetal adrenal cells. J Clin Endocrinol Metab 2005;90:279-285
    87. Sewer MB, Dammer EB, Jagarlapudi S:Transcriptional regulation of adrenocortical steroidogenic gene expression. Drug Metab Rev 2007;39:371-388
    88. Cherradi N, Capponi AM, Gaillard RC, et al:Decreased expression of steroidogenic acute regulatory protein:a novel mechanism participating in the leptin-induced inhibition of glucocorticoid biosynthesis. Endocrinology 2001;142:3302-3308
    89. Rucinski M, Ziolkowska A, Tyczewska M, et al:Expression of prepro-ghrelin and related receptor genes in the rat adrenal gland and evidences that ghrelin exerts a potent stimulating effect on corticosterone secretion by cultured rat adrenocortical cells. Peptides 2009; 30:1448-1455
    90. Biswas SK, Lopez-Collazo E:Endotoxin tolerance:new mechanisms, molecules and clinical significance. Trends Immunol 2009; 30:475-487
    91. Medvedev AE, Kopydlowski KM, Vogel SN:Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages:dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol 2000; 164:5564-5574
    92. Sato S, Takeuchi O, Fujita T, et al:A variety of microbial components induce tolerance to lipopolysaccharide by differentially affecting MyD88-dependent and -independent pathways. Int Immunol 2002;14:783-791
    93. Zhu XY, Liu YJ, Diao F, et al:Lipopolysaccharide Primes Macrophages to Increase Nitric Oxide Production in Response to Staphylococcus Aureus. Immunol Lett 2007;112:75-81
    94. Peck OM, Williams DL, Breuel KF, et al:Differential regulation of cytokine and chemokine production in lipopolysaccharide-induced tolerance and priming. Cytokine 2004; 26:202-208
    95. Peck OM, Fan H, Tempel GE, et al:Staphylococcus aureus and lipopolysaccharide induce homologous tolerance but heterologous priming:role of interferon-gamma. Shock 2004; 21:254-260
    96. Lehner MD, Morath S, MichelsenKS, et al:Induction of cross-tolerance by lipopolysaccharide and highly purified lipoteichoic acid via different Toll-like receptors independent of paracrine mediators. J Immunol 2001;166:5161-5167
    97. Nomura F, Akashi S, Sakao Y, et al:Cutting edge:endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface toll-like receptor 4 expression. J Immunol 2000; 164:3476-3479
    98. Mesotten D, Vanhorebeek I, Van den Berghe G:The altered adrenal axis and treatment with glucocorticoids during critical illness. Nat Clin Pract Endocrinol Metab 2008; 4:496-505
    99. Vermes I, Beishuizen A:The hypothalamic-pituitary-adrenal response to critical illness. Best Pract Res Clin Endocrinol Metab 2001;15:495-511
    100. Prigent H, Maxime V, Annane D:Science review:mechanisms of impaired adrenal function in sepsis and molecular actions of glucocorticoids. Crit Care 2004; 8:243-252
    [1]Hinshaw LB, Beller BK, Chang ACK, et al. Corticosteroid treatment of adrenalectomized dogs challenged with lethal E.coli. Circ Shock,1985,16:265-277
    [2]Ledingham IM, Watt I. Influence of sedation on mortality in critically ill multiple trauma patients. Lancet,1983,1:1270
    [3]Headley AS, Tolley E, Meduri GU. Infections and the inflammatory response in acute respiratory distress syndrome. Chest,1997,111:1306-1321
    [4]Meduri GU. New rationale for glucocorticoid treatment in septic shock. Chemother,1999,6: 541-550
    [5]Hajjar, A.M., D.S. O'Mahony,A.Ozinsky, et al. Cutting edge:functional interactions between toll-like receptor (TLR) 2 and TLR1 or TLR6 in response to phenol-soluble modulin. J. Immunol, 2001,166:15-19
    [6]Nishimura M.,Naito S. Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull,2005,28:886-892
    [7]Akira S., Takeda K., Kaisho T. Toll-like receptors:Critical proteins linking innate and acquired immunity. Nat. Immunol,2001,2:675-680
    [8]Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature,1997,388:394-397
    [9]Beutler, B. TLR4 as the mammalian endotoxin sensor. Curr. Top. Microbiol. Immunol,2002,270: 109-120
    [10]Beutler,B. Inferences,questions and possibilities in Toll-like receptor signalling. Nature,2004, 43:257-263
    [11]Chrousos,G.P. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N. Engl. J.Med,1995,332:1351-1362
    [12]Bornstein, S.R.& G.P. Chrousos. Clinical review 104:Adrenocorticotropin (ACTH)- and non-ACTH-mediated regulation of the adrenal cortex:neural and immune inputs. J. Clin. Endocrinol. Metab,1999,84:1729-1736
    [13]Kanczkowski,W., Ziegler, C.G., Zacharowski, K., Bornstein, S.R. Toll-like receptors in endocrine disease and diabetes. Neuroimmunomodulation,2008,15:54-60
    [14]Bornstein, S.R., Zacharowski, P., Schumann, R.R., Barthel, A., Tran, N., Papewalis, C., Rettori, V., McCann, S.M., Schulze-Osthoff, K., Scherbaum, W.A., Tarnow, J.Zacharowski, K. Impaired adrenal stress response in Toll-like receptor2-deficient mice. Proc. Natl. Acad. Sci. U.S.A,2004, 101:16695-16700
    [15]Zacharowski, K., Zacharowski, P.A., Koch, A., Baban, A., Tran, N., Berkels, R., Papewalis, C., Schulze-Osthoff, K., Knue-fermann, P., Zahringer, U., Schumann, R.R., Rettori, V., McCann, S.M., and Bornstein, S.R. Toll-like receptor 4 plays a crucial role in the immune-adrenal response to systemic inflammatory response syndrome. Proc Natl Acad Sci USA,2006,103:6392-6397
    [16]Tran, N., Koch, A., Berkels, R., Boehm, O., Zacharowski, P.A., Baumgarten, G., Knuefermann, P., Schott, M., Kanczkowski, W., Bornstein, S.R., Lightman, S.L., Zacharowski, K. Toll-like receptor 9 expression in murine and human adrenal glands and possible implications during inflammation. J. Clin.Endocrinol. Metab,2007,92:2773-2783
    [17]Texereau, J., J.D. Chiche,W. Taylor, et al. The importance of Toll-like receptor 2 polymorphisms in severe infections. Clin. Infect. Dis,2005,41(Suppl7):S408-S415
    [18]Bornstein, S.R., R.R. Schumann,V. Rettori, et al. Toll-like receptor 2 and Toll-like receptor 4 expression in human adrenals. Horm. Metab. Res,2004,36:470-473.
    [19]Vakharia,K.&J.P.Hinson. Lipopolysaccharide directly stimulates cortisol secretion by human adrenal cells by a cyclooxygenase-dependent mechanism.Endocrinology,2005,146:1398-1402
    [20]Nishimura, M., Naito, S. Tissue-specific mRNA expression profiles of human Toll-like receptors and related genes. Biol. Pharm. Bull.2005,28:886-892
    [21]Kanczkowski W, Zacharowski K, Wirth MP, Ehrhart-Bornstein M, Bornstein SR. Differential expression and action of Toll-like receptors in human adrenocortical cells. Molecular and Cellular Endocrinology,2009,300(1/2):57-65
    [22]Gadek-Michalska,A.,J.Bugajski. Role of prostaglandins and nitric oxide in the lipopolysaccharide-induced ACTH and corticosterone response. J. Physiol. Pharmacol,2004,55: 663-675
    [23]Bornstein, S.R.& J. Briegel. A new role for glucocorticoids in septic shock:balancing the immune response. Am. J. Respir. Crit. Care Med,2003,167:485-486
    [24]Annane, D., V. Sebille,C.Charpentier, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA,2002,288:862-871
    [25]Cooper, M.S.& P.M. Stewart. Corticosteroid insufficiency in acutely ill patients. N. Engl. J. Med. 2003,348(8):727-734
    [26]Meduri GU, Tolley EA, Chrousos GP, Stentz F. Prolonged methyl-prednisolone treatment suppresses systemic inflammation in patients with unresolving acute respiratory distress syndrome: evidence for inadequate endogenous glucocorticoid secretion and inflammation-induced immune cell resistance to glucocorticoids. Am. J. Respir. Crit. Care Med,2002,165:983-991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700