外周型苯二氮卓受体转运蛋白(TSPO)在小胶质细胞炎症反应中的作用及机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与意义
     小胶质细胞是脑中最重要的免疫效应细胞。小胶质细胞激活介导的脑内慢性炎症反应在许多种神经系统疾病的病理进程中扮演极其重要角色,这些神经系统疾病包括脑肿瘤、脑缺血、脑外伤、脑感染、神经系统变性疾病等等。在神经系统疾病过程中,小胶质细胞扮演的角色不仅仅是“反应性增生”--简单地对死亡细胞的残骸进行清除,而是直接参与了疾病病理过程的启动、进展和最后结局。激活的小胶质细胞会产生过量的对神经元有损害作用细胞因子,如一氧化氮(NO)、肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)和自由基等多种物质,引起各种不同程度的炎症反应和细胞凋亡构成的“病理级联”变化,最终导致神经元的损伤或死亡。基于上述发现,以抑制小胶质细胞的激活过程为靶点,延缓神经变性疾病的进程已经成为防治神经退行性疾病的一个重要策略,是近年来神经生物学和神经病学研究的热点。
     外周型苯二氮卓受体转运蛋白[TSPO 18 kDa,即异喹啉结合点,曾称为外周型苯二氮卓受体(PBR)]在中枢神经系统中主要分布在小胶质细胞线粒体外膜,在神经元分布很少。最近研究表明,TSPO在静息小胶质细胞中的表达很低,而在激活的小胶质细胞中,TSPO呈现明显高表达,这说明了TSPO可能具有调节小胶质细胞功能状态的作用。同时,TSPO配体PK 11195和Ro5-4864(PK 11195称为PBR的拮抗剂,Ro5-4864称为PBR激动剂)良好的外周抗炎作用在近年备受关注,初步的研究表明TSPO配体也具有神经保护作用。但TSPO表达与小胶质细胞功能状态的关系目前尚未明确,TSPO表达与小胶质细胞炎症反应关系又是怎样?TSPO配体是否具有抑制中枢神经系统中小胶质细胞的激活作用和减少活化小胶质细胞释放炎症因子?如果有,通过何种机制?等等。这些问题在近年来备受关注,亟待阐明。
     研究目的
     1.研究TSPO表达与小胶质细胞炎症反应关系。
     2.研究TSPO配体对小胶质细胞的激活抑制作用。
     3.研究TSPO基因在小胶质细胞炎症反应中的作用。
     4.研究TSPO配体抑制小胶质细胞活化的作用机制。
     研究内容
     1.LPS对小胶质细胞分泌炎症因子的影响。
     2.TSPO在LPS诱导小胶质细胞活化中的表达。
     3.TSPO配体对LPS诱导小胶质细胞分泌炎症因子的影响。
     4.沉默TSPO基因对LPS诱导小胶质细胞分泌炎症因子的影响。
     5.在TSPO基因沉默下TSPO配体对LPS诱导小胶质细胞分泌炎症因子的影响。
     6.TSPO配体抑制LPS诱导小胶质细胞分泌炎症因子的信号传导通路的研究。
     7.TSPO配体对LPS诱导小胶质细胞分泌炎症因子mRNA稳定性的影响。
     研究方法
     1.在BV-2小胶质细胞培养体系上,加入LPS(l00 ng/ml)分别于30 min,1 h,2 h,4 h,6 h,12 h,24 h后用倒置相差显微镜观察BV-2细胞的生长分布状况及形态学改变,用ELISA测定BV-2细胞释放TNF-α、IL-1β和IL-6三种细胞因子水平。
     2.在BV-2细胞培养体系上,加入LPS(l00 ng/ml)分别于分别于4 h,8 h,24 h,48 h后用Real-time PCR检测TSPO在LPS诱导BV-2细胞中的表达。
     3.在BV-2细胞培养体系上,加入LPS(l00 ng/ml)造成BV-2细胞活化状态的细胞模型,然后给予不同剂量(10μM、50μM、100μM)TSPO配体(PK 11195和Ro5-4864),用ELISA和Real-time PCR观察不同剂量TSPO配体(PK 11195和Ro5-4864)对LPS诱导BV-2细胞分泌炎症因子的影响。
     4.用TSPO siRNA转染BV-2细胞,转染48 h后,用在Real-time PCR和Western blot检测TSPO基因沉默效果;在转染TSPO siRNA BV-2细胞培养培养体系上,加入LPS(l00 ng/ml)于4 h后用ELISA和Real-time PCR检测沉默TSPO基因对LPS诱导BV-2细胞分泌炎症因子(TNF-α、IL-1β和IL-6)的影响。
     5.在转染TSPO siRNA BV-2细胞培养体系上,加入LPS(l00 ng/ml)造成转染TSPO siRNA BV-2细胞活化状态的细胞模型,然后给予不同剂量(10μM、50μM、100μM)TSPO配体(PK 11195和Ro5-4864),用ELISA和Real-time PCR观察不同剂量TSPO配体(PK 11195和Ro5-4864)对LPS诱导转染TSPO siRNA BV-2细胞分泌炎症因子的影响。
     6.通过Western blot技术检测给予不同剂量(10μM、50μM、100μM)TSPO配体(PK 11195和Ro5-4864)处理经LPS诱导的BV-2细胞内的Erk、JNK及p38的磷酸化程度及IκB的降解程度,从而了解TSPO配体(PK 11195和Ro5-4864)对BV-2细胞内MAPK及NF-κB的激活情况。
     7.用流式细胞仪检测在100μM TSPO配体(PK 11195和Ro5-4864)作用24 h时单个VB-2细胞的荧光强度(MFI),分析TSPO配体(PK 11195和Ro5-4864)对单个VB-2细胞内钙离子浓度([Ca2 +]i)的影响情况。
     8.在BV-2细胞培养体系上,加入LPS(l00 ng/ml)处理BV-2细胞2 h后,分成3组分别加入ACTD+PK 11195、ACTD+Ro5-48643和ACTD+DMSO(ACTD剂量10μg/ml, PK 11195剂量100μM, Ro5-48643剂量100μM)再作用1 h、2 h后,用Real time-PCR技术检测IL-1β和IL-6 mRNA含量,分析IL-1β和IL-6 mRNA降解情况。
     研究结果
     1.LPS可诱导BV-2细胞活化,表现为:BV-2细胞形态随着LPS作用时间延长逐渐变成呈现典型的阿米巴样“活化状态小胶质细胞”外观;活化的BV-2细胞合成、释放TNF-α、IL-lβ和IL -6等炎症因子,并与LPS作用时间和剂量呈正相关。
     2.TSPO在静息的BV-2细胞中有一定量表达,表达量不多,在LPS诱导BV-2细胞活化中表达增多,并随LPS干预时间延长而呈增多趋势,在LPS作用24 h时才有明显增多,48 h增多更显著(P<0.01)。
     3.TSPO配体PK 11195和Ro5-4864有抗炎作用,它们能显著在抑制LPS诱导BV-2细胞分泌IL-1β和IL-6,并与剂量呈正相关,浓度越高,抑制效果越强。但对TNF-α没有抑制作用。对IL-1β,Ro5-4864抑制效果与PK 11195相当,但对IL-6,Ro5-4864抑制效能比PK 11195强,显示Ro5-4864比PK 11195具有更强抗炎作用。
     4. BV-2细胞转染TSPO siRNA后TSPO mRNA表达和蛋白含量均比对照组低,两者差异有统计学意义(P <0.01),表明TSPO siRNA能有效沉默TSPO基因表达。沉默TSPO基因后LPS活化BV-2细胞分泌的TNF-α、IL-1β和IL-6并没有减少,表明沉默TSPO基因对LPS活化BV-2细胞分泌的TNF-α、IL-1β和IL-6无抑制作用,提示TSPO基因不直接介导BV-2细胞的炎症反应,或者在BV-2细胞的炎症反应不是处于主导作用。
     5.转染TSPO siRNA BV-2细胞在LPS+ PK 11195和LPS+ Ro5-4864处理后IL-lβ和IL-6的分泌量呈现明显下降;转染control siRNA BV-2细胞在同样LPS+ PK 11195和LPS+ Ro5-4864处理后IL-lβ和IL-6的分泌量也呈现明显下降,但它们之间差异无统计学意义(P >0.05)。表明TSPO配体PK 11195和Ro5-4864抑制LPS诱导BV-2细胞分泌IL-1β、IL-6不受TSPO基因的影响,提示TSPO基因不直接调节TSPO配体的抗炎作用,或者在TSPO配体的抗炎作用处于次要作用。
     6.PK 11195和Ro5-4864不影响LPS诱导BV-2细胞内Erk,JNK,p38蛋白磷酸化和IκB蛋白的降解,但能影响BV-2细胞内Ca2+浓度,PK 11195能显著地引起BV-2细胞内Ca2+浓度增加,细胞内Ca2+荧光值(MFI)由1.95±0.16升高到3.37±0.14,两者之间差异有统计学意义(P <0.01);Ro5-4864却作用相反,能显著地降低BV-2细胞内Ca2+浓度,细胞内Ca2+荧光值(MFI)由1.95±0.16降低到1.56±0.09,两者之间差异有统计学意义(P <0.01)。
     7. TSPO配体PK 11195和Ro5-4864能加快LPS诱导BV-2细胞IL-1β和IL-6 mRNA降解速度,在PK 11195作用1 h、2 h后,LPS诱导BV-2细胞内IL-1β和IL-6 mRNA分别减少60.2 %、64.3 %和69.4 %、74.1 %;在Ro5-4864作用下,IL-1β和IL-6 mRNA分别减少58.2 %、60.2 %和66.9 %、70.0 %。IL-1β和IL-6 mRNA半衰期明显缩短,均由原来2 h缩短到1 h左右。表明PK 1195和Ro5-4864能降低IL-1β和IL-6 mRNA稳定性。
     结论
     1. LPS可诱导小胶质细胞的应激活化,活化的小胶质细胞形态呈现阿米巴样“活化状态小胶质细胞”外观,并合成、释放TNF-α、IL-lβ和IL -6等炎症因子。LPS是通过MAPKs信号转导通路和NF -κB转录因子转导来诱导小胶质细胞分泌炎症因子。
     2.TSPO在小胶质细胞中确有表达,在静息的小胶质细胞中表达较低,在LPS诱导小胶质细胞活化中(在LPS作用24 h以后)呈现高表达,结合第一部分研究结果表明了TSPO表达与BV-2细胞的激活状态呈正相关。TSPO表达升高是小胶质细胞活化状态的后期反应事件,可反映小胶质细胞活化状态,可能参与调节小胶质细胞活化的功能。
     3.TSPO配体PK 11195和Ro5-4864有抗炎作用,它们能抑制LPS诱导的小胶质细胞活性,减少LPS活化小胶质细胞分泌IL-1β和IL-6等炎症因子。TSPO配体PK 11195和Ro5-4864抑制LPS活化小胶质细胞分泌IL-1β、IL-6不通过TSPO基因(即不受TSPO基因的影响),说明了TSPO基因不直接介入TSPO配体的抗炎作用,或者在TSPO配体的抗炎作用处于次要作用,起着传递信息作用,把信息传递给PBR另两个亚单位(VDAC和ANT),进一步说明了PBR三个亚单位(TSPO,VDAC和ANT)是相互联系、相互作用形成一个复合体。异喹啉(PK 11195)可单独结合到异喹啉结合点(TSPO)上,但与TSPO特异结合的苯二氮卓类药物(Ro5-4864)则需要这3个亚单位之间的相互作用。因此,Ro5-4864抑制LPS诱导BV-2细胞分泌IL-6的效能比PK 11195强,而在抑制IL-1β上两者效果相当,显示Ro5-4864比PK 11195具有更强抗炎作用。这些研究结果表明了反映了把原先称为PBR的DBI亚单位改称TSPO 18 kDa [translocator protein 18 kDa (转运蛋白18 kDa)]更能确切反应TSPO生理、药物功能,有利于进一步阐明PBR的结构和功能。
     4.TSPO配体PK 11195和Ro5-4864不是通过MAPKs信号转导通路和NF -κB转录因子转导来抑制LPS活化小胶质细胞分泌IL-1β、IL-6,而可能通过通过调节小胶质细胞内钙离子浓度,影响钙离子的信号转导通路来抑制炎症因子分泌。另外,PK 11195和Ro5-4864影响IL-1β和IL-6 mRNA的稳定性,加快IL-1β和IL-6 mRNA降解,缩短IL-1β和IL-6 mRNA半衰期,从而减少IL-1β和IL-6蛋白的含量。
     5.在影响小胶质细胞细胞内Ca2+浓度方面,PK 11195和Ro5-4864的作用是相反的。PK 11195能显著地增加小胶质细胞细胞内Ca2+浓度,Ro5-4864却能显著地降低小胶质细胞细胞内Ca2+浓度,结合上述TSPO在小胶质细胞炎症反应中作用,认为把PK 11195和Ro5-4864统称为PBR拮抗剂和激动剂是不确切的,可能称为电压依赖性阴离子通道(VDAC)的拮抗剂和激动剂比较确切地反应它们的属性,这方面工作有待进一步研究。
Background and Significance
     Chronic inflammatory process in the brain, triggered by microglia,may play a significant role in the pathologies of several neurological disorders,including brain tumors,cerebral ischemia,brain trauma,brain infections,neurodegenerative disorders.Microglia,the primary resident immune surveillance cell in the brain,lie in the core of these pathogensis.In addition to their phagocytic role--clearing died cell debris,activated miroglia can synthesize and secrete potential neurotoxins that may cause neuronal damage or aggravate underlying pathology.These neurotoxins include nitric oxide (NO),tumor necrosis factor-α(TNF-α),interleukin-lβ(IL-lβ),inter- leukin-6 (IL-6) and free radicals etc.Therefore,in recent years,it is a emerging conception that inhibition of microglial activation may be a novel therapeutic target to slow down the progress of these diseases.
     Translocator protein (TSPO,18 kDa),an 18 kDa protein,was initially identified as a peripheral binding site for diazepam and previously known as the peripheral-type benzodiazepine receptor (PBR). TSPO is primarily localized at outer mitochondrial membranes.In the normal brain,overall TSPO expression is low,and TSPO is mainly found in glia and at very low levels in neurons.In addition,different forms of neural injury and different neuropathological conditions as inflammation result in the induction of the exptession of TSPO in the nervous system,mainly in microglia.The induction of TSPO expression in reactive microglia suggests that TSPO may be involved in the regulation of reactive microglia.Furthermore,TSPO ligands-PK 11195 and Ro5-4864 (PK 11195,an antagonists of PBR;Ro5-4864,an agonists of PBR) have been intensively investigated in regard to its anti-inflammatory action in peripheral system.However,the precise role of TSPO in reactive microglia is unknown.Moreover,in the last few years,there has been an increased interest in understanding which associations between TSPO expression and microglia activation are,whether TSPO ligands can inhibit microglia activation and reduce secretion of inflammatory cytokines or not,and what the exact mechanisms by which TSPO ligands confer protection are.Therefore,lastly,it is critically important to understand the function and how TSPO expression is regulated in the microglia function in order to indentify of TSPO as a potential target for development of new therapeutic strategies to decrease inflammation associated to some central nervous system degenerative diseases.
     Objectives
     1.To determine the associations between TSPO expression and microglia activation.
     2.To explore the inhibitory effect of TSPO ligands on microglia activation.
     3. To study the role of TSPO gene in inflammatory process induced by microglia.
     4.To explore the exact mechanisms by which TSPO ligands confer inhibition effect on microglia activation.
     Research Contents
     1.Levels of proinflammatory cytokines in microglial cells after LPS treatment.
     2.TSPO expression in the LPS-induced microglia activation.
     3.Effects of TSPO ligands on levels of proinflammatory cytokines in microglial cells after LPS treatment.
     4.Effects of TSPO gene silenced by TSPO siRNA on levels of proinflammatory cytokines in microglial cells after LPS treatment.
     5.The inhibitory effect of TSPO ligands on levels of proinflammatory cytokines in microglial cells transfected with TSPO siRNA after LPS treatment.
     6.Signaling pathways in effect on TSPO ligands on levels of proinflammatory cytokines in microglial cells after LPS treatment.
     7.Effects of TSPO ligands on mRNA stability of proinflammatory cytokines in microglial cells after LPS treatment.
     Methods
     1.We treated BV-2 microglial cells cultures with LPS (l00 ng/ml) to induce microglia activation and tested the levels of proinflammatory cytokines (TNF-α、IL-1βand IL - 6) and the morphology of BV-2 cells in different time (30 min,1 h,2 h,4 h,6 h,12 h,24 h) of LPS treatment with ELISA and inverted phase contrast microscope.
     2.We treated BV-2 microglial cells cultures with LPS (l00 ng/ml) to induce microglia activation and tested TSPO expression in different time (4 h,8 h,24 h,48 h) of LPS treatment with Real-time PCR.
     3.We explored effects of TSPO ligands (PK 11195 and Ro5-4864) at different dose (10μM、50μM、100μM) on productions and mRNA expressions of proinflamma- tory cytokines in BV-2 cells after LPS treatment (l00 ng/ml) with ELISA and Real-time PCR.
     4.We transfected TSPO siRNA into BV-2 cells and analysed the expression of TSPO in BV-2 cells after transfected with TSPO siRNA in order to determined effect of silenced TSPO gene in BV-2 cells after transfected with TSPO siRNA with Real-time PCR and Western blot.After that,we studied effects of silenced TSPO gene on productions and mRNA expressions of proinflammatory cytokines in BV-2 cells after LPS treatment (l00 ng/ml) with ELISA and Real-time PCR.
     5.We studied effects of TSPO ligands (PK 11195 and Ro5-4864) at different dose (10μM、50μM、100μM) on productions and mRNA expressions of proinflamma- tory cytokines in BV-2 cells transfected with TSPO siRNA after LPS treatment (l00 ng/ml) with ELISA and Real-time PCR.
     6.We explored effects of TSPO ligands (PK 11195 and Ro5-4864) at different dose (10μM、50μM、100μM) on MAPK pathway (Erk,JNK and p38) and IκB degra- dation in BV-2 cells after LPS treatment (l00 ng/ml) with Western blot.
     7.We studied effects of TSPO ligands (PK 11195 and Ro5-4864) at the dose of 100μM for 24 h on a single VB-2 intracellular calcium concentration ([Ca2 +] i) by flow cytometry.
     8.We treated BV-2 microglial cells cultures with LPS (l00 ng/ml) for 2 h to induce microglia activation.Following,LPS-induced reactive microglia were exposed for 1 h and 2 h to ACTD+PK 11195、ACTD+Ro5-48643 and ACTD+DMSO,respectively,for measurement of mRNA expressions of IL-1βand IL–6 with Real-time PCR,and analysis of mRNA degradation of IL-1βand IL–6.
     Results
     1.LPS induced BV-2 microglial cells activation,as follows:dynamic morphology changes in cell growth to Amoeba-like appearance,levels of proinflammatory cytokines increased,such as,TNF-α、IL-lβand IL -6. Levels of proinflamma- tory cytokines increased in time and dose-dependent way of LPS.
     2.The TSPO expression was detected in resting BV-2 cells at low level,but increased in LPS-induced BV-2 cells in time-dependent way,increasing signifycantly in 24 h and 48 h after LPS treatment(P <0.01).
     3.TSPO ligands (PK 11195 and Ro5-4864) showed anti-inflammatory properies. They inhibited reactive BV-2 cells after LPS treatment and reduced levels of IL-l βand IL -6, except for TNF-α.On IL-1β, Ro5-4864 showed the same inhibitory effects as PK 11195, and Ro5-4864 showed more strong inhibitor than PK 11195 on IL-6.So,Ro5-4864 showed more strong anti-inflammatory properies than PK 11195 on IL-6.
     4. The expression and protein of TSPO were less in BV-2 cells after transfected with TSPO siRNA than in BV-2 cells after transfected with control siRNA.The difference between the two groups was significant (P <0.01).The results showed that TSPO siRNA can downregulate effectively the expression and protein of TSPO.However,the products of TNF-α、IL-lβand IL-6 did not decrease in BV-2 cells transfected with TSPO siRNA relative to those in BV-2 cells transfected with control siRNA after LPS treatment.In other words,down- regulation of TSPO had no effect on levels of proinflammatory cytokines,such as,TNF-α、IL-lβand IL-6 in BV-2 cells treated by LPS.The results showed that TSPO gene does not directly mediate inflammation,or play a second role in inflammatory process induced by reactive BV-2 cells.
     5. TSPO ligands (PK 11195 and Ro5-4864) had reduced levels of IL-lβand IL-6 in BV-2 cells transfected with TSPO siRNA and control groups (BV-2 cells transfected with control siRNA) after LPS treatment. The difference between the two groups was not significant (P >0.01).TSPO gene did not mediate the inhibitory effect of TSPO ligands (PK 11195 and Ro5-4864) on levels of proinflammatory cytokines, such as, IL-lβand IL-6 in BV-2 cells treated by LPS. The result showed that TSPO gene does not directly regulate or play a role for transmitting information to the other subunits in the anti-inflammatory of TSPO ligands.
     6. TSPO ligands (PK 11195 and Ro5-4864) had no affect on Iκ- B degradation and phosphorylation of Erk,JNK and p38 in BV-2 cells after LPS treatment. However,PK 11195 and Ro5-4864 had affect on [Ca2+]i in BV-2 cells. PK 11195 increased significantly [Ca2+]i from 1.95±0.16 to 3.37±0.14(MFI). The difference between PK 1195 treatment and control groups was significant (P <0.01);Ro5-4864 decreased significantly [Ca2+]i in BV-2 cells from 1.95±0.16 to 1.56±0.09(MFI).The difference between Ro5-4864 treatment and control groups was significant (P <0.01).
     7. TSPO ligands (PK 11195 and Ro5-4864) accelerated degradation of IL-1βand IL- 6 mRNA.The reductions of IL-1βand IL -6 mRNA were 60.2 %、64.3 % and 69.4 %、74.1 % at 1 h and 2 h treatment of PK 11195,and they were 58.2 %、60.2 % and 66.9 %、70.0 % with Ro5-4864 treatment in LPS-induced BV-2cells. The half-life of mRNA of IL-1βand IL-6 in LPS-induced BV-2cells after PK 11195 or Ro5-4864 treatment were significantly shorter that that in control groups,from 2 h to 1 h.The findings showed PK 11195 and Ro5-4864 decreased mRNA stability of IL-1βand IL -6.
     Conclusions
     1.LPS can induce microglia activation to grow with Amoeba-like appearance,and synthesize and secrete proinflammatory cytokines,such as,TNF-α、IL-lβand IL -6 through MAPKs signal transduction pathways and NF-κB transcription factor.
     2.In resting microglia,TSPO expression is low.But in activated microglia after LPS treatment , TSPO expression increases in time-dependent way , increasing significantly in 24 h and 48 h. Combined with the first study finding, the results show that increased TSPO expression is closely associated with micrglia activation,and may be related to the secretion of inflammatory cytokines.So,The induction of TSPO expression in reactive microglia suggests that TSPO may be involved in the regulation of reactive microglia.
     3.TSPO ligands are of anti-inflammatory properies.They can inhibite reactive microglia after LPS treatment and reduce levels of proinflammatory cytokines. Nevertheless,TSPO sub-unit does not mediate the inhibitory effect of TSPO ligands on levels of proinflammatory cytokines,and only play a role for transmitting information to the other sub-units (VDAC and ANT).So,the other two sub-units (VDAC and ANT) in PBR complex may involve in anti- inflammatory properies of TSPO ligands. These findings suggest that the three sub-units (TSPO、VDAC and ANT) are interlinked and interacted to constitute a complex of PBR. Isoquinoline carboxamides (such as PK 11195) can be indivi- dually bind the isoquinoline binding site (TSPO).However,interactions among TSPO、VDAC and ANT are considered to play a role in the process that benzodiazepine-type drugs (such as Ro5-4864 ) bind specifically TSPO.So,Ro5- 4864 showed more strong inhibitor than PK 11195 on IL-6,and on IL-1β, Ro5-4864 showed the same inhibitory effects as PK 11195.In general,Ro5-4864 has showed more strong anti-inflammatory properies than PK 11195.These findings support the concept on renaming the PBR to TSPO,which reflect more accurately the cellular and physiological functions in which TSPO has important role.
     4.TSPO ligands can inhibit reactive microglia after LPS treatment and reduce levels of proinflammatory cytokines (IL-1βand IL-6) through decreasing mRNA stability of proinflammatory cytokines and Ca2+-mediated signaling pathways,except through MAPKs signal transduction pathways and NF-κB transcription factor.
     5. PK 11195 and Ro5-4864 play different roles in intercellular concentration of calcium([Ca2 +]i) in microglial cells.PK 11195 increased significantly [Ca2+]i ,and Ro5-4864 decreased significantly [Ca2+]i in microglial cells.Combined with their results in inflammation induced by microglia,it is inaccurate that PK 11195 is generally known as PBR antagonists and Ro5-4864 as PBR agonists.Further,it is relatively exact that PK 11195 is known as voltage-dependent anion channel (VDAC) antagonists and Ro5-4864 as VDAC agonists according to their properties.We will further study the work in the future.
引文
1.Schwartz, M. Macrophages and microglia in central nervous system injury: Are they helpful or harmful [J]. J Cereb Blood Flow Metab, 2003, 23(4): 385-394.
    2.Streit WJ, Walter SA, Pennell NA. Reactive Microgicsis [J]. Prog Neurobiol, 1999, 57(6): 563-581.
    3.Zhang Z, Chopp M, Powers C. Temporal profile of microglial response following transient (2 h) middle cerebral artery occlusion [J]. Brain Res, 1997, 744(2): 189- 198.
    4.Aloisi F, De Simone R, Columbab-Cabezas S, et al. Opposite effects of interfere on gamma and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: are gulatory loop controlling microglia pro-and anti-inflammatory activities [J]. J Neurosci Res, 1999, 56(6): 571-580.
    5.Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia: intrinsic immuno- effector cell of the brain [J]. Brain Res Brain Res Rev, 1995, 20(3): 269-287.
    6.Raivich G, Banati R. Brain microglia and blood-derived macrophages:molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease [J]. Brain Res Brain Res Rev, 2004, 46(3): 261-281.
    7.Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease [J]. Int J Biochem Cell Biol, 2005, 32(2): 289-305.
    8.Ward SA, Molnar P, Nadra JV. Characterization of ramified microglia in tissue culture pinocytosis and motility [J]. J Neurosci Res, 1991, 29: 13-181.
    9.Stroit WJ. Mieroglia as neuroprotective, immunocompetent cells of the CNS [J]. Glia, 2002, 40(2): 133-139.
    10.Neumann H. Control of glial immune function by neurons [J]. Glia, 2001, 36(2): 191-199.
    11.Dyer MA, Livesey FJ, oliver G, et al. Proxl function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina [J]. Nat Genet, 2003, 34:53-58.
    12.McGuire SO, Ling ZD, Lipton JW, et al. Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons [J]. Exp Neurol, 2001, 169(2):219- 230.
    13.Le W, Rowe D, Xie W, et al. Microglia activation and dopaminergic cell injure: an in vitro model relevant to Parkinson’s disease [J]. J Neurosci, 2001, 21 (21): 84 47-8455.
    14.Haydon PG. Glia: listening and talking to the synapse [J]. Nat Rev Neruosci, 2001, 2(3): 185-193.
    15.Shoham S, Youdim MB. Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases [J]. Cell Mol Biol, 2000, 46(4): 743-760.
    16.Bruce-Keller AJ, Keeling JL, Keller JN, et al. Antiinflammatory effects of estrogen on microglial activation [J]. Endocrinology, 2000 141 (10): 3646– 3656
    17.Cole GM, Morihara T, Lim GP, et al. NSAID and antioxidant prevention of Alzh- eimer's disease: lessons from in vitro and animal models [J].Ann N Y Acad Sci, 2004,1035:68-84.
    18.Liu B, Jiang JW, Wilson BC, et al. Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigr- al injection of lipopolysaccharide [J]. J Pharmacol Exp Ther, 2000, 295 (1): 125-132.
    19.Liu YX, Qin LY, Li GR, et a1. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation [J].J Pharmacol Exp Ther, 2003, 305 (1):212-218.
    20.Delgado M, Ganea D. Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potentialtherapeutic role in brain trauma [J]. FASEB J, 2003, l7 (13):1922-1924.
    21.Braestrup C, Albrechtsen R, Squires R.F. High densities of benzodiazepine receptors in human cortical areas [J].Nature,1977,269(5630):702-704.
    22.Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high-affinity [3H]diazepam binding [J]. Proc Natl Acad Sci U S A, 1977, 74(9):3805-3809.
    23.Lesouhaitier O, Feuilloley M, Lihrmann I, et al. Localization of diazepam- binding inhibitor-related peptides and peripheral type benzodiazepine receptors in the frog adrenal Gland [J].Cell Tissue Res,1996, 283(3): 403-412.
    24.Snyder MJ, Van Antwerpen R. Evidence for a diazepam-binding inhibitor (DBI) benzodiazepine receptor-like mechanism in ecdysteroidogenesis by the insect prothoracic gland [J]. Cell Tissue Res, 1998, 294 (1): 161-168.
    25.Betti L, Giannaccini G, Nigro M, et al. Studies of peripheral benzodiazepine receptors in mussels: comparison between a polluted and a nonpolluted site [J]. Ecotoxicol Environ Saf, 2003, 54(1):36-42.
    26.Corsi L, Avallone R, Geminiani E, et al. Peripheral benzodiazepine receptors in potatoes (Solanum tuberosum) [J]. Biochem Biophys Res Commun, 2004, 313 (1): 62-66.
    27.Zisterer DM, Williams DC. Peripheral-Type benzodiazepine receptors [J]. Gen Pharmacol, 1997, 29(3):305-314.
    28.Gavish M, Bachman I, Shoukrun R, et al. Enigma of the peripheral benzodia- zepine receptor [J]. Pharmacol Rev, 1999, 51(4): 629–650.
    29.Papadopoulos V, Baraldi M, Guilarte TR, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function [J]. Trends Pharmacol Sci, 2006, 27(8): 402-409.
    30.Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair [J]. Pharmacol Ther, 2008, 11 8(1):1-17.
    31.Veenman L, Shandalov Y, Gavish M. VDAC activation by the 18 kDa translo-cator protein (TSPO), implications for apoptosis [J]. J Bionerg Biomembr, 2008, 40 (3): 199-205.
    32.Kinnally KW, Zorov DB, Antonenko YN, et al. Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands [J]. Proc Natl Acad Sci U S A, 1993, 90(4): 1374-1378.
    33.Beurdeley-Tomas A, Miccoli L, Oudard S, et al. The peripheral benzodiazepine receptors: a review [J]. J Neurooncol, 2000, 46(1): 45-56.
    34.Vowinckel E, Reutens D, Becher B, et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis [J]. J Neurosci Res, 1997, 50 (2): 345-353.
    35.Park CH, Carboni E, Wood PL, et al. Characterization of peripheral benzodiaz- epine type sites in a cultured murine BV-2 microglial cell line [J]. Glia, 1996, 16 (1): 65-70.
    36.Stephenson DT, Schober DA, Smalstig EB, et al. Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat [J]. J Neurosci, 1995, 15 (7 pt 2):5263-5274.
    37.Maier SF. Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition [J]. Brain Behav Immun, 2003, 17(2): 69-85.
    38.Jeohn GH, Cooper CL, Wilson B, et al. p38 MAP kinase is involved in lipopolysaccharide-induced dopaminergic neuronal cell death in rat mesencephalic neuronglia cultures [J]. Ann N Y. Acad Sci, 2002,962 (1): 332-346.
    39.Stalder AK, Carson MJ, Pagenstecher A, et al. Late-onset chronic inflammatory encephalopathy in immune-competent and severe combined immune-deficient (SCID) mice with astrocyte-targeted expression of tumor necrosis factor [J]. Am J Path, 1998, 153(3): 767-783.
    40.Benveniste EN, Kwon J, Chung WJ, et al. Differential modulation of astrocytecytokine gene expression by TGF-beta [J]. Immunol, 199 4,153(11): 5210- 5221.
    41.Raivich G, Banati R. Brain microglia and blood-derived macrophages:molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease [J]. Brain Res Brain Res Rev, 2004, 46(3): 261-281.
    42.Pinteaux E, Parker LC, Rothwell NJ, et a1. Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine rnicroglial cells [J]. J Neurochem, 2002, 83(4): 754-763.
    43.Blasko I, Stampfer-Kountchev M, Robatscher P, et a1. How chronic inflammation can affect the brain and support the development of A1zheimer’s disease in old age:the role of microglia and astrocytes [J]. Aging Cell, 2004, 3(4): 169-176.
    44.Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegen- eration [J]. Neurobiol Aging, 2005, 26(3): 349-354.
    45.Gulian D, Baker TJ. Characterization of amoeboid microglia isolated from developing mammalian brain [J]. J Neurosci, 1986, 6(8):2163- 2178.
    46.McCarthy KD, Devellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue [J]. J Cell Biol, 1980, 85(3): 890-902.
    47.Blasi L, Barluzzi R, Bocchini V, et al. Immortalization of murine microglial cells by av-raf/v-myc carrying retrovirus [J]. J Neuroimmunol, 1990, 27(2 -3): 229-237.
    48.Kassiou M, Meikle SR, Banati RB. Ligands for Peripheral benzodiazepine bind- ing sites in glia cell [J]. Brain Res Rev, 2005, 48(2): 207-210.
    49.Rao VL, Bowen KK, Rao AM, et al. Up-regulation of the peripheral-type benzodiazepine receptor expression and [(3)H]PK11195 binding in gerbil hippocampus after transient forebrain ischemia [J]. J Neurosci Res, 2001, 64(5): 493-500.
    50.Crossmam R, Shohami E, Alexandrovich A, et al. Increase in peripheral benzodiazepine receptors and loss of glutamate NMDA receptors in a mousemodel of closed head injury: a quantitative autoradiographic study [J]. Neuimage, 2003, 20(4): 1971-1981.
    51.Starosta-Rubinstein S, Ciliax BJ, Penney JB, et al. Imaging of a glioma using peripheral benzodiazepine receptor ligands [J]. Pro Natl Acad Sci, 1987, 84(3): 891-895.
    52.Caliegue S, Tinel N, Casellas P. The peripheral benzodiazepine receptor [J]: a promising therapeutic drug [J]. Curr Med Chen, 2003, 10(16):1563-1572.
    53.Gavish M, Bachman I, Shoukrun R, et al. Enigma of the peripheral benzodiazepine receptor [J]. Pharmacol Rev, 1999, 51(4): 629-650.
    54.Fishkum G. Mitochondrial participation in ischemic and traumatic neural cell death [J]. J Neurotrauma, 2000, 17(10):843-855.
    55.Basile AS, Weissman BA, Skolnick P. Maximal electroshock increases the density of [3H]Ro5-4864 binding to mouse cerebral cortex [J]. Brain Res Bull, 1987, 19 (1): 1-7.
    56.Giulian D, Baker TJ. Characterization of ameboid microglia isolated from develo- ping mammalian brain [J]. J Neurosci, 1986, 6(8):2163-2178.
    57.Park CH, Carboni E, Wood PL, et al. Characterization of peripheral benzodiazepine type sites in a cultured murine BV-2 microglial cell line [J]. Glia, 1995, 16 (1): 65-70.
    58.Choi Y, Lim SY, Jeong HS, et al. Oligonucleotide microarray analysis of apoptosis induced by 15-methoxypinusolidic acid in microglial BV2 cells [J]. Br J Pharmacol, 2009, 157(6):1053-1064.
    59.Henn A, Lund S, Hedtjrn M, et al. The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation [J]. ALTEX, 2009, 26(2): 83-94.
    60.Bribes E, Bourrie B, Casellas P. Ligands of the peripheral benzodiazepine receptor have therapeutic effects in pneumopathies in vivo [J]. Immunol Lett, 2003, 88(3): 241-247.
    61.Waterfield JD, McGeer EG, McGeer PL. The peripheral benzodiazepinereceptor ligand PK 11195 inhibits arthritis in the MRL-lpr mouse model [J]. Rheumatology (Oxford), 1999, 38(11):1068-1073.
    62.Torres SR, Fr?de TS, Nardi GM, et al. Anti-inflammatory effects of peripheral benzodiazepine receptor ligands in two mouse models of inflammation [J]. Eur J Pharmacol, 2000;408(2):199-211.
    63.Ruff MR, Pert CB, Weber RJ, et al. Benzodiazepine receptor-mediated chemotaxis of human monocytes [J]. Science, 1985, 229(4719): 1281-1283.
    64.Zavala F, Taupin V, Descamps-Latscha B. In vivo treatment with benzodiazepines inhibits murine phagocyte oxidative metabolism and production of interleukin l,tumor necrosis factor and interleukin-6 [J]. J Pharmacol Exp Ther, 1990, 255(2): 442- 450.
    65.Schreiber AA, Frei K, Lichtensteiger W, et al. The effect of prenatal diazepam exposure on TNF-alpha production by rat splenocytes [J]. Agents Actions, 1993, 38(3-4): 265-72.
    66.Ryu JK, Choi HB, McLarnon JG.. Peripheral benzodiazepine receptor ligand PK 11195 reduces microglial activation and neuronal death in quinolinic acid- injected rat striatum [J]. Neurobiol Dis, 2005; 20 (2): 550-561.
    67.Choi HB, Khoo C, Ryu JK, et al. Inhibition of lipopolysaccharide-induced cyclooxygenase-2, tumor necrosis factor-alpha and [Ca2+]i responses in human microglia by the peripheral benzodiazepine receptor ligand PK11195 [J]. J Neurochem, 2002, 83(3): 546-555.
    68.Le Fur G, Vaucher N, Perrier ML, et al. Differentiation between two ligands for peripheral benzodiazepine binding sites, [3H]RO5-4864 and [3H]PK 11195, by thermodynamic studies [J]. Life Sci, 1983, 33(5): 449-457.
    69.Farges RC, Torres SR, Ferrara P, et al. Involvement of steroids in anti-inflam- matory effects of peripheral benzodiazepine receptor ligands [J]. Life Sci, 2004, 74 (11):1387-1395.
    70.Veiga S, Carrero P, Pernia O, et al. Translocator protein 18 kDa is involved in the regulation of reactive gliosis [J]. Glia, 2007, 55(14): 1426-1436.
    71.Klegeris A, McGeer EG, McGeer PL. Inhibitory action of 1-(2-chlorophenyl) -N-methyl- N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK 11195) on some mononuclear phagocyte functions [J]. Biochem Pharmacol, 2000, 59 (10): 1305-1314.
    72.Galiègue S, Jbilo O, Combes T, et al. Cloning and characterization of PRAX-1. A new protein that specifically interacts with the peripheral benzodiazepine receptor [J]. J Biol Chem, 1999, 274(5): 2938-2952.
    73.Li H, Degenhardt B, Tobin D, et al. Identification, localization, and function in steroidogenesis of PAP7: a peripheral-type benzodiazepine receptor and PKA (RIalpha)- associated protein [J]. Mol Endocrinol, 2001, 15(12): 2211-2228.
    74.Lacapère JJ, Papadopoulos V. Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis [J]. Steroids, 2003, 68(7-8): 569-585.
    75.Kelly-Hershkovitz E, Weizman R, Spanier I, et al. Effects of peripheral-type benzodiazepine receptor antisense knockout on MA-10 Leydig cell proliferation and steroidogenesis [J]. J Biol Chem, 1998, 273(10):5478-5483.
    76.Weisinger G, Kelly-Hershkovitz E, Veenman L,et al. Peripheral benzodiazepine receptor antisense knockout increases tumorigenicity of MA-10 Leydig cells in vivo and in vitro [J]. Biochemistry, 2004, 43(38): 12315-12321.
    77.Gonzalez-Polo RA, Carvalho G, Braun T, et al. PK11195 potently sensitizes to apoptosis induction independently from the peripheral benzodiazepin receptor [J]. Oncogene, 2005, 24(51): 7503-7513.
    78.Hans G, Wislet-Gendebien S, Lallemend F, et al. Peripheral benzodiazepine receptor (PBR) ligand cytotoxicity unrelated to PBR expression [J]. Biochem Pharmacol, 2005, 69(5): 819-830.
    79.Si Q, Zhao ML, Morgan AC,et al. 15-deoxy-Delta12,14-prostaglandin J2 inhibits IFN-inducible protein 10/CXC chemokine ligand 10 expression in human microglia: mechanisms and implications [J]. J Immunol, 2004, 173(5): 3504-3513.
    80.Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair [J]. Pharmacol Ther, 2008, 118(1):1-17.
    81.Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging [J]. Prog Neurobiol, 2006, 86(6): 308-322.
    82.Farooq A, Zhou MM. Structure and regulation of MAPK phosphatases [J]. Cell Signal, 2004, 16(7): 769-779.
    83.Ci X, Song Y, Zeng F, et al. Ceftiofur impairs pro-inflammatory cytokine secretion through the inhibition of the activation of NF-kappaB and MAPK [J]. Biochem Biophys Res Commun, 2008, 372(1):73-77.
    84.Baldwin AS Jr.The NF-kappa B and I kappa B proteins: new discoveries and insights [J]. Aml Rev Immunol, 1996,14: 649-683.
    85.Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF- [kappa]B activity [J]. Annu Rev Immunol, 2000, 18: 621-663.
    86.Denk A, Goebeler M, Schmid S, et al. Activation of NF-kappa B via the Ikappa B kinase complex is both essential and sufficient for proinflammatory gene expression in primary endothelial cells [J]. J Biol Chem, 2001, 276(30): 28451-28458.
    87.Schwarz SC,Seufferlein T,Liptay S,et a1.Microglial activation in multiple system atrophy: a potential role for NF-kappaB/rel proteins [J].Neuroreport, 1998, 9(13): 3029-3032.
    88.Heyen JR, Ye S, Finck BN, et al. Interleukin (IL)-10 inhibits IL-6 production in microglia by preventing activation of NF-kappaB [J]. Brain Res Mol Brain Res, 2000, 77(1):138-147.
    89.McEnery MW, Snowman AM, Trifiletti RR, et al. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier [J]. Proc Natl Acad Sci USA, 1992, 89 (8): 3170-3174.
    90.Zoratti M, SzabòI. The mitochondrial permeability transition [J]. BiochimBiophys Acta, 1995, 1241(2):139-176.
    91.Bernardi P, PetronilliV. The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal [J]. J Bioenerg Biomembr, 1996, 28 (2): 131-138.
    92.Schild L, Keilhoff G, Augustin W, et al. Distinct Ca2+ thresholds determine cytochrome C release or permeability transition pore opening in brain mitochondria [J]. FASEB J, 2001, 15 (3): 565-567.
    93.Herms JW, Madlung A, Brown DR, et al. Increase of intracellular free Ca2+ in microglia activated by prion protein fragment [J]. Glia, 1997,21(2):253-257.
    94.Nagano T, Kimura SH, Takai E, et al. Lipopolysaccharide sensitizes microglia toward Ca(2+)-induced cell death: mode of cell death shifts from apoptosis to necrosis [J]. Glia, 2006, 53(1):67-73.
    95.Benjamin D, Moroni C. mRNA stability and cancer: an emerging link ? [J]. Expert Opin Biol Ther, 2007, 7(10): 1515-1529.
    96.Mitchell P, Tollervey D. mRNA stability in eukaryotes [J]. Curr opin genet deve, 2000, 10(2):193-198.
    97.Ross J. mRNA stability in mammalian cells [J]. Microbiol Rev, 1995, 59(3): 423- 450.
    98.Crawford EK, Ensor JE, Kalvakolanu I, et al. The role of 3' poly(A) tail metabolism in tumor necrosis factor-alpha regulation [J]. J Biol Chem, 1997, 272(34): 211 20-21127.
    99.MacKenzie S, Fernàndez-Troy N, Espel E. Post-transcriptional regulation of TNF-alpha during in vitro differentiation of human monocytes/macrophages in primary culture [J]. J Leukoc Biol, 2002, 71(6):1026-1032.
    100.Levine RA, McCormack JE, Buckler A, et al. Transcriptional and posttranscriptional control of c-myc gene expression in WEHI 231 cells [J]. Mol Cell Biol, 1986, 6(11): 4112-4116.
    101.Voelkerding KV, Steffen DW, Zaidi SH, et al. Post-transcriptional regulation of the p53 tumor suppressor gene during growth-induction of human peripheralblood mononuclear cells [J]. Oncogene, 1995, 10(3): 515-521.
    102.Shi H, Segaloff DL. A role for increased lutropin/choriogonadotropin receptor (LHR) gene transcription in the follitropin-stimulated induction of the LHR in granulosa cells [J]. Mol Endocrinol, 1995, 9(6):734-744.
    103.Cheadle C, Fan J, Cho-Chung YS, et al. Stability regulation of mRNA and the control of gene expression [J]. Ann N Y Acad Sci, 2005, 1058:196-204.
    104.Cheadle C, Fan J, Cho-Chung YS, et al. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability [J]. B MC Genomics, 2005, 6(1):75-91.
    1.Schwartz, M. Macrophages and microglia in central nervous system injury: Are they helpful or harmful [J]. J Cereb Blood Flow Metab, 2003, 23(4): 385-394.
    2.Streit WJ, Walter SA, Pennell NA. Reactive microgicsis [J]. Prog Neurobiol, 1999, 57(6): 563-581.
    3.Zhang Z, Chopp M, Powers C. Temporal profile of microglial response following transient (2h) middle cerebral artery occlusion [J]. Brain Res, 1997, 744(2): 189-198.
    4.Aloisi F, De SR, Columbab CS, et al. Opposite effects of interfere on gamma and prostagl and inE2 on tumor necrosis factor and interleukin-10 production in microglia: are gulatory loop controlling microglia pro-and anti-inflammatory activities [J]. J Neurosci Res, 1999, 56: 571-580.
    5.Gehrmann J, Matsumoto Y, Kreutzberg GW. Microglia: intrinsic immuno- effector cell of the brain [J]. Brain Res Brain Res Rev, 1995, 20: 269-287.
    6.Raivich G, Banati R.Brain microglia and blood-derived macrophages:molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease [J]. Brain Res Brain Res Rev, 2004, 46(3): 261-281.
    7.Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease [J]. Int J Biochem Cell Biol, 2005,32(2): 289-305.
    8.Vowinckel E, Reutens D, Becher B, et al. PK11195 binding to the peripheral benzodiazepine receptor as a marker of microglia activation in multiple sclerosis and experimental autoimmune encephalomyelitis [J]. J Neurosci Res, 1997, 50 (2):345-353.
    9.Park CH, Carboni E, Wood PL, et al.Characterization of peripheral benzodiazepine type sites in a cultured murine BV-2 microglial cell line [J].Glia,1996, 16(1): 65-70.
    10.Benavides J, Cornu P, Dennis T, et al. Imaging of human brain lesions with anomega 3 site radioligand [J]. Ann Neurol, 1988, 24(6):708-712.
    11.Black KL, Idezaki K, Santori E, et al. Specific high-affinity binding of peripheral benzodiazepine receptor ligands to brain tumors in rat and man [J]. Cancer, 1990, 65(1):93-97.
    12.Stephenson DT, Schober DA, Smalstig EB, et al. Peripheral benzodiazepine receptors are colocalized with activated microglia following transient global forebrain ischemia in the rat [J]. J Neurosci, 1995, 15 (7 pt 2):5263-5274.
    13.Ahmad I, Das AV, James J, et al. Neural stem cells in the mammalian eye: types and regulation [J]. Semin Cell Dev Biol,2004,15(1):53–62.
    14.Ward SA, Molnar P, Nadra JV. Characterization of ramified microglia in tissue culture pinocytosis and motility [J]. J Neurosci Res, 1991, 29: 13-181.
    15.Stroit WJ. Mieroglia as neuroprotective, immunocompetent cells of the CNS [J] . Glia, 2002, 40(2): 133-139.
    16.Neumann H. Control of glial immune function by neurons [J]. Glia, 2001, 36(2): 191-199.
    17.Dyer MA, Livesey FJ, oliver G, et al. Proxl function controls progenitor cell proliferation and horizontal cell genesis in t he mammalian retina [J]. Nat Genet, 2003, 34:53-58.
    18.McGuire SO, Ling ZD, Lipton JW, et al. Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons [J].Exp Neurol,2001,169(2): 219-230.
    19.Le W, Rowe D, Xie W, et al. Microglia activation and dopaminergic cell injure: an in vitro model relevant to Parkinson’s disease [J]. J Neurosci, 2001, 21 (21): 84 47-8455.
    20.Haydon PG. Glia: listening and talking to the synapse [J]. Nat Rev Neruosci, 2001, 2(3): 185-193.
    21.Shoham S, Youdim MB. Iron involvement in neural damage and microgliosis in models of neurodegenerative diseases [J]. Cell Mol Biol, 2000, 46(4): 743 -760.
    22.Akiyama H,Barger S,Barnum S,et a1. Inflammation and Alzheimer’s disease [J]. Neurobiol Aging, 2000, 2l(3): 383-421.
    23.Golde T E. Inflammation takes on Alzheimer’s disease [J]. Nat Med, 2002, 8(9): 936-938.
    24.Giulian D, Haverkamp LJ, Yu JH, et al. Specific domains of beta-amyloid from Alzheimer plaque elicit neuron killing in human microglia [J]. J Neurosci, 1996, 16(19):6021-6037.
    25.Rogers J, Cooper N R, Webster S, et a1. Complement activation byβ-amyloid in Alzheimer’s disease [J]. Proc Natl Acad Sci USA, l992, 89(21): l00l6-l0020.
    26.Matsuoka Y, Picciano M, Malester B, et a1. Inflammatory response to amyloidosis in a transgenic mouse model of Alzheimer’s disease [J].Am J Pathol, 200l, l58(4): l345-1354.
    27.Strohmeyer R, Shen Y, Rogers J. Detection of complement alternative pathway mRNA and proteins in Alzheimet’s disease brain [J]. Mol Brain Res, 2000, 8l(1-2):7-18.
    28.Casamenti F, Prosperi C, Scali C, et al. Interleukin-1 beta activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: implication for Alzheimer’s disease [J]. Neurosci, 1999,91(3): 831-842.
    29.Christie RH, Freeman M, Hyman BT. Expression of the macrophage scavenger receptor, a multifunction lipoprotein receptor, in microglia associated with senile plagues in Alzheimer’s disease [J]. Am J Pathol, 1996, 148(2):399-403.
    30.Paresce DM, Ghosh RN, Maxfield FR. Microglial cell internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor [J]. Neuron, 1996, 17(3):553-565.
    31.Lue LF, Walker DG, Brachova L, et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism [J]. Exp Neurol, 2001, 171(1):29-45.
    32.Du Yon S, Zhu H, Fu J, et a1. Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage- colony stimulating factor: a proinflammatory pathway in Alzheimer’s disease [J]. Proc Natl Acad Sci USA, 1997, 94(10): 5296-5301.
    33.Lue LF, Walker DG, Rogers J. Modeling microglial activation in Alzheimer’s disease with human postmortem microglial cultures [J]. Neurobiol Aging, 2001, 22(6): 945-956.
    34.Davis EJ, Foster TD, Thomas WE. Cellular froms and functions of brain microglia [J]. Brain Res Bull,1994,34(1):73-78.
    35.Streit WJ. Microglia and Alzheimer’s disease pathogenesis [J]. J Neurosci Res, 2004, 77(1): 1-8.
    36.Walker DG, Lue LF, Beach TG. Gene expression profiling of amyloid beta peptide-stimulated human post-mortem brain microglia [J]. Neurobiol Aging, 2001, 22(6): 957-966.
    37.Pinteaux E, Parker LC, Rothwell NJ, et a1. Expression of interleukin- 1 receptors and their role in interleukin-1 actions in murine rnicroglial cells [J]. J Neurochem, 2002, 83(4): 754-763.
    38.Blasko I, Stampfer-Kountchev M, Robatscher P, et a1. How chronic inflammation can affect the brain and support the development of A1zheimer’s disease in old age: the role of microglia and astrocytes. Aging Cell, 2004, 3(4): 169-176.
    39.Mrak RE, Griffin WS. Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging, 2005, 26(3): 349-354.
    40.Schumann G, Huell M, Machein U, et al. Interleukin-6 activates signal transducer and activator of transcription and mitogenactivated protein kinase signal transduction pathways and induces de novo protein synthesis in human neuronal cells [J] . J Neurochem, 1999, 73 (5):2009-2017.
    41.Campbell IL. Transgenic mice and cytokine actions in the brain: bringing the gap between structural and functional neuropathology [J]. Brain Res Brain Res Rev,1998, 26(23): 327-336.
    42.Chiang CS, Stalder A, Samimi A, et al. Reactive gliosis as a conesquence of interleukin-6 expression in the brain: studies in transgenic mice [J]. Dev Nuerosci, 1994, 16(3-4): 212-221.
    43.Stalder AK, Carson MJ, Pagenstecher A, et al. Late-onset chronic inflammatory encephalopathy in immune-competent and severe combined immune-deficient (SCID) mice with astrocyte-targeted expression of tumor necrosis factor [J]. Am J Path, 1998, 153(3): 767-783.
    44.Benveniste EN, Kwon J, Chung WJ, et al. Differential modulation of astrocyte cytokine gene expression by TGF-beta [J]. Immunol, 1994,153: 5210-5221.
    45.Chao CC, Hu S. Tumor necrosis factor-alpha potentiates glutamate neurotoxicity in human fetal brain cell cultures [J]. Dev Neurosci, 199 4, 16(3-4):172-179.
    46. Harp N, Hughes M, MacFarlane M, et al. Fas-associated death domain protein and caspase-8 are not recruited to the tumor necrosis factor receptor 1 signaling complex during tumor necrosis factor-induced apoptosis [J]. J Biol Chem, 2003, 278 (28): 25534-25541.
    47.Rogers J, Strohmeyer R, Kovelowski CJ, et a1. Microglia and inflammatory mechanicsms in the clearance of amyloid-peptide[J]. Gila, 2002, 40(2): 260- 269.
    48.Weldon DT, Rogers SD, Ghilardi JR, et a1. Fibrillar beta-amyloid induces microglial phagocytosis, expression of inducible nitric oxide synthase, and loss of a select population of neurons in the rat CNS in vivo [J]. J Neurosci, 1998,l8(6): 2l61-2173.
    49.Stalder M, Phinney A, Probst A, et a1. Association of microglia with amyloid plaques in brain of APP23 tratsgenic mice [J]. Am J Pathol, 1999, 154(6): 1673-1684.
    50.DiCarlo G, Wilcock D, Henderson D, et a1. Intrahippocampal LPS injections reduce Abeta load in APP+ PSI transgenic mice [J]. Neurobiol Aging, 2001, 22: 1007-1012.
    51.Bacskai BJ, Kajdasz ST, Christie RH, et a1. Imaging of amyloid-βdeposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy [J]. Nat Med, 2001, 7: 369-372.
    52.Nicoll JA, Wilkinson D, Holmes C, et a1. Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide:A case report [J]. Nat Med, 2003,9(4): 448-452.
    53.Münch G, Robinson SR. Potential neurotoxic inflammatory responses to Abeta vaccination in humans [J]. J Neural Transm, 2002, 109(7-8): 1081-1087.
    54.Flanary BE, Sammons NW, Nguyen C, et al. Evidence that aging and amyloid promote microglial cell senescence [J]. Rejuvenation Res, 2007, 10(1):61-74.
    55.Streit WJ, Sammons NW, Kuhns AJ, et al. Dystrophic microglia in the aging human brain [J]. Glia, 2004, 45(2): 208-212
    56.Venneti S,Wiley CA, Kofler J. Imaging microglial activation during neuroinf- lammation and Alzheimer's disease [J]. J Neuroimmune Pharmacol, 2009, 4(2): 227-243.
    57.McGeer PL, Itagaki S, Boyes BE, et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains [J]. Neurology, 1988, 38(8):1285-1291.
    58.Cicchetti F, Brownell AL, Williams K, et al. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging [J]. Eur J Neurosci, 2002, 15(6):991-998.
    59.Kim WG, Mohney RP, Wilson B, et al. Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the ratbrain: role of microglia [J]. J Neurosci, 2000, 20(16): 6309-6316.
    60.McGeer PL, Schwab C, Parent A, et al. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyr- idine administration [J]. Ann Neurol, 2003, 54(5):599-604.
    61.Herrera AJ, Castaňo A, Venero JL, et al. The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions ondopaminergic system [J]. Neurobiol Dis, 2000, 7(4):429-447.
    62.Liu B, Jiang JW, Wilson BC, et al. Systemic infusion of naloxone reduces degeneration of rat substantia nigral dopaminergic neurons induced by intranigr- al injection of lipopolysaccharide [J]. J Pharmacol Exp Ther, 2000, 295 (1): 125-132.
    63.He Y, Appel S, Le W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum [J]. Brain Res, 2001, 909(1-2):187-193.
    64.Ling Z, Gayle DA, Ma SY, et al. In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain [J]. Mov Disord, 2002, 17(1):116-124.
    65.McNaught KS, Jenner p. Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium-and 6-hydrox- ydopamine-induced toxicity in astrocytic/ventral mesencephalic co-cultures [J]. J Neurochem, 1999, 73(6):2469-2476.
    66.Grublatt E, Mandel S, Youdin MB. MPTP and 6-hydroxydopamine-induced neurodegeneration as models for Parkinson's disease: neuron-protective strategies [J].J Neurol, 2000, 247(Suppl 2): II95-102.
    67.Cechetto DF. Role of nuclear factor kappa B in neuropathological mechanisms [J]. Prog Brain Res, 2001, 132: 391-404.
    68.Liberatore GT, Jackson-Lewis V, Vukosavic S, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease [J]. Nat Med, 1999, 5(12): 1403-14 09.
    69.Nagatsu T. Parkinson′s disease: changes in apoptosis-related factors suggesting possible gene therapy [J]. J Neural Transm, 2002, 109(5-6): 731-745.
    70.Mirza B, Hadberg h, Thomsen P, et al. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease [J]. Neurosci, 2000, 95(2):425-432.
    71.Liu B, Du l, Hong JS. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxidegeneration [J]. J Pharmacol Exp Ther, 2000, 293 (2): 607- 617.
    72.Gayle DA, Ling ZD, Tong C, et al. Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1 beta, and nitric oxide [J]. Brain Res Dev Brain Res, 2002, 133(1):27-35.
    73.Le W, Rowe D, Xie W, et al. Microglial activation and dopaminergic cell injury: an in vitro model relevant to Parkinson's disease [J]. Neurosci, 2001, 21(21): 8447-8455.
    74.Kerschensteiner M, Stadelmann C, Dechant G, et al. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases [J]. Ann Neurol, 2003, 53(3):292-304.
    75.Reis RA, Cabral da Silva MC, Loureiro dos Santos NE, et al. Sympathetic neuronal survival induced by retinal trophic factors [J]. Neurobiol, 2002, 50(1): 13-23.
    76.Batchelor PE, Liberatore GT, Porritt MJ, et al. Inhibition of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor expression reduces dopaminergic sprouting in the injured striatum [J]. Eur J Neurosci, 2000, 12(10): 3462-3468.
    77.Kordower JH, Emborg ME, Bloch J. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease [J]. Scince, 2000, 290(5492): 767-773.
    78. Eberhardt O, Coelln RV, Kugler S, et al. Protection by synergistic effects of adenovirus-mediated X-chromosome-linked inhibitor of apoptosis and glial cell line-derived neurotrophic factor gene transfer in the 1-methyl-4-phenyl-1,2, 3,6-tetrahydropyridine model of Parkinson's disease [J]. J Neurosci, 2000, 20(24): 9126-9134.
    79.Neumann H, Misgeld T, Matsumuro K, et al. Neurotrophins inhibit major histocompatibility class II inducibility of microglia: involvement of the p75 neurotrophin receptor [J]. Proc Natl Acad Sci U S A, 1998, 95 (10): 5779-5784.
    80.Flaügel A, Matsumuro K, Neumann, et al. Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration [J]. Eur J Immunol, 2001, 31 (1): 11 -22.
    81.Hirsch EC, Hunot S, Damier P, et al. Glial cell participation in the degeneration of dopaminergic neurons in Parkinson’s disease [J]. Adv Neurol, 1999, 80: 9-18.
    82.Benazzouz A, Piallat B, Ni ZG, et al. Implication of the subthalamic nucleus in the pathophysiology and pathogenesis of Parkinson's disease [J]. Cell Transplant, 2000,9(2):215-221.
    83.Przedborski S, Vila M, Jackson-Lewis V, et al. Reply: a new look at the pathogenesis of Parkinson disease [J].Trends Pharnacol Sci, 2000, 21(5):165.
    84.Streit WJ, Sammons NW, Kuhns AJ, et a1. Dystrophic microglia in the aging human brain [J]. Glia, 2004, 45(2): 208-212.
    85.Kullberg S, Aldskogius H, Ulfhake B. Microglial activation, emergence of ED1-expressing cells and clusterin upregulation in the aging rat CNS, with special reference to the spinal cord [J]. Brain Res, 2001,899(1-2):169-186.
    86.Deng XH, Bertini G, Xu YZ, et al. Cytokine-induced activation of glial cells in the mouse brain is enhanced at all advanced age [J]. Neuroscience, 2006, 141(2): 645-661.
    87.Rozovsky I, Finch CE, Morgan TE. Age-related activation of microglia and astrocytes: in vitro studies show persistent phenotypes of aging, increased proliferation, and resistance to down-regulation [J]. Neurobiol Aging, 1998, 19(1): 97-103.
    88.Ye SM, Johnson RW. Increased interleukin-6 expression by microglia from brain of aged mice [J].J Neuroimmunol, 1999, 93(1-2):139-148.
    89.Xie Z, Morgan TE, Rozovsky I, et al. Aging and glial responses to lipopoly- saccharide in vitro: greater induction of IL-1 and IL-6, but smaller induction of neurotoxicity [J]. Exp Neurol, 2003,182(1):135-141.
    90.Saurwein-Teissl M, Blasko I, Zisterer K, et a1. An imbalance between pro-and anti-inflammatory cytokines, a characteristic feature of old age [J]. Cytokine, 2000, 12(7): 1160-1161.
    91.Yu WH, Go L, Guinn BA, et al. Phenotypic and functional changes in glial cells as a function of age [J]. Neurobiol Aging, 2002, 23(1):105- 115.
    92.Vegeto E, Belcredito S, Ghisletti S, et al. The endogenous estrogen status regulates microglia reactivity in animal models of neuroinflammation [J]. Endocrinology, 2006, 147(5):2263-2272.
    93.Bruce-Keller AJ, Keeling JL, Keller JN, et al. Antiinflammatory effects of estrogen on microglial activation [J]. Endocrinology, 2000 141 (10):3646–3656
    94.Soldan SS, Alvarez Retuerto AI, Sicotte NL, et a1. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol [J]. J Immunol, 2003, 171(11):6267-6274.
    95.Eikelenboom P, van Gool WA. Neuroinflammatory perspectives on the two faces of Alzheimer's disease [J]. J Neural Transm, 2004, 111(3): 281 - 294.
    96.Cole GM, Morihara T, Lim GP, et al. NSAID and antioxidant prevention of Alzheimer's disease: lessons from in vitro and animal models [J].Ann N Y Acad Sci, 2004,1035:68-84.
    97.Morihara T, Teter B, Yang F, et al. Ibuprofen suppresses interleukin- 1 beta induction of pro-amyloidogenic alpha1-antichymo-trypsin to ameliorate beta- amyloid (Abeta) pathology in Alzheimer's models [J]. Neuropsychopharma- colgy, 2005,30(6):1111-1120.
    98.Gao HM, Jiang J,Wilson B, et al. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson's disease [J].J Neurochem, 2002,81(6):1285-1297.
    99.Liu YX, Qin LY, Li GR, et a1. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation [J]. J Pharmacol Exp Ther, 2003, 305 (1):212-218.
    100.Delgado M, Ganea D. Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma [J]. FASEB J, 2003, l7 (13): 1922 -1924.
    101.Tallman JF, Paul SM, Skolnick P, et al. Receptors for the age of anxiety: pharmacology of the benzodiazepines [J]. Science, 1980, 207 (4428): 274- 281.
    102.Mǒhler H,Okada T. Benzodiazepine receptor: demonstration in the central nervous system [J]. Science, 1977, 198(4319):849-851.
    103.Olsen RW, Tobin AJ. Molecular biology of GABAA receptors [J]. FASEB J,1990, 4(5):1469-1480.
    104.Braestrup C, Albrechtsen R, Squires R.F. High densities of benzodiazepine receptors in human cortical areas [J].Nature,1977,269(5630):702-704.
    105.Braestrup C, Squires RF, Specific benzodiazepine receptors in rat brain characterized by high-affinity [3H]diazepam binding [J].Proc Natl Acad Sci U S A,1977,74(9):3805-3809.
    106.Lesouhaitier O, Feuilloley M, Lihrmann I, et al. Localization of diazepam- binding inhibitor-related peptides and peripheral type benzodiazepine receptors in the frog adrenal Gland [J].Cell Tissue Res,1996, 283(3): 403-412.
    107. Snyder MJ, Van Antwerpen R. Evidence for a diazepam-binding inhibitor (DBI) benzodiazepine receptor-like mechanism in ecdysteroidogenesis by the insect prothoracic gland [J]. Cell Tissue Res, 1998, 294 (1): 161-168.
    108.Betti L, Giannaccini G, Nigro M, et al. Studies of peripheral benzodiazepine receptors in mussels: comparison between a polluted and a nonpolluted site [J]. Ecotoxicol Environ Saf, 2003, 54(1):36-42.
    109.Corsi L, Avallone R, Geminiani E, et al. Peripheral benzodiazepine receptors in potatoes (Solanum tuberosum) [J]. Biochem Biophys Res Commun, 2004, 313 (1): 62-66.
    110.Zisterer DM, Williams DC. Peripheral-Type benzodiazepine receptors [J]. Gen Pharmacol, 1997, 29(3):305-314.
    111.Awad M, Gavish M. Binding of [3H]Ro5-4864 and [3H]PK 11195 to cerebral cortex and peripheral tissues of various species: Species differences and heterogeneity in peripheral benzodiazepine binding sites [J]. J Neurochem, 1987, 49 (5):1407-1414.
    112.Kurumaji A, Toru M. Postnatal development of peripheral-type benzodiaze- pine receptors in rat brain and peripheral tissues [J]. Dev Brain Res, 1996, 97(1): 148 -151.
    113. Burgin R, Weizman R, Gavish M. Repeated swim stress and peripheral-type benzodiazepine receptors [J]. Neuropsychobiology, 1996, 33 (1): 28-31.
    114.Casellas P, Galiegue S, Basile AS. Peripheral benzodiazepine receptors and mitochondrial function [J]. Neurochem Int, 2002, 40(6): 475 -486.
    115.Anholt RR, De Souza EB, Oster-Granite ML, et al. Peripheral-type benzodi- azepine receptors: Autoradiographic localization in whole-body sections of neonatal rats [J]. J Pharmacol Exp Ther, 1985, 233 (2):517-526.
    116.Oke BO, Suarez-Quian CA, Riond J, et al. Cell surface localization of the peripheral-type benzodiazepine receptor (PBR) in adrenal cortex [J]. Mol Cell Endocrinol, 1992 87(1-3):R1-R6.
    117.Olson JM, Ciliax BJ, Mancini WR, et al. Presence of peripheral-type benzodiazepine binding sites on human erythrocyte membranes [J]. Eur J Pharmacol, 1988, 152(1-2): 47–53.
    118.Langer SZ, Arbilla S. Imidazopyridines as a tool for the characterization of benzodiazepine receptors: a proposal for a pharmacological classification as omega receptor subtypes [J]. Pharmacol Biochem Behav, 1988, 29(4): 763-766.
    119.Taupin V, Toulmond S, Serrano A, et al. Increase in IL-6, IL-1 and TNF-αlevels in rat brain following traumatic lesion. Influence of pre- and post-traumatic treatment with Ro5-4864, a peripheral-type (p site) benzodiazepine ligand [J]. J Neuroimmunol, 1993, 42(2): 177-185.
    120.Gavish M, Bachman I, Shoukrun R, et al. Enigma of the peripheralbenzodiazepine receptor [J]. Pharmacol Rev, 1999, 51(4): 629–650.
    121.McEnery MW, Snowman AM, Trifiletti RR, et al. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage -dependent anion channel and the adenine nucleotide carrier [J]. Proc Natl Acad Sci U S A, 1992, 89(8): 3170-3174.
    122.Antkiewicz-Michaluk L,Guidotti A, Krueger KE. Molecular characterization and mitochondrial density of a recognition site for peripheral-type benzodia- zepine ligands [J]. Mol Pharmacol, 1988, 34 (3), 272-278.
    123.Lacapère JJ, Delavoie F, Li H, et al. Structural and functional study of reconstituted peripheral benzodiazepine receptor [J]. Biochem Biophys Res Commun, 2001, 284(2): 536-541.
    124.Papadopoulos V, Baraldi M, Guilarte TR, et al. Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function [J]. Trends Pharmacol Sci, 2006, 27(8): 402-409.
    125. Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair [J]. Pharmacol Ther, 2008, 11 8(1):1-17.
    126.Veenman L, Shandalov Y, Gavish M. VDAC activation by the 18 kDa translo- cator protein (TSPO), implications for apoptosis [J]. J Bionerg Biomembr, 2008, 40 (3): 199-205.
    127.Kinnally KW, Zorov DB, Antonenko YN, et al. Mitochondrial benzodiazepine receptor linked to inner membrane ion channels by nanomolar actions of ligands [J]. Proc Natl Acad Sci U S A, 1993, 90(4): 1374-1378.
    128.Riond J, Mattei MG, Kaghad M, et al. Molecular cloning and chromosomal localization of a human peripheral-type benzodiazepine receptor [J]. Eur J Biochem, 1991, 195(2):305-311.
    129.Papadopoulos V, Amri H, Boujrad N, et al. Peripheral benzodiazepine receptor in cholesterol transport and steroidogenesis [J]. Steroids, 1997, 62 (1):21-28.
    130.Hirsch JD, Beyer CF, Malkowitz L, et al. Characterization of ligand binding to mitochondrial benzodiazepine receptors [J]. Mol Pharmacol, 1989 35(1): 164-172.
    131.Larcher JC, Vayssiere JL, Le Marquer FJ,et al. Effects of peripheral benzodiazepines upon O2 consumption of neuroblastoma cells [J]. Eur J Pharmacol, 1989, 161(2-3):197-202.
    132.Miccoli L, Poirson-Bichat F, Sureau F, et al. Potentiation of lonidamine and diazepam, two agents acting on mitochondria, in human glioblastoma treatment [J]. J Natl Cancer Inst, 1998, 90(18):1400-1406.
    133.Shiraishi T, Black KL, Ikezaki K, et al. Peripheral benzodiazepine induces morphological changes and proliferation of mitochondria in glioma cells [J]. J Neurosci Res, 1991, 30(3): 463-474.
    134.Black KL, Shiraishi T, Ikezaki K, et al. Peripheral benzodiazepine stimulates secretion of growth hormone and mitochondrial proliferation in pituitary tumour GH3 cells [J]. Neurol Res, 1994, 16(2):74-80.
    135.Wang JK, Morgan JI, Spector S. Differentiation of Friend erythroleukemia cells induced by benzodiazepines [J]. Proc Natl Acad Sci U S A, 1984, 81(12): 3770- 3772.
    136.Matthew E, Laskin JD, Zimmerman EA, et al. Benzodiazepines have high affinity binding sites and induce melanogenesis in B16/C3 melanoma cells [J]. Proc Natl Acad Sci U S A, 1981, 78(6): 3935-3939.
    137.Morgan JI, Johnson MD, Wang JK, et al. Peripheral-type benzodiazepines influence ornithine decarboxylase levels and neurite outgrowth in PC12 cells [J]. Proc Natl Acad Sci USA, 1985,82(15): 5223- 5226.
    138.Strittmatter WJ, Hirata F, Axelrod J, et al. Benzodiazepine andβ-adrenergic receptor ligands independently stimulate phospholipid methyllation [J]. Nature, 1979, 282(5741): 857-859.
    139.Ikezaki K, Black KL. Stimulation of cell growth and DNA synthesis by peripheral benzodiazepine [J]. Cancer Lett, 1990, 49(2):115-120.
    140.Kelly-Hershkovitz E, Weizman R, Spanier I, et al. Effects of peripheral-type benzodiazepine receptor antisense knockout on MA-10 Leydig cell proliferation and steroidogenesis [J]. J Biol Chem, 1998, 273(10): 5478 -5483.
    141.Krueger KE, Papadopoulos V. Mitochondrial benzodiazepine receptors and the regulation of steroid biosynthesis [J].Annu Rev Pharmacol Toxicol,1992, 31: 211-237.
    142.Hardwick M, Fertikh D, Culty M, Li H, et al. Peripheral-type benzodiazepine receptor (PBR) in human breast cancer: correlation of breast cancer cell aggressive phenotype with PBR expression nuclear localization and PBR-mediated cell proliferation and nuclear transport of cholesterol [J]. Cancer Res, 1999, 59(4):831-842.
    143.Simpson ER,Waterman MR. Regulation of the synthesis of steroidogenic enzymes in adrenal cortical cells by ACTH [J]. Annu Rev Physiol, 1988, 50: 427-440.
    144.Papadopoulos V, Lecanu L, Brown RC, et al. Peripheral-type benzodiazepine receptor in neurosteroid biosynthesis, neuropathology and neurological disorders [J]. Neuroscience, 2006, 138(3):749-756.
    145.Liu J,Rone MB, Papadopoulos V. Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis [J]. J Biol Chen, 2006, 281(50):38879-3893.
    146.Veenman L, Papadopoulos V, Gavish M. Channel-like functions of the 18-kDa translocator protein (TSPO): regulation of apoptosis and steroidogenesis as part of the host-defense response [J].Curr Pharm Des, 2007, 13(23):2385-2405.
    147.Veenman L, Gavish M. The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development [J]. Pharmacol Ther, 2006, 110(3):503-524.
    148.Levin E, Premkumar A, Veenman L, et al. The peripheral-type benzodiazepine receptor and tumorigenicity: isoquinoline binding protein (IBP) antisense knock-down in the C6 glioma cell line [J]. Biochemistry, 2005, 44(29):9924- 9935.
    149.Lah LH. The mitochondrial benzodiazepine receptor as a potential target protein for drug development: demonstration of functional significance with cell lines exhibiting differential expression of Bcl-2 [J]. Toxicol Sci, 2003, 74 (1): 1-3.
    150.Veenman L, Shandalov Y, Gavish M. VDAC activation by the 18 kDa translocator protein (TSPO), implications for apoptosis [J]. J Bionerg Biomembr, 2008, 40 (3): 199-205.
    151.Lokensgard JR,Hu S,Hegg CC,et al. Diazepam inhibits HIV-1 Tat-indued migration of human microglia [J]. J Neurovirol, 2001, 17(5): 481-486.
    152.Waterfield JD, McGeer EG, McGeer PL. The peripheral benzodiazepine receptor ligand PK 11195 inhibits arthritis in the MRL-lpr mouse model [J]. Rheumatology (Oxford), 1999,38(11):1068-1073.
    153.Torres SR, Fr?de TS, Nardi GM, et al. Anti-inflammatory effects of peripheral benzodiazepine receptor ligands in two mouse models of inflammation [J]. Eur J Pharmacol, 2000,408(2):199-211.
    154.Ryu JK, Choi HB, McLarnon JG.. Peripheral benzodiazepine receptor ligand PK 11195 reduces microglial activation and neuronal death in quinolinic acid-injected rat striatum [J]. Neurobiol Dis, 2005,20 (2): 550-561.
    155.Veiga S, Azcoitia I, Garcia-Segura LM. Ro5-4864, a peripheral benzodiazepine receptor ligand, reduces reactive gliosis and protects hippocampal hilar neurons from kainic acid excitotoxicity [J]. J Neurosci Res, 2005,80(1): 129-137.
    156.Chen MK, Guilarte TR. Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair [J]. Pharmacol Ther, 2008, 11 8(1):1-17.
    157.Veiga S, Carrero P, Pernia O. Translocator protein 18 kDa is involved in the regulation of reactive gliosis [J]. Glia, 2007, 55(14): 1426-1436.
    158.Papadopoulos V, Lecanu L. Translocator protein (18 kDa) TSPO: an emerging therapeutic target in neurotrauma [J]. Exp Neurol, 2009, 219(1):53-57.
    159.Lacor P, Gandolfo P, Tonon MC, et al. Regulation of the expression of peripheral benzodiazepine receptors and their endogenous ligands during ratsciatic nerve degeneration and regeneration: a role for PBR in neurosteroidoge- nesis [J]. Brain Res, 1999, 815(1):70-80.
    160.Chen MK, Guilarte TR. Imaging the peripheral benzodiazepine receptor response in central nervous system demyelination and remyelination [J]. Toxicol Sci, 2006, 91(2): 532-539.
    161.Bar-Ami S, Bendel N, Leschiner S, et al. The effects of prostaglandin F2alpha treatment on peripheral-type benzodiazepine recaptors in the ovary and uterus during pseudopregnancy of rats [J]. Biochem Pharmocal, 2006, 71 (4): 472-478.
    162.Nakamura K, YamadaK, Iwayama Y, et al. Evidence that variation in the peripheral benzodiazepine receptor (PBR) gene influences susceptibility to panic disorder [J]. Am J Med Genet B Neuropsychiatr Genet, 2006, 141B(3): 222-226.
    163. Basile AS, Lueddens HW, Skolnick P. Regulation of renal peripheral benzodiazepine receptors by anion transport inhibitors [J]. Life Sci, 1988, 42(6): 715-726.
    164.Wendler G, Lindemann P, Lacapère JJ, et al. Protoporphyrin IX binding and transport by recombinant mouse PBR [J]. Biochem Biophys Res Commun, 2003, 311(4):847-852.
    165.Guidotti A, Toffano G, Costa E. An endogenous protein modulates the affinity of GABA and benzodiazepine receptors in rat brain [J]. Nature, 1978, 275 (5680): 553–555.
    166.Veenman L, Levin E, Weisinger G, et al. Peripheral-type benzodiazepine receptor density and in vitri tumorigenicity of glioma cell lines [J]. Biochem Pharmacol, 2004, 68(4): 689-698.
    167.Ferzaz B, Brault E, Bourliaud G, et al. SSR180575 (7-chloro-N, N,5-trim- ethyl-4-oxo-3-phenl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide),a peripheral benzodiazepine receptor ligand, promotes neuronal survival and repair [J]. J Pharmacol Exp Ther, 2002, 301(3): 1067-1078.
    168.Le Fur G, Vaucher N, Perrier ML, et al. Differentation between two ligands for peripheral benzodiazepine binding sites, [3H]RO5-4864 and [3H]PK 11195, by thermodynamic studies [J]. Life Sci, 1983, 33(5):449-457.
    169.Galiègue S, Jbilo O, Combes T, et al. Cloning and characterization of PPAX-1, A new protein the specifically interacts with the peripheral benzodiazepine receptor [J]. J Biol Chem, 1999, 274(5):2938-2952.
    170.Kuhlmann AC, Guilarte TR. Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity [J]. J Neurochem, 2000, 74(4):1694-704.
    171.Kuhlmann AC, Guilarte TR. The peripheral benzodiazepine receptor is a sensitive indicator of domoic acid neurotoxicity [J]. Brain Res, 1997, 751(2), 281-288.
    172.Basile AS, Weissman BA, Skolnick P. Maximal electroshock increases the density of [3H]Ro5-4864 binding to mouse cerebral cortex [J]. Brain Res Bull, 1987, 19(1):1-7.
    173.Fishkum G.. Mitochondrial participation in ischemic and traumatic neural cell death [J]. J Neurotrauma, 2000, 17(10):843-855.
    174.Owen F, Poulter M, Waddington JL, et al. [3H]Ro5-4864 and [3H]flunitraze- pam binding in kainate-lesioned rat striatum and in temporal cortex of brains from patients with senile dementia of the Alzheimer type [J]. Brain Res, 1983, 278 (1-2): 373-375.
    175.Ouchi Y, Yoshikawa E, Sekine Y, et al. Microglial activation and dophamine terminal loss in early Parkinson’s disease [J]. Ann Neurol, 2005, 57(2): 168 -175.
    176.Messmer K, Reynolds G.P. Increased peripheral benzodiazepine binding sites in the brain of patients with Huntington's disease [J]. Neurosci Lett, 1998, 241(1): 53-56.
    177.Versijpt J, Debruyne JC, Van Laere KJ, et al. Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonanceimaging in multiple sclerosis: A correlative study [J]. Mult Scler, 2005, 11 (2): 127-134.
    178.Venneti S, Lopresti BJ, Wiley CA. Peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia from pathology to imaging [J]. Prog Neurobiol, 2006, 80(6): 308-322.
    179.Gerhard A, Neumaier B, Elitok E, et al. In vivo imaging of activated microglia using [11C]PK 11195 and positron emission tomography in patients after ischemic stroke [J]. Neuroreport, 2000, 11(13): 2957- 2960.
    180.Price CJ, Wang D, Menon DK, et al. Intrinsic activated microglia map to the periinfarct zone in the subacute phase of ischemic stroke [J]. Stroke, 2006, 37(7): 1749-1753.
    181.Cagnin A, Brooks DJ, Kennedy AM, et al. In vivo measurement of activated microglia in dementia [J]. Lancet, 2001, 358(9280):461- 467.
    182.Banati RB, Newcombe J, Gunn RN,et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity [J]. Brain, 2000,123 (Pt 11):2321-2337.
    183.Ouchi Y, Yoshikawa E, Sekine Y, et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease [J]. Ann Neurol, 2005, 57 (2): 168 -175.
    184.Hammoud DA, Endres CJ, Chander AR, et al. Imaging glial cell activation with [11C]-R-PK11195 in patients with AIDS [J]. J Neurovirol, 2005, 11 (4): 346-355.
    185.Turner MR, Gerhard A, Al-Chalabi A, et al. Mills’and other isolated upper motor neurone syndromes: in vivo study with 11C-(R)-PK 111 95 PET [J]. J Neurol Neurosurg Psychiatry, 2005, 76(6): 871-874.
    186.Cagnin A, Myers R, Gunn RN, et al. In vivo visualization of activated glia by [11C] (R)-PK11195-PET following herpes encephalitis reveals projected neuronal damage beyond the primary focal lesion [J]. Brain, 2001,124 (pt 10):2014-2027.
    187.Zhang MR, Kida T, Noguchi J, et al. [(11)C]DAA1106: radiosynthesis and in vivo binding to peripheral benzodiazepine receptors in mouse brain [J]. Nucl Med Biol, 2003, 30(5): 513-519.
    188.Zhang MR, Maeda J, Ito T,et al. Synthesis and evaluation of N-(5- fluoro- 2-phenoxyphenyl)-N-(2-[(18)F]fluoromethoxy-d(2)-5-methoxybenzyl) acetam- ide: a deuterium-substituted radioligand for peripheral benzodiazepine receptor [J]. Bioorg Med Chem, 2005, 13(5): 1811-1818.
    189.James ML, Fulton RR, Vercoullie J, et al. DPA-714, a new translocator protein-specific ligand: synthesis, radiofluorination, and pharmacyologic characterization [J]. J Nucl Med, 2008, 49(5): 814-822.
    190.Yanamoto K, Kumata K, Yamasaki T, et al. [18F]FEAC and [18F]FEDAC: Two novel positron emission tomography ligands for peripheral-type benzodia- zepine receptor in the brain [J].Bioorg Med Chem Lett, 2009, 19(6): 1707 - 1710.
    191.Arlicot N, Katsifis A, Garreau L, et al. Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroninflammation in a rat model of microglial activetion [J]. Eur J Nucl Med Mol Imaging, 2008, 35(12): 2203-2211.
    192.Maeda J, Ji B, Irie T, et al. Longitudinal, quantitative assessment of amyloid, neuroinflammation, and anti-amyloid treatment in a living mouse model of Alzheimer's disease enabled by positron emission tomography [J]. J Neurosci, 2007, 27(41): 10957-1968.
    193.Ji B, Maeda J, Sawada M, et al. Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies [J]. J Neurosci, 2008, 28(47): 12255-12267.
    194. Visigalli I, Moresco RM, Belloli S, et al. Monitoring disease evolution and treatment response in lysosomal disorders by the peripheral benzodiazepinereceptor ligand PK11195 [J]. Neurobiol Dis, 2009, 34 (1): 51-62.
    195.Choi HB, Khoo C, Ryu JK, et al. Inhibition of lipopolysaccharide-induced cyclooxygenase-2, tumor necrosis factor-alpha and [Ca2+]i responses in human microglia by the peripheral benzodiazepine receptor ligand PK11195 [J]. J Neurochem, 2002, 83(3):546-555.
    196. Guarneri P, Papadopoulos V, Pan B, et al. Regulation of pregnenolone synthesis in C6 glioma cells by 4’-chlorodiazepam [J]. Proc Natl Acad Sci U S A, 1992, 89(11):5118-5122.
    197.Brown RC, Cascio C, Papadopoulos V. Pathways of neurosteroids biosynthesis in human brain: regulation of dehydroepiandrosterone formation byβ-amyloid [J].J Neurochem, 2000, 74(2):847-859.
    198.Trapani G, Laquintana V, Denora N, et al. Structure-activity relationships and effects on neuroactive steroid synthesis in a series of 2-phenylimidazo [1,2-a] pyridineacetamide peripheral benzodiazepine receptors ligands [J]. J Med Chem, 2005, 48(1):292-305.
    199.Kondo D, Saefusa H, Yabe R, et al. Peripheral-type benzodiazepine receptor antagonist is effective in relieving neuropathic pain in mice [J]. J pharmacol Sci, 2009, 110(1): 55-63.
    200.Bitran D, Foley M, Audette D, et al. Activation of peripheral mitochondrial benzodiazepine receptors in the hippocampus stimulates allopregnanolone synthesis and produces anxiolyticlike effects in the rat [J]. Psychopharmacolo- gy (Berl), 2000, 151(1): 64-71.
    201.Ferzaz B, Brault E, Bourliaud G, et al. SSR180575 (7-chloro-N,N,5- trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetam- ide),a peripheral benzodiazepine receptor ligand, promotes neuronal survival and repair [J]. J Pharmacol Exp Ther, 2002, 301 (3):1067-1078.
    202.Lacor P, Gandolfo P, Tonon MC, et al. Regulation of the expression of peripheral benzodiazepine receptors and their endogenous ligands during rat sciatic nerve degeneration and regeneration: a role for PBR inneurosteroidogenesis [J]. Brain Res, 1999, 815(1):70-80.
    203.Yao ZX, Brown RC, Teper G.,et al. 22R-Hydroxycholesterol protects neuronal cells from beta-amyloid-induced cytotoxicity by binding to beta- amyloid peptide [J]. J Neurochem,2002,83(5):1110-1119.
    204.Galiegue S, Tinel N, Casellas P. The peripheral benzodiazepine receptor: a promising therapeutic drug target [J]. Curr Med Chem, 2003, 10(16): 1563-1572.
    205.Rupprecht R, Rammes G, Eser D, et al. Translocator protein (18 kD) as target for anxiolytics without benzodiazepine-like side effects [J]. Science, 2009, 325 (5939): 490-493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700