白细胞介素-6与前列腺癌相互关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌(Prostate Cancer, PCa)是男性最常见的恶性肿瘤之一,在不同的国家和地区,PCa的发病率和死亡率差别很大。随着我国老龄化人口比例逐渐增高,前列腺癌发病率有逐年上升的趋势。近来研究表明,细胞因子白细胞介素-6(interleukin-6,IL-6)在PCa发生发展的过程中发挥了重要作用,其启动子区的单核苷酸多态性与PCa的发生发展之间存在着相关性。本研究检测了IL-6基因及蛋白在前列腺癌及其细胞系中的表达;构建携带基因IL-6-shRNA特异性腺病毒表达载体并将其感染人前列腺癌PC-3细胞系,观察IL-6-shRNA对PC-3细胞生长及凋亡的影响;对湖北地区汉族人群中前列腺癌患者IL-6基因启动子区的单核苷酸多态性(single nucleotide polymorphisms, SNPs)进行分型,以探讨IL-6基因SNP与湖北地区汉族人群前列腺癌的关系。分四个部分简述如下。
     第一部分IL-6蛋白及基因在前列腺癌中的表达及意义
     目的:探讨细胞因子白细胞介素-6(IL-6)在前列腺癌发生发展中的作用及其临床意义。
     方法:①采用免疫组化SABC法和逆转录-聚合酶链反应(RT-PCR)法对前列腺癌组织及其相应的癌旁前列腺组织和前列腺癌细胞系PC-3及LNCaP中的IL-6表达进行检测;②采用酶联免疫吸附试验(ELISA)检测前列腺癌患者及随机正常人群外周血中IL-6的浓度和前列腺癌细胞系PC-3及LNCaP培养上清液中的IL-6浓度。
     结果:①前列腺癌组织中IL-6表达明显强于相应的癌旁前列腺组织,且与肿瘤的分期分级相关;PC-3细胞中IL-6呈强阳性表达,而LNCaP细胞中IL-6呈弱阳性表达。②前列腺癌患者外周血中IL-6浓度显著高于正常人群组;而PC-3细胞组培养上清液中IL-6浓度也明显高于LNCaP细胞组。
     结论:IL-6基因可能在前列腺癌的发生发展中起重要作用,有可能是前列腺癌从激素依赖性转化为激素非依赖性的因素之一。
     第二部分携带基因IL-6-shRNA特异性腺病毒表达载体的构建与鉴定
     目的:构建并鉴定含有基因IL-6-shRNA的腺病毒表达载体,感染前列腺癌细胞PC-3,并检测重组质粒对IL-6的沉默效应,为后期实验提供靶细胞。
     方法:分别设计三条以基因IL-6mRNA为靶序列的shRNA和阴性对照序列(HK),应用基因重组技术将其克隆到真核表达载体pGensil-1中,构建的3条重组shRNA真核表达质粒分别命名为pGensil-1_IL-6-shRNA1、_IL-6-shRNA2和_IL-6-shRNA3。将重组质粒转化到大肠杆菌DH5α中,经筛选后对提取质粒进行酶切和测序鉴定。测序正确后,利用腺病毒载体系统Adeno-X构建重组腺病毒质粒rAd-IL-6-shRNA1-3,酶切、PCR鉴定重组腺病毒质粒,鉴定正确后,将rAd-IL-6-shRNA1-3转染至HEK293细胞,包装成复制缺陷型腺病毒质粒rAd-IL-6-shRNA1-3。大量扩增rAd-IL-6-shRNA1-3,测病毒滴度。将构建的重组质粒感染到PC-3细胞中,感染72小时后,应用RT-PCR及Western-blot鉴定IL-6mRNA和蛋白的表达变化。观察各组质粒对IL-6mRNA和蛋白的抑制效率,筛选最有效的干扰序列。
     结果:酶切分析、测序鉴定表明rAd-IL-6-shRNA1-3构建成功;转染PC-3细胞后,RT-PCR及Westen blot结果显示,pGensil-1-IL-6-shRNA3干扰效果最强。
     结论:携带有IL-6-shRNA基因的重组腺病毒质粒构建成功,并筛选出pGensil-1-IL-6-shRNA3为沉默效应最强的质粒,它能有效抑制IL-6基因表达;建立了rAd-IL-6-shRNA感染人前列腺癌细胞PC-3的长期稳定细胞系,为进一步探讨IL-6在前列腺癌生物学行为中的作用奠定了基础。
     第三部分IL-6-shRNA对前列腺癌细胞PC-3生物学行为的影响
     目的:观察shRNA沉默IL-6基因对前列腺癌细胞PC-3增殖和凋亡的影响,初步探讨IL-6基因在前列腺癌发生和进展过程中的作用。
     方法:实验分为三组:实验组(PC-3/IL-6-shRNA组,感染rAd-IL-6-shRNA)、空白对照组(PC-3组,未感染腺病毒质粒)和阴性对照组(PC-3/HK组,感染rAd-HK)。利用MTT法细胞计数并绘制细胞生长曲线;Hoechst33258染色、流式细胞仪检测细胞凋亡情况;细胞迁移实验观察感染后细胞侵袭能力的变化。
     结果:MTT法观察显示,感染rAd-IL-6-shRNA后细胞生长增殖速度较对照组明显减慢;Hoechst33258染色显示部分细胞呈现凋亡形态学改变;流式细胞仪定量检测表明感染IL-6-shRNA基因后,PC-3细胞出现较为明显的凋亡峰;细胞迁移力显著低于对照组。
     结论:通过RNA干扰沉默IL-6基因的表达能有效地抑制PC-3细胞的生长增殖和迁移,并诱导细胞的凋亡。IL-6基因可能在前列腺癌发生和进展过程中扮演重要角色,抑制IL-6基因的表达可能成为前列腺癌基因治疗的可行策略。
     第四部分白细胞介素-6基因单核苷酸多态性与前列腺癌的关系
     目的:探讨白细胞介素-6基因启动子区-174G/C、-634C/G位点的单核苷酸多态性与湖北地区汉族人群前列腺癌的关系。
     方法:采用TaqMan探针荧光定量PCR技术对IL-6基因启动子区-174G/C、-634C/G位点的单核苷酸多态性进行基因分型,观察前列腺癌组和正常对照组的基因型频率、等位基因频率及其患病风险。
     结果:①所有实验对象-174G/C位点的基因型均为GG型,无CG型及CC型存在;②前列腺癌组与正常对照组-634C/G位点的GG、CG和CC基因型频率及其G和C等位基因频率差异显著(P<0.05);且GG+CG基因型频率随临床分期及病理分级的增加而增加。
     结论:IL-6基因启动子区-174G/C位点在湖北地区汉族人群中可能不存在单核苷酸多态性;而-634C/G位点的单核苷酸多态性与前列腺癌的发生发展具有一定程度的相关性,具有GG+CG基因型的人患前列腺癌的危险性相对较高。
Prostate cancer (PCa) is one of the commonest male malignancies worldwide and its mortality and morbidity vary greatly according to countries and regions. With increase of aging population, the incidence of PCa has been on the rise over years. Recent studies showed that interleukin-6 (IL-6) plays a critical role in the development and progression of PCa and the polymorphisms of the single nucleotide at its promoter region are intimately correlated with the development and progression of PCa. This study examined the expressions of IL-6 gene and protein in PCa cancer and their cell lines. A specific adenovirus expression vector with IL-6-shRNA and was constructed and introduced into the PC-3 cell line of human PCa in order to observe the effect of IL-6-shRNA on the growth and apoptosis of PC-3 cells. The polymorphisms of single nucleotide located at the promoter region of IL-6 gene in the Han People with PCa living in Hubei region were analyzed with an attempt to examine the relationship between the single nucleotide polymorphisms (SNPs) and development of PCa in Han People in Hubei region. The study falls into four parts.
     PartⅠ. The expression of interleukin-6 in prostate cancer and its clinical significance
     Objective:To study clinical significance and the relationship between the interleukin-6(IL-6) and disease progression in prostate cancer.
     Methods:①Immunohistochemistry and RT-PCR were used to detect the expression of IL-6 protein and mRNA in frozen prostatic adenocarcinoma,adjacent benign prostatic tissue and prostate cancer cell lines such as PC-3 and LNCaP.②The serum levels of IL-6 in patients with prostate cancer and healthy control and the supernatants of prostate cancer cell cultures were measured by using ELISA.
     Results:①The IL-6 protein levels in prostate cancer tissue and PC-3 cell were significantly higher than those in adjacent benign prostatic tissue and LNCaP cell.②The serum IL-6 levels in the patients with prostate cancer were markedly higher than those in the healthy control.The IL-6 levels in supernatants in PC-3 cell were notably higher than those in the LNCaP cell.
     Conclusions:The IL-6 gene may act as an important regulator in prostate cancer progression and may be one of the causes of prostate carcer conversion from an initially androgen-dependent state into an androgen-independent state.
     PartⅡ. The construction and identification of Adenovirus expression vector targeting IL-6-shRNA gene
     Objective:To construct and identify adenovirus vector carrying shRNA targeting IL-6(rAd-IL-6-shRNA) and to establish a monoclone PC-3 cell line transfected with plasmid IL-6-shRNA, and detect its influence on expression of IL-6.
     Methods:To design 3 pairs of shRNA sequence targeting IL-6 and a pair of shRNA sequence making negative control(HK) respectively, and clone them into pGensil-1 vector by using technology of gene recombination. The recombinants were named pGensil-1_IL-6-shRNA1-、_ IL-6-shRNA2 and_ IL-6-shRNA3. They were transfected into Bacterium coli DH5a, and extracted with nucleic acid purification Kits. The sequence of recombinant plasmids was evaluated by electrophoresis and DNA sequencing. The adenovirus plasmid rAd-IL-6-shRNAl-3 was constructed by adeno-X expression system, and the control adenovirus plasmid rAd-HK was constructed by the same system. After verification by enzymolysis and PCR, the rAd-IL-6-shRNA1-3 vector was cotransfected into 293 cells where they were packed as the replication-deficient adenovirus rAd-IL-6-shRNAl-3. rAd-IL-6-shRNA1-3 was abundantly amplified and then virus titer was evaluated. RT-PCR and Western Blot were used to detect the IL-6 mRNA and protein expression in PC-3 cell lines.
     Results:rAd-IL-6-shRNA was successfully constructed and verified by enzymolysis and sequencing.RT-PCR and W-B analysis showed that the silencing effect of pGensil-1-IL-6-shRNA3 was more evident than other recombinant vectors.
     Conclusions:Successful construction of the recombinant adenovirus vector containing the IL-6-shRNA gene was achieved, pGensil-1_IL-6-shRNA3 was selected for the further study as the most effective plasmid in silencing expression of IL-6. A PC-3 cell line transfected with rAd-IL-6-shRNA was obtained.
     PartⅢ. The Effects of IL-6-shRNA Gene on the Biological Behaviors of Prostate Cancer Cell (PC-3) in Vitro
     Objective:To investigate whether the expression of gene IL-6-shRNA can effect the growth, proliferation and apoptosis of prostate cancer PC-3 cells in vitro. and research their inter-relation between IL-6 and tumorigenesis of prostate.
     Methods:The whole experiment was divided into 3 groups. The rAd-IL-6-shRNA was used to infect the human prostate cancer PC-3 cells. For control experiments, the vector rAd-HK was also transfected into PC-3 cells and nontransfected PC-3 cells. The effect of IL-6-shRNA on the cellular proliferation capacity of PC-3 cells was assayed by the growth curve. The cell apoptosis was detected by Hoechst33258 staining, and flow cytometry analysis. The cell migration assay was used to detect the difference of invasion and metastases between transfected and non-transfected cells.
     Results:MTT showed the cell proliferation was markedly inhibited compared with the control cells. Partial cancer cells presented morphological changes of apoptosis by Hoechst33258 staining and flow cytometry analysis. Contrast to control cells and rAd-HK transfected PC-3, the invasion ability of rAd-IL-6-shRNA transfected cells decreased obviously.
     Conclusion:IL-6-shRNA gene can suppress PC-3 cell growth and proliferation, in addition to acceleration of its apoptosis in vitro. IL-6 gene might play a crucial role in the development and progression of prostatic cancer and suppression of IL-6 gene expression might be a promising strategy for the treatment of human prostate cancer.
     PartⅣ. Relationship between Single Nucleotide Polymorphisms in Interleukin-6 and Prostate Cancer
     Objective:To examine the association between the single nucleotide polymorphisms (SNPs) in-174G/C and-634C/G of interleukin-6(IL-6) promoter region and prostate cancer in the population of Han People in Hubei region.
     Methods:TaqMan PCR was employed for the gene-typing of-174G/C and-634C/G in promoter region of IL-6 gene to compare the prostate cancer patients and normal controls in terms of genetype frequency, allele frequency and risk of prostate cancer.
     Results:In all the subjects, the genetype of genetic locus-174G/C was found to be GG and no CG and CC were found. There were a significant difference in gene frequency of GG, CG and CC of-634C/G and allele frequency of G and C between prostate cancer patients and normal controls (P<0.05) and the gene frequency of GG+CG increased with the clinical stages and pathological grades of prostate cancer.
     Conclusion:No SNP in-174G/C IL-6 promoter region was found in the population of Han People in Hubei region. The SNP in-634C/G was, to some extent, associated with the development and progression of prostatic cancer. The population with GG+CG genetype have higher risk of prostate cancer.
引文
1. Walsh PC. Campbell's urology,8th ed. New York:Elsevier,2003,3003.
    2. Haag P,Bektic J,Bart sch G, et al. Androgen receptor down regulation by small interference RNA induces cell growth inhibition in androgen sensitive as well as in androgen independent prostate cancer cells[J]. Journal of Steroid Biochemistry & Molecular,2005,96 (324):251-258.
    3. Huggins C,Hodges CV.Studies on prostatic cancer.The effect of castration,of estrogen and of androgen injection on the serum phosphatases in metastatic carcinoma of prostate.Cancer Res,1941,1:294-299.
    4. Iero M, Pilla L, Marrari A, et al. Vaccination therapy in prostate cancer [J]. Cancer Immunol Immunother,2007,56 (4):429-445.
    5. Culig Z. Role of the androgen receptor axis in prostate cancer[J]. Urology,2003,62 (5 Suppl 1):21-26.
    6. Agoulnik IU, Weigel NL. Androgen receptor action in hormone-dependent and recurrent prostate cancer [J]. J Cell Biochem,2006,99 (2):362-372.
    7. Kageyama Y, Hyochi N, Kihara K, et al. The androgen receptor as putative therapeutic target in hormone-refractory prostate cancer [J]. Recent Patents Anticancer Drug Discov,2007,2 (3):203-211.
    8. Chmelar R, Buchanan G, Need EF, et al. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer [J]. Int J Cancer,2007,120 (4): 719-733.
    9. Chung TD,Yu JJ,Spiotto MT,et al.Characterization of the role of IL-6 in the progression of prostate cancer.Prostate.1999,38(3):199-207.
    10. Culig Z, Klocker H, Bartsch G, et al.Androgen receptor mutations in carcinoma of the prostate:significance for endocrinetherapy. Am-J-Pharmacogenomics.2001,1 (4):241-249.
    11. Takeshi U,Nasrin RM,Nicholas B,et al.Ligan-inependent Activation of the Androgen Receptor by Interleukin-6 and the Role of Steroid Receptor Coactivator-1 in Prostate Cancer Cell.J-Biological-chemistry,2002,277(41):38087-38094.
    12. Okamoto M, Lee C and Oyasu R. Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro[J]. Cancer Res,1997,57(1):141-146.
    13. Akira, S., Taga, T. and Kishimoto, T.:Interleukin-6 in biology and medicine. Adv Immunol, 1993,54(1):1-78.
    14. Jones SA, Richards PJ, Scheller J, et al. IL-6 transsignaling:the in vivo consequences[J]. Interferon Cytokine Res,2005,25(5):241-253.
    15. Kinoshita T, Ito H, Miki C. Serum interletlkin-6 levels reflects the tumor proliferative activity in patients with colorectal carcinoma[J].Cancer,1999,85(12):2526-2531.
    16.闫天中,靳风烁,江军,等。良性前列腺增生与前列腺癌的VEGF、 IL-6表达[J]。医学临床研究,2004,21(7):762-764.
    17. Asirvatham AJ, Schmidt M, GaoB, et al. Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells [J]. Endocrinology, 2006,147(1):257-271.
    18. Culig Z, Bartsch G and Hobisch A. Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth[J]. Mol Cell Endocrinol,2002,197(1/2):231-238.
    19. Moffat J, Sabatini DM. Building mammalian signalling pathways with RNAi screens[J]. Nat Rev Mol Cell Biol,2006,7(3):177-187.
    20. Kim DH, Rossi JJ.Strategies for silencing human disease using RNA interference[J]. Nat Rev Genet,2007,8(3):173-184.
    1. Okamoto M, Lee C and Oyasu R. Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro[J]. Cancer Res,1997,57(1):141-146.
    2. Miki C, Konishi N, Ojima E, et al. Imbalanced synthesis of interleukin-lbeta and interleukin-1 receptor antagonist:prognostication in intestinal type gastric cancer[J]. Clin Oncol (R Coll Radiol),2005,17(3):200-201.
    3. Ohi S, Hashimoto H, Tachibana T, et al. Establishment and characterization of EB virus-free normal B-lymphocyte and interleukin-6 producing poorly differentiated adenocarcinoma cell lines derived from gastric tumor tissue[J]. Hum Cell,2005,18(1):35-44.
    4. 薛庆善,主编.体外培养的原理与技术[M].第2版,北京:科学出版社,2001.
    5. 卢圣栋,.现代分子生物学实验技术[M].第2版,北京:中国协和医科大学出版社,1999.
    6. Weissenbach J, Chemajovsky Y, Zeevi M, et al. Two interferon mRNA in human fibroblast s in vit ro t ranslation and Escherichacoli cloning studies[J]. Proc Natl Acad Sci USA,1980,77 (12):7152-7156.
    7. Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles:the signal orchestration model [J]. Rev Physiol Biochem Pharmacol,2003,149 (1):1-38.
    8. Zhang X,Darnell J E. Functional importance of Stat3 tetramerization in activation of the alpha2-macroglobulin gene [J]. Biol Chem,2001,276(36):33576-33581.
    9. Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT[J]. Science,2002,296(5573):1653-1655.
    10. Kinoshita T, Ito H, Miki C. Serum interletlkin6 levels reflects the tumor proliferative activity in patients with colorectal carcinoma[J]. Cancer,1999,85 (12):2526-2531.
    11. Lobo Gatti L, Zambaldi Tunes M, Labio RW, et al. Interleukin-6 polymorphism and Helicobacter pylori infection in Brazilian adult patients with chronic gastritis[J]. Clin Exp Med,2005,5(3):112-116.
    12. Jones SA, Richards PJ, Scheller J, et al. IL-6 transsignaling:the in vivo consequences[J]. Interferon Cytokine Res,2005,25(5):241-253.
    13. Lee S O, Lou W, Hou M, et al. Interleukin-6 promotes androgen independent growth in LNCaP human prostate cancer cells [J]. Clin Cancer Res,2003,9(1):370-376.
    14. Culig Z, Klocker H, Bartsch G, et al.Androgen receptor mutations in carcinoma of the prostate:significance for endocrinetherapy.Am-J-Pharmacogenomics.2001,1(4):241-249.
    15. Takeshi U,Nasrin RM,Nicholas B,et al.Ligan-inependent Activation of the Androgen
    16. Receptor by Interleukin-6 and the Role of Steroid Receptor Coactivator-1 in Prostate Cancer Cell.J-Biological-chemistry,2002,277(41):38087-38094.
    17. Culig Z. Role of the androgen receptor axis in prostate cancer[J]. Urology,2003,62 (5 Suppl 1):21-26.
    18. Agoulnik IU, Weigel NL. Androgen receptor action in hormone-dependent and recurrent prostate cancer [J]. J Cell Biochem,2006,99 (2):362-372.
    19. Kageyama Y, Hyochi N, Kihara K, et al. The androgen receptor as putative therapeutic target in hormone-refractory prostate cancer [J]. Recent Patents Anticancer Drug Discov,2007,2 (3):203-211.
    20. Chmelar R, Buchanan G, Need EF, et al. Androgen receptor coregulators and their involvement in the development and progression of prostate cancer [J]. Int J Cancer,2007,120 (4): 719-733.
    21. Chung TD,Yu JJ,Spiotto MT.et al.Characterization of the role of IL-6 in the progression of prostate cancer.Prostate.1999,38(3):199-207.
    22.闫天中,靳风烁,江军,等。良性前列腺增生与前列腺癌的VEGF、 IL-6表达[J]。医学临床研究,2004,21(7):762-764.
    23. Asirvatham AJ,Schmidt M, Gao B, et al. Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells[J]. Endocrinology, 2006,147(1):257-271.
    24. Culig Z, Bartsch G and Hobisch A. Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth[J]. Mol Cell Endocrinol,2002,197(1/2):231-238.
    25. Giri D, Ozen M and Ittmann M. Interleukin-6 is an autocrine growth factor in human prostate cancer[J]. Am J Pathol,2001,159(6):2159-2165.
    26. Yang J, Chatterjee-kishore M, Staugaitis SM, et al. Novel roles of unphosphor-ylated STAT3 in oncogenesis and transcriptional regulation 1[J].Cancer Res,2005,65(3):939-947.
    27. KimJ,Adam RM,Solomon KR,et al. Involvement of cholesterol-richlipid rafts in interleukin-6-induced neuroendocrine differentiation of LNCaP prostate cancer cells. Endocrinology,2004,145(2):613-9.
    28. Kim IY, Zelner DJ, Sensibar JA, et al. Modulation of sensitivity to transforming growth factor-β1 (TGF-β1) and the level of type II TGF-b receptor in LNCaP cells by dihydrotestosterone [J]. Exp Cell Res,1996,222 (1):103-110.
    29. Heisler L E,Evangelou A,Lew AM,et al. Androgen-dependent cell cycle arrest and apoptotic death in PC-3 prostatic cell cultures expressing a full length human androgen receptor [J] Molecular and Cellular Endocrinology,1997,126 (1):59-73.
    30. Alen P,Claessens F,Schoenmakers E,et al.Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1alpha with multiple steroid receptors and identification of aninternally deleted ELE1beta isoform.Mol-Endocrinol.1999,13(1):117-128.
    31. Sharma S, Stolina M, LinY, et al. T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function[J]. J Immunol,1999,163 (9):5020-5028.
    32. Siegall C B, Schwab G, Nordan R P,et al. Expression of the interleukin 6 receptor and interleukin-6 in prostate carcinoma cells[J].Cancer-Res,1990,50(24):7786-7788.
    33. Zerbini L F, Wang Y H, Cho J Y, et al. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer[J]. Cancer Res,2003,63(9):2206-2215.
    34. Drachenberg D E, Elgamal A, Rowbotham R, et al. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer[J]. Prostate,1999,41(2):127-133.
    1. Kinoshita T, Ito H, Miki C. Serum interletlkin6 levels reflects the tumor proliferative activity in patients with colorectal carcinoma[J]. Cancer,1999,85 (12):2526-2531.
    2. Culig Z, Klocker H, Bartsch G, et al.Androgen receptor mutations in carcinoma of the prostate:significance for endocrinetherapy.Am-J-Pharmacogenomics.2001,1(4):241-249.
    3. Takeshi U,Nasrin RM,Nicholas B,et al.Ligan-inependent Activation of the Androgen Receptor by Interleukin-6 and the Role of Steroid Receptor Coactivator-1 in Prostate Cancer Cell.J-Biological-chemistry,2002,277(41):38087-38094.
    4. Okamoto M, Lee C and Oyasu R. Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro[J]. Cancer Res,1997,57(1):141-146.
    5. Kim DH, Rossi JJ.Strategies for silencing human disease using RNA interference [J]. Nat Rev Genet,2007,8(3):173-184.
    6. 薛庆善,主编.体外培养的原理与技术[M].第2版,北京:科学出版社,2001:349-358.
    7. Naito Y, Yamada T, Ui-Tei K, et al. Highly effective, target-specific siRNA design software for mammalian RNA interference [J]. Nucleic Acids Res,2004,32(2):124-129.
    8. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference [J]. Nat Biotechnol,2004,22 (3):326-330.
    9. 金冬雁,黎孟枫(译).分子克隆实验指南[M].北京:化学工业出版社,1998.
    10. Hannon GJ. RNA interference [J]. Nature.2002; 418(6894):211-251.
    11. McManus MT, Sharp PA. Gene silencing in mammals by small interfering RNAs [J]. Nat Rev Genet.2002; 3(10):737-747.
    12. Tuschl T, Zamore P D, Lehmann R, et al. Targeted mRNA degradation by double-stranded RNA in vitro[J]. Genes Dev.1999,13(24):3191-3197.
    13. Paddison P J, Caudy A A, Bernstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells [J]. Genes Dev.2002,16 (8):948-958.
    14. Brummelkamp TR, Bemards R, Agami R, et al. A system for stable expression of short interfering RNAi in mammalan cells. Science,2002,296:550-553.
    15. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21 nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411:494-498.
    16. Irie N, Sakai N, Ueyama T, et al. Subtype- and species-specific knockdown of PKC using short
    interfering RNA. Biochem Biophys Res Commun,2002,298(5):738-743.
    17. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391(6669):806-811.
    18. Clemens JC, Worby CA, Simonson-Leff N, et al. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci USA,2000,97(12):6499-4503.
    19. Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J,2001,20(23):6877-6888.
    20. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol,2004,22(3):326-330.
    21. Hamada M, Ohtsuka T, Kawaida R, et al. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3'-ends of siRNAs. Antisense Nucleic Acid Drug Dev,2002,12(5):301-309.
    22. Amarzguioui M, Holen T, Babaie E, et al. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res,2003,31(2):589-95.
    23. Paddison PJ, Caudy AA, Berns tein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells [J]. Genes Dev.2002; 16(8):948-958.
    24. Kretschmer-Kazemi Far R, Sczakiel G. The activity of siRNA in mammalian cells is related to structural target accessibility:a comparison with antisense oligonucleotides [J]. Nucleic Acids Res.2003; 31(15):4417-4424.
    25. Bohula EA, Salisbury AJ, Sohail M, et al. The efficacy of small interfering RNAs targeted to the type 1 insulin-like growth factor receptor (IGF1R) is influenced by secondary structure in the IGF1R transcript [J]. J Biol Chem.2003; 278(18):15991-15997.
    26. Ding Y, Lawrence CE. A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res,2003,31(24):7280-7301.
    27. Baltzer AM, Lattermann C, Whalen JD, et al. Potential role of direct adenoviral gene transfer in enhacing fiacture repair [J]. Clin Orthop,2000, (379 Suppl):S120-S125.
    28. Wang L, Qi X, Sun Y, et al. Adenovirus-mediated combined P16 gene and GM-C-SF gene therapy for the treatment of established tumor and induction of antitumor immunity. Cancer Gene Ther.2002,9:819-824.
    29.施明,王福生,高兰英.腺病毒载体的研究进展.世界华人消化杂志.2000,8:1282-1286.
    30. Zhou Z, Zhang DF, Ren H. Humoral immunization and cell-mediated immunization evoked by HBsAg and B7-2 Ag co-expression recombinant adenovirus vector. Zhonghua Ganzangbing Zazhi.2001,9:111-113.
    31. Plautz J D, Day R N, Dailey G M, et al. Green fuuorescent protein and its derivatives as versatile markers for gene expression in living Drosophilam-m elanogaster plant and mammalian cells. Gene,1996,173:83-87.
    1. Iero M, Pilla L, Marrari A, et al. Vaccination therapy in prostate cancer [J]. Cancer Immunol Immunother,2007,56 (4):429-445.
    2. Culig Z, Klocker H, Bartsch G, et al.Androgen receptor mutations in carcinoma of the prostate:significance for endocrinetherapy.Am-J-Pharmacogenomics.2001, 1(4):241-249.
    3. Takeshi U,Nasrin RM,Nicholas B,et al.Ligan-inependent Activation of the Androgen Receptor by Interleukin-6 and the Role of Steroid Receptor Coactivator-1 in Prostate Cancer Cell.J-Biological-chemistry,2002,277(41):38087-38094.
    4. Okamoto M, Lee C and Oyasu R. Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro[J]. Cancer Res,1997,57(1):141-146.
    5. 司徒镇强,主编.细胞培养.第1版.西安:世界图书出版公司,2004.250-252.
    6. Kinoshita T, Ito H, Miki C. Serum interletlkin6 levels reflects the tumor proliferative activity in patients with colorectal carcinoma[J]. Cancer,1999,85 (12):2526-2531.
    7. 闫天中,靳风烁,江军,等。良性前列腺增生与前列腺癌的VEGF、 IL-6表达[J]。医学临床研究,2004,21(7):762-764.
    8. Siegall C B, Schwab G, Nordan R P,et al. Expression of the interleukin 6 receptor and interleukin-6 in prostate carcinoma cells[J].Cancer-Res,1990,50(24):7786-7788.
    9. Zerbini L F, Wang Y H, Cho J Y, et al. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer[J]. Cancer Res,2003,63(9):2206-2215.
    10. Drachenberg D E, Elgamal A, Rowbotham R, et al. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer[J]. Prostate,1999,41(2):127-133.
    11.王书奎,主编。实用流式细胞术彩色图谱[M].上海第二军医大学出版社.2004:145-168.
    12. Edwards BS, Oprea T, Prossnitz ER, et al. Flow cytometry for high-throughput, high-content screening. Cur Opin Chem Biol.2004;8(4):392-8.
    13. Darzynkiewicz Z, Crissman H, Jacobberger JW. Cytometry of the cell cycle:cycling through history. Cytometry A.2004;58(1):21-32.
    14. Nicolson GL. Paracrine and autocrine growth mechanism in tumor metastasis to specific sites with particular emphasis on brain and lung metastasis[J]. Cancer Metastasis Rev,1993,12 (3-4):325-343.
    1. Walsh PC. Campbell's urology,8th ed. New York:Elsevier,2003,3003.
    2. Jemal A., Murray T, Samuels A, et al., Cancer statistics,2003. CA Cancer J Clin,2003.53(1):5-26.
    3. McCarron SL, Edwards S, Evans PR, et al. Influence of cytokine gene polymorphisms on the development of prostate cancer [J]. Cancer Res,2002,62 (12):3369-3372.
    4. Habuchi, T. Common genetic polymorphisms and prognosis of sporadic cancers:prostate cancer as a model. Future Oncol,2006.2(2):233-245.
    5. Dongfeng T, Xiuxian W, Min H et al. Interleukin-6 polymorphism is associated with more aggressive prostate cancer[J]. Journal of Urology,2005,8(174):753-756.
    6. Collins FS, Brooks LD, Chakravarti A. A DNA polymorphism discovery resource for research on human genetic variation. Genome Res 1998; 8:1229-31.
    7. Czerska K, Nawara M, Bal J. Single nucleotide polymorphism in human genetic analyses[J]. Med Wieku Rozwoj 2003; 7:531-46.
    8. Wang DG, Fan JB, Siao CJ et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 1998; 280:1077-82.
    9. Sherry ST, Ward MH, Kholodov M et al. dbSNP:the NCBI database of genetic variation. Nucleic Acids Res 2001; 29:308-11.
    10. Lie YS, Petropoulos CJ. Advances in quantitative PCR technology:5'nuclease assays. Curr Opin Biotechnol 1998; 9:43-8.
    11. Shi MM, Myrand SP, Bleavins MR,et al. High throughput genotyping for the detection of a single nucleotide polymorphism in NAD(P)H quinone oxidoreductase (DT diaphorase) using TaqMan probes. Mol Pathol 1999; 52:295-9.
    12. Forster V. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annals of Physics 1948; 437:55-75.
    13. Lakowicz JR, Maliwal BP. Oxygen quenching and fluorescence depolarization of tyrosine residues in proteins. J Biol Chem 1983; 258:4794-801.
    14. Haffty BG, Hurley RA, Peters LG Carcinoma of the larynx treated with hypofractionated radiation and hyperbaric oxygen:long-term tumor control and complications. Int J Radiat Oncol Biol Phys 1999; 45:13-20.
    15. William S, Mark S, Jasbir S.S.1.9 A crystal structure of interleukin-6:implications for a novel mode of receptor dimerization and signaling[J]. EMBO 1997,16 (5):989-997.
    16. Akira, S., Taga, T. and Kishimoto, T.:Interleukin-6 in biology and medicine. Adv Immunol, 1993,54(1):1-78
    17. Dominique S. M, Sarah E.D, Sonja I. B,et al. Genetic Polymorphisms of Interleukin-IB (IL-1B), IL-6, IL-8, and IL-10 and Risk of Prostate Cancer. Cancer Res 2006; 66 (8):4525-4530.
    18. Xu JF, James L, Fredrik W,et al. The interaction of four genes in the inflammation pathway significantly predicts prostate cancer risk. Cancer Epidemiol Biomarkers Prev 2005;14(11):4525-4530.
    19. Cox ED, Hofference SC, Dimercurio BS, et al. Cytokine polymorphic analyses indicate ethnic difference in the allelic distribution of interlerkin-2 and interlerkin-6. Transp lantation,2001, 72(4):720-726.
    20. Zhai.R, Liu.G, Yang.C, et al. The G to C polymorphism at-174 of the interleukin-6 gene is rare in a Southern Chinese population. Pharmacogenetics,2001,11(8):699-701.
    21. Liu XJ, Chen XM, Sun XF, et al. Polymorphisms of interleukin-6 gene promoter region in healthy population in Beijing City of China:comparison with Asian descendants and Cancasian. Chinese Journal of Clinical Rehabilitation,2005,9(19):116-118.
    22. Lim,C.S., Zheng.S., Kim,Y.S.,et al. The-174 G to C polymorphism of interleukin-6 gene is very rare in Koreans. Cytokine,2002,19(1),52-54.
    23. Kitamura,A., Hasegawa,G., Obayashi,H. et al. Interleukin-6 polymorphism (-634 C/G) in the promoter region and the progression of diabetic nephropathy in Type 2 diabetes. Diabetic Med. 2002,19(12):1000-1005.
    1. Balkwill F,Charles KA,Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease[J]. Cancer Cell,2005,7(3):211-217.
    2. Karin M. Nuclear factor-kappaB in cancer development and progression[J]. Nature,2006,441 (7092):431-436.
    3. Philip, M., D.A. Rowley, and H. Schreiber, Inflammation as a tumor promoter in cancer induction[J]. Semin Cancer Biol,2004.14(6):433-439.
    4. Aggarwal B.B, Shishodia S, Santosh K. et al., Inflammation and cancer:How hot is the link? [J],Biochem Pharmacol,2006,72:1605-1621.
    5. Obendorf, M. and V.K. Patchev, Interactions of sex steroids with mechanisms of inflammation[J]. Curr Drug Targets Inflamm Allergy,2004.3(4):425-433.
    6. Maggio, M., et al., The relationship between testosterone and molecular markers of inflammation in older men[J]. J Endocrinol Invest,2005.28(11 Suppl):116-119.
    7. Maggio, M., et al., Correlation between testosterone and the inflammatory marker soluble interleukin-6 receptor in older men[J]. J Clin Endocrinol Metab,2006.91(1):345-347.
    8. Asirvatham, A.J., et al., Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells[J]. Endocrinology,2006.147(1):257-271.
    9. De Marzo AM, Meeker AK, Zha S, Human prostate cancer precursors and pathobiology[J]. Urology.2003 62:55-62
    10. Samy,T.S;Schwacha,M.G;Cioffi,W.G et al. Androgen and estrogen receptors in splenic T lymphocytes:effects of flutamide and trauma-hemorrhage[J]. Shock.2000,14(4):465-470.
    11. Liva,S.M;Voskuhl,R.R. Testosterone Acts Directly on CD4+ T Lymphocytes to Increase IL-10 Production[J].Immunol.2001,8(167):2060-2067.
    12. Samy,T.S;Knoferl,M.W;Zheng,R. et al. Divergent Immune Responses in Male and Female Mice after Trauma-Hemorrhage:Dimorphic Alterations in T Lymphocyte Steroidogenic Enzyme Activities[J].Endocrinology.2001,42,3519-3529.
    13. Stenger S,Mazzaccaro RJ.Uyemura K, et al. Differential effects of cytolytic T cell subsets on intracellular infection [J]. Science,1997,276(5319):1684-1687.
    14. Kanda,N Kanda,N;Tsuchida,T;Tamaki,K. Testosterone inhibits immunoglobulin production by human peripheral blood mononuclear cells[J].Clin.Exp.Immunol.1996,106(2):410-415.
    15. Cutolo M, Sulli A, Capellino S, et al.Sex hormones influence on the immune system:basic and clinical aspects in autoimmunity[J]. Lupus,2004,13:635-638.
    16. Kanda,N;Tsuchida,T; Tamaki,K. Testosterone suppresses anti-DNA antibody production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus[J]. Arthritis Rheum, Sep 1997; 40(9):1703-1711.
    17. Smithson G. Increased B lymphopoiesis in genetically sex steroid-defficient hypogonadal mice[J].Exp Med,1994,180(2):717-719.
    18. Farrar MA, Schreiber RD. The molecular cell biology of interferon-y and its receptors [J]. Annu Rev Immunol,1993,11:571-611.
    19. Boehm U, Klamp T, Groot M, et al. Cellular responses tointerferon-γ [J]. Annu Rev Immunol,1997,15:749-795.
    20. Kominsky, S.L., et al., Down-regulation of neu/HER-2 by interferon-gamma in prostate cancer cells[J]. Cancer Res,2000.60(14):3904-3908.
    21. Twillie, D.A., et al., Interleukin-6:a candidate mediator of human prostate cancer morbidity[J]. Urology,1995.45(3):542-549.
    22. Ruiz-Ruiz Cand A Lopez-Rivas. Mitochondria-dependent and-independent mechanisms in tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis are both regulated by interferon-gamma in human breast tumour cells[J]. Biochem J,2002.365(Pt 3): 825-832.
    23. Park, S.Y., et al., IFN-gamma enhances TRAIL-induced apoptosis through IRF-1[J]. EurJ Biochem,2004.271(21):4222-4228.
    24. Ichikawa, T., et al., Involvement of IL-lbeta and IL-10 in IFN-alpha-mediated antiviral gene induction in human hepatoma cells[J]. Biochem Biophys Res Commun,2002.294(2):414-422.
    25. Malathi, K., et al., A transcriptional signaling pathway in the IFN system mediated by 2'-5'-oligoadenylate activation of RNase L[J]. Proc Natl Acad Sci U S A,2005. 102(41):14533-14538.
    26. Aizenberg, V.L., et al., [Regional anesthesias in children--the concept, advantages and general principles[J]. Anesteziol Reanimatol,1998(1):22-24.
    27. Pestka, S., C.D. Krause, and M.R. Walter, Interferons, interferon-like cytokines, and their receptors[J]. Immunol Rev,2004.202:8-32.
    28. Yu h, Jove r. The STATs of cancer-new molecular targets come of age[J]. Nat Rev Cancer, 2004,4 (2):97-105.
    29. Oulyouz,Marfak I, Gachard N, et al. Identification of a novel p53-dependent activation pathway of STAT1 by antitumour genotoxic agents [J]. Cell Death Differ,2008,15 (2):376-385.
    30. Kim HS, Leem S. STAT1 as a key modulator of cell death[J]. Cell Signal,2007,19 (3):454-465.
    31. Ouchi T,Lee S W,Ouchi M,et al.Collaboration of signal transducer and activator of transcription 1 (STAT1) and BRCA1 in differential regulation of IFN-gamma target
    genes[J].Proc Natl Acad Sci U S A,2000,97(10):5208-5213.
    32. Costa-Pereira,A.P.,et al., Mutational switch of an IL-6 response to an interferongamma-like response[J]. Proc Natl Acad Sci U S A,2002.99(12):8043-8047.
    33. Ram PT, Iyengar RG Protein coupled receptor signaling hrough the Src and Stat3 pathway: role in proliferation and ransformation [J]. Oncogcne,2001,20(13):1601-1606.
    34. Dunn, G.P., et al., IFN unresponsiveness in LNCaP cells due to the lack of JAKlgene expression[J]. Cancer Res,2005.65(8):3447-3453.
    35. Porta,C., et al., Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively[J]. Oncogene,2005.24(4):605-615.
    36. Selleck WA, Canfield SE, Hassen WA, et al. IFN-gamma sensitization of prostate cancer cells to Fas-mediated death:a gene therapy approach[J]. Mol Ther,2003,7 (2):185-192.
    37. Philip, M., D.A. Rowley, and H. Schreiber, Inflammation as a tumor promoter in cancer induction[J]. Semin Cancer Biol,2004.14(6):433-439.
    38. Kalvakolanu, D.V., Interferons and cell growth control[J]. Histol Histopathol,2000.15(2):523-537.
    39. Blay J Y, Negrier S, Combaret V, et al. Serum level of interleukin 6 as a p rognosis factor in metastatic renal cell carcinoma [J]. Cancer Res,1992,52 (12):3317-3322.
    40. Sharma S, Stolina M, LinY, et al. T cell-derived IL-10 promotes lung cancer growth by suppressing both T cell and APC function[J]. J Immunol,1999,163 (9):5020-5028.
    41. AsirvathamAJ, Schmidt M, Gao B, et al. Androgens regulate the immune/inflammatory response and cell survival pathways in rat ventral prostate epithelial cells[J]. Endocrinology, 2006,147(1):257-271.
    42. Culig Z, Bartsch G and Hobisch A. Interleukin-6 regulates androgen receptor activity and prostate cancer cell growth[J]. Mol Cell Endocrinol,2002,197(1/2):231-238.
    43. Drachenberg, D.E., et al., Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer[J]. Prostate,1999.41(2):127-133.
    44. Adler, H.L., et al., Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma[J]. J Urol,1999,161(1):182-187.
    45. Twillie, D.A., et al., Interleukin-6:a candidate mediator of human prostate cancer morbidity[J]. Urology,1995.45(3):542-549.
    46. Chung TD.Yu JJ,Spiotto MT,et al. Characterization of the role of IL-6 in the progression of prostate cancer[J]. Prostate,1999,38(3):199-207.
    47. Giri D, Ozen M and Ittmann M. Interleukin-6 is an autocrine growth factor in human prostate cancer[J]. Am J Pathol,2001,159(6):2159-2165.
    48. Giri D, M. Ozen, and M. Ittmann, Interleukin-6 is an autocrine growth factor in human prostate cancer[J]. Am J Pathol,2001.159(6):2159-2165.
    49. Hyytinen, E.R., et al., Genetic changes associated with the acquisition of androgen independent growth, tumorigenicity and metastatic potential in a prostate cancer model[J]. Br J Cancer,1997,75(2):190-195.
    50. Palmer J, P.J Hertzog and A. Hammacher, Differential expression and effects of gp130 cytokines and receptors in prostate cancer cells[J]. Int J Biochem Cell Biol,2004.36(11):2258-2269.
    51. Yang J, Chatterjee-Kishore M, Staugaitis SM, et al. Novel roles of unphosph-orylated STAT3 in oncogenesis and transcriptional regulation 1[J].Cancer Res,2005,65(3):939-947.
    52. Bromberg J,Darnell J E J r. The role of STATs in t ranscriptional cont rol and t heir impact on cellular function [J]. Oncogene,2000,19:2468-2473.
    53. Calov, Migl iavacca M, Bazan V, et al. STAT proteins:from normal control of cellular events to tumorigenesis [J]. J Cell Physiol,2003,197 (2):157-168.
    54. Hirano T, Ishihara K, HibiM. Roles of STAT3 in mediating the cell growth, differentiation and survival signals relayed through the IL-6 family of cytokine receptors [J]. Oncogene,2000,19 (21):2548-2556.
    55. Mora L B,Buettner R,Seigne J,et al. Constitutive activation of Stat3 in human prostate tumors and cell lines:direct inhibition of Stat3 signaling induces apoptosis of prostate cancer cells [J].Cancer Res,2002,62:6659-6666.
    56. Lee, S.O., et al., RNA interference targeting Stat3 inhibits growth and induces apoptosis of human prostate cancer cells. Prostate,2004.60(4):303-309.
    57. Barton, B.E., et al., Signal transducer and activator of transcription 3 (STAT3) activation in prostate cancer:Direct STAT3 inhibition induces apoptosis in prostate cancer lines[J]. Mol Cancer Ther,2004,3(1):11-20.
    58. Siegall C B, Schwab G, Nordan R P,et al. Expression of the interleukin 6 receptor and interleukin-6 in prostate carcinoma cells[J].Cancer-Res,1990,50(24):7786-7788.
    59. Zerbini L F, Wang Y H, Cho J Y, et al. Constitutive activation of nuclear factor kappaB p50/p65 and Fra-1 and JunD is essential for deregulated interleukin 6 expression in prostate cancer[J]. Cancer Res,2003,63(9):2206-2215.
    60. Drachenberg D E, Elgamal A, Rowbotham R, et al. Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer[J]. Prostate,1999,41(2):127-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700