控制性超排卵中过早黄素化对体外受精影响妊娠结局及分子机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
控制性超排卵(controlled ovarian hyperstimulation,COH)是目前临床体外受精-胚胎移植(in vitro fertilization and embryo transfer,IVF-ET)治疗程序中常规进行的程序。随着辅助生殖技术的快速发展,促排药物的不断改进以及COH方案和监测手段的不断完善,胚胎移植后的着床率及临床妊娠率都得以不断提高,然而仍有超过半数的治疗周期未能妊娠,其影响妊娠成功的因素和机制纷繁而复杂。其中在控制性超排卵中,注射人绒毛膜促性腺激素(human chorionicgonadotropin,HCG)日常常发生过早的孕酮水平(progesterone,P)升高,同时在黄体生成素(luteinizing hormone,LH)的作用下伴随卵巢颗粒细胞过早向黄体细胞分化的过程,常称为过早黄素化(premature luteinization,PL)。关于过早黄素化产生原因,在GnRH激动剂(GnRH-agonist)或拮抗剂(GnRH-antagonist)的运用以前,一直认为是黄体生成素所致,但是GnRH-a在临床的运用已经能有效的抑制LH,但过早黄素化的发生率仍然高达13%至61%。研究表明过早黄素化对IVF-ET治疗的影响主要是损害卵子和胚胎质量,诱导卵母细胞过早恢复减数分裂,使子宫内膜过早向分泌期转化,影响子宫内膜容受性,从而降低临床妊娠率,但是也有研究认为过早黄素化对临床结局无影响。关于过早黄素化的分子机理国外有少量研究认为可能与生长分化因子9(growth differentiation factor-9,GDF9)以及神经生长因子(nerve growth factor,NGF)表达异常有关,鉴于目前国内外对过早黄素化与IVF-ET临床结局的关系的研究仍然存在争议以及我们对控制性超排卵中发生过早黄素化的分子机制远未了解,本研究采用回顾性统计学方法分析了HCG注射日过早黄素化与IVF结局的关系,并利用抑制消减杂交技术、macroarray分离和鉴定了过早黄素化颗粒细胞差异表达基因,并用real-time PCR、Western blot、流式细胞仪等技术检测了过早黄素化颗粒细胞特异基因mRNA和蛋白水平的表达差异,并分析了过早黄素化与颗粒细胞凋亡发生之间的关系,以期对研究过早黄素化的发生机制、预防、治疗对策以及远期指导临床超排卵合理用药提供科学依据。
     第一章控制性超排卵中过早黄素化对IVF结局的影响
     【目的】鉴于目前国内外对过早黄素化与IVF-ET临床结局的关系的研究仍然存在争议探讨长方案体外受精-胚胎移植(IVF-ET)控制性超排卵中注射HCG日过早黄素化现象与IVF-ET妊娠率的关系,分析过早黄素化病因。
     【方法】回顾性分析2278个长方案进行IVF-ET的治疗周期,采用ROC曲线筛选过早黄素化诊断阈值并根据该阈值进行分组,从各组随机抽取316个周期比较临床参数。线性回归分析hCG日孕激素与其他临床变量之间的关系。
     【结果】随着过早黄素化程度加深(注射hCG日孕激素值升高),临床妊娠率呈明显的下降趋势;P<1.1 ng/mL是过早黄素化的最佳诊断阈值,具有94.6%的敏感度,45.6%的特异度;有19.6%(446)的治疗周期发现过早黄素化,过早黄素化组的FSH总用量(1949.0±595.8vs.1742.9±616.9),注射HCG日血清E_2(3065.9±1319.8 vs.2435.3±1063.5)和LH(3.1±2.8 vs.2.4±2.9)水平以及回收卵数(13.3±5.7 vs.11.3±5.6)明显高于非过早黄素化组周期,但是受精率(58.3±0.36 vs 69.2±0.24),IVF优质胚胎数(2.3±3.8 vs 3.5±2.6)及IVF-ET妊娠率(35.8%vs 48.2%)显著低于非过早黄素化组。线性回归分析仅鉴定出孕激素升高与E_2水平(r=0.135,P=0.016)和回收卵数(r=0.239,P<0.01)相关。过早黄素化组的总临床妊娠率明显低于非过早黄素化组(38.6%vs 48.1%),两组间移植胚胎数,ICSI优质胚胎数和ICSI妊娠率无明显差异。
     【结论】首次采ROC曲线筛选诊断过早黄素化诊断阈值。中国女性诊断过早黄素化的最好的诊断标准应该是P>1.1ng/ml,过早黄素化的出现可能与HCG日雌激素和回收卵子数有关,IVF-ET周期中过早黄素化可能导致卵子质量下降,最终导致临床妊娠率显著下降;然而在ICSI周期中过早黄素化对优质胚胎数和妊娠率似乎并无显著影响,在临床中患者如若出现过早黄素化迹象,可适时建议进行ICSI治疗,以避开IVF-ET周期中PL对卵子的负面影响。
     第二章控制性超排卵中过早黄素化颗粒细胞差异表达基因的分离和鉴定
     【目的】在COH中常常发生过早的孕激素升高,同时伴发过早卵巢颗粒细胞向黄体细胞分化的过程,称为过早黄素化。其分子机理尚不清楚,为探索其分子基础,应用抑制消减杂交技术(Suppression subtractive hybridization,SSH)构建过早黄素化cDNA消减文库,并采用macroarray(膜阵列)和RT-PCR鉴定相关的差异表达基因,了解这些差异基因与过早黄素化发生的关系。
     【方法】分离入选的过早黄素化病人(PL组30例)和对照组病人(非PL组30例)的卵泡液颗粒细胞。抽提颗粒细胞总RNA,逆转录合成cDNA,cDNA经RsaI酶切后,将PL组cDNA分成两组,分别与两种不同的接头街接,再与对照组cDNA进行两次消减杂交及两次抑制巢式PCR反应,将产物与pMD18-T载体连接,构建cDNA消减文序,并转染大肠杆菌进行文库扩增,随机挑选阳性克隆经PCR扩增后进行macroarray(膜阵列)杂交验证并RT-PCR半定量分析。经验证的克隆送测序并进行生物信息学同源性分析。
     【结果】179个阳性克隆被随机挑选出来,86个克隆送测序并进行生物信息学分析。其中84个克隆代表了47个已知基因。这些基因参与类固醇合成,蛋白翻译,细胞黏附,细胞代谢,脂质代谢以及细胞凋亡。
     【结论】首次成功构建了COH中过早黄素化颗粒细胞的差异基因的cDNA消减文库。这些基因功能涉及类固醇合成,蛋白翻译,细胞黏附,细胞代谢,脂质代谢以及凋亡。过早黄素化的发生可能与颗粒细胞内过度活跃的类固醇合成,脂质合成,凋亡活动以及细胞因子表达异常有关,研究这些差异基因与过早黄素化发生之间的关系,将有助于我们进一步了解过早黄素化发生的分子机制。
     第三章过早黄素化差异基因mRNA及蛋白分析
     【目的】进一步研究这些差异基因及编码蛋白在过早黄素化发生进程中的差异表达情况以及作用机制,我们根据第二章的研究结果、差异基因与过早黄素化发生的相关性以及我们所能获得的研究材料,挑选出部分基因采用real-time PCR和Western blot进行mRNA水平和蛋白水平的研究。
     【方法】分离入院行辅助生殖技术治疗时发生过早黄素化病人和未发生过早黄素化病人的卵泡液颗粒细胞,一部分颗粒细胞提取RNA和细胞总蛋白,RNA逆转录合成cDNA,采用real-time PCR分析两组间类固醇急性合成调节蛋白(steroidogenic acute regulator,StAR)、乙酰辅酶A羧化酶(Acetyl-CoA carboxylase,ACC)、GDF9、bcl-2(B-cell lymphomaleukema 2)、P450aro(P450 aromatase)、P450侧链裂解酶(P450side-chain cleavage,P450ssc)、PHLDA1(pleckstrin homology-likedomain,family A,member 1)以及ubiquitin protein ligase E3的mRNA表达差异,细胞总蛋白采用Western blot方法分析两组间StAR、GDF9、bcl-2、PHLDA1蛋白表达差异。另一部分颗粒细胞分离后培养一部分添加GDF9(200ng/ml)干预,继续48小时培养观察GDF9对StAR蛋白的表达的影响。
     【结果】在过早黄素化颗粒细胞中StAR、ACC、P450scc、PHLDA1及ubiquitin protein ligase E3的mRNA表达水平显著升高,而bcl-2和GDF9的mRNA表达下降(P<0.05)。蛋白水平上发现StAR(30kDa)、PHLDA1(40kDa)、bcl-2(26kDa)、GDF9(51kDa)蛋白均能在颗粒细胞中表达,过早黄素化颗粒细胞中StAR(30kD)和PHLDA1(40kD)蛋白表达明显上调。然而bcl-2(26kDa)和GDF9(51kD)蛋白表达水平明显下调。培养的颗粒细胞添加GDF9(200ng/ml)干预后,颗粒细胞StAR蛋白表达明显下调,但基础StAR活性并未受到影响。
     【结论】GDF9能明显抑制颗粒细胞内过度活跃的类固醇合成活性,但并不影响基础类固醇合成活性。过早黄素化的发生可能与GDF9过低表达以及凋亡基因PHLDA1表达升高和抗凋亡基因bcl-2表达过低导致的颗粒细胞凋亡活动增加有关。
     第四章IVF-ET中颗粒细胞凋亡与过早黄素化关系
     【目的】细胞凋亡(apoptosis)是指在特定信号诱导下,一系列基因按程序时空顺序表达,细胞内死亡级联反应导致程序性细胞死亡。生殖系统内组织细胞的凋亡变化在妊娠过程中有重要意义,任何一个环节失调,都可能影响妊娠的顺利进行。卵泡凋亡最初是从颗粒细胞开始发生的。在前面研究中我们在过早黄素化颗粒细胞中筛选出两个与凋亡相关的基因PHLDA1和bcl-2并发现PHLDA1表达水平上调,而抗凋亡基因bcl-2表达下降,同时观察到GDF9表达下降,因此我们推测细胞内凋亡活动上调也是过早黄素化发生的原因之一,而GDF9可能具有拮抗颗粒细胞凋亡的作用,本章的目的即为验证此假设。
     【方法】根据细胞在凋亡启动时发生细胞皱缩,细胞膜发泡等形态异常,以及细胞膜发生磷脂酰丝氨酸(phosphatidylserine,PS)外翻这一特点,采用流式细胞仪和AnnexinV/FITC和PI双标法检测了过早黄素化颗粒细胞凋亡情况。此外,我们观察了添加200ng/mlGDF9干预对颗粒细胞凋亡的影响。
     【结果】与非过早黄素化颗粒细胞(P<1.1ng/ml)相比,过早黄素化颗粒细胞形态异常率升高(16.28%vs 5.38%,P<0.05);过早黄素化组颗粒细胞的平均凋亡率明显增加(25.43%vs 10.05%,P<0.05);过早黄素化组(P=1.4ng/ml、1.7ng/ml、2.0ng/ml)添加200ng/mlGDF9干预后颗粒细胞凋亡率显著下降
     【结论】过早黄素化颗粒细胞凋亡活动增加,而GDF9能抑制过度活跃的凋亡活动,过早黄素化颗粒细胞GDF9低表达和颗粒细胞的凋亡可能是造成过早黄素化患者卵母细胞质量下降的原因之一。
Objective: To evaluate the effect of premature luteinization (PL)on the clinical outcomes and analyse the cause of PL in long GnRH-a cycles. Methods: 2278 patients with GnRH-a down regulation long protocol in our institution from May 2003 to May 2006 were assessed retrospectively. The patients were grouped (PL group and non-PL group) according to serum P cut-off threshold value on the day of hCG administration (P>1.1 ng/mL or P<1.1 ng/mL) which was determined by receiver operating characteristic (ROC) curve. Of them, 316 patients were sampling randomly from both groups respectively to compare clinical variable. Ovarian down-regulation was achieved using GnRH agonist downregulation long protocol with injection of GnRH-a in the midluteal phase of the previous cycle. Ovarian stimulation was started with daily injections of r-FSH (Gonal F, 75 IU, Serono Switzerland) or human menopausal gonadotrophin (hMG) until the day of hCG administration. The cut-off progesterone threshold was determined by ROC curve. The main outcome measures included fertilization rates and clinical pregnancy rates. Groups were compared by using the unpaired Student t, chi-squared test. The relationships between P level on hCG day and other variables were analyzed by multiple linear regression analysis. P<0.05 was considered statistically significant.
     Results: The ROC curve showed a progesterone value (P>1.1 ng/mL ) as the most efficient cut-off threshold to discriminated between the pregnant and no pregnant cycles with a 94.6% sensitivity,45.6% specificity. Four hundred forty six (19.6%) of the 2278 patients enrolling in this study demonstrated premature luteinization. The total FSH dose(1949.0±595.8 vs. 1742.9±616.9), E_2(3065.95±1319.8 vs. 2435.3±1063.5), LH (3.13±2.8 vs. 2.36±2.99) level on hCG day, number of mature oocytes retrieved (13.3±5.7 vs. 11.3±5.6)were significantly higher in PL group as compared to the non-PL group. However, the fertilization rate (58.3±0.36% vs69.2±0.24%)and the number of good quality embryo(2.3±3.8vs3.5±2.6)were significantly lower in the PL group. The multiple linear regression analysis did not show a positive and significant association between the total FSH dose, LH, PRL and the serum P levels, but show a positive and significant association between E_2 (r=0.135, P=0.016), number of oocytes retrieved (r=0.239, P<0.01) and the serum P level. The fertilization rate and number of high quality embryos were similar between the two groups. The clinical pregnancy rate (38.6% vs. 48.1%) was significantly lower in the PL group.
     Conclusions: The best P cut-off value to define premature luteinization may be P>1.1 ng/ml. Premature luteinization could adversely affect the pregnancy rate of IVF-ET in long GnRH-a cycles and it seems to have negative impact on oocytes quality. Premature luteinization could not be related to low ovarian reserve. Premature progesterone elevation of PL is related to E_2 on hCG day and number of mature oocytes retrieved.
     Objective: A premature serum progesterone (P) elevation untimely before HCG administration during controlled ovarian hyperstimulation (COH) and the concomitant process of granulosa cells differentiate into luteal cells is usually called premature luteinization (PL), which could adversely affect clinical outcomes in IVF-ET. However, the molecular mechanisms of PL are not completely understood. The aim of this stuy is to explore the molecular mechanisms of premature luteinization.
     Methods: Suppression subtractive cDNA hybridization was performed to identify genes differentially expressed in granulosa cell of premature luteinization. Differentially expressed genes were confirmed by macroarray dot blot analysis and real- time PCR. The differential cDNA fragments was sequenced and further analyzed by bioinformatics.
     Results: 179 putative positive clones were randomly picked,and 86 clones were sequenced and searched in the GenBank. Among them, 84 clones represented 47 identified genes. These genes were involved in steroidogenesis, translation,cell adhesion,cellular metabolism, lipid metablism and apoptosis.
     Conclusions: The differentially cDNA subtractive library of premature luteinization was first successfully constructed. The differentially expressed genes may have an important role in process of PL. Further studies of these genes should shed new light on understanding the molecular mechanism of premature luteinization.
     Objective: To explore the relationship between the differentially expressed genes and the process of premature luteinization.
     Methods: In the previous chapter we have constructed the differentially cDNA subtractive library of premature luteinization successfully and suggested these differentially expressed genes may have an important role in process of premature luteinization. According to their potential roles in the premature luteinization ,several genes and their encoding proteins were selected from the SSH cDNA library for further studies at mRNA or protein level by real-time PCR and Western blot. And we also examined the effect of growth differentiation facor-9 treatment on the expression of steroidogenic acute regulatory protein (StAR) by Western blot.
     Results: As the results,we observed a remarkable mRNA up-regulation of steroidogenic acute regulatory protein (StAR), Acetyl-CoA carboxylase (ACC), P450 side chain cleavage enzyme (P450scc), pleckstrin homology- like domain, family A, member l(PHLDAl) and ubiquitin protein ligase E3 in PL granulosa cell and concurrent mRNA down-regulation of growth differentiation factor-9 (GDF9) and bcl-2. Significant up-regulations were also observed in the StAR (30kD), PHLDA1(40kD) protein levels. However, the GDF9(51kD) and bcl-2 (26kDa) protein level significantly reduced in the PL granulosa cells. GDF-9 treatment inhibited premature luteinization granulosa StAR expression but did not affect basal StAR expression.
     Conclusions: So we concluded the increased expression of StAR, attenuated GDF9 protein and apoptosis induced by increased PHLDA1 and decreased bcl-2 protein may be responsible for the premature luteinization.
    
     Objective: To investigate the relationship between premature luteinizaton and granulosa cell apoptosis in controlled ovarian hyperstimulation and to investigate the anti-apoptotic effect of growth differentiation factor-9 (GDF9) in the premature luteinizaton granulosa cells.
     Methods: Granulosa cell of premature luteinization and non-premature luteinizaton patients were isolated and determined by Annexin-V/ propidium iodide (PI) Double- Staining by flow cytometry or were exposed to 200ng/ml GDF9 and then determined by the same method.
     Results: The percentage of morphological abnormal and apoptotic granulosa cell was higher in the premature luteinization group(P>1.1ng/ ml) than that of non premature luteinization group(P<1.1 ng/ml).The apoptosis percentage was significantly decreased after treatment by 200ng/ml GDF9.
     Conclusions: The increased apoptosis activity of premature luteinization granulosa cell may be related to decreased GDF9 level.
引文
[1] JoAnne S. Richards , Darryl L. Russell, Rebecca L. Robker. Molecular mechanisms of ovulation and luteinization. Molecular and Cellular Endocrinology, 1998,145:47-54.
    [2] Hamori M, Stuckensen JA, Rumpf D, et al. Premature luteinization of follicles during ovarian stimulation for in-vitro fertilization. Hum Reprod. 1987. 639-43.
    [3] Check JH, Chase JS, Nowroozi K, et al. Premature luteinization: treatment and incidence in natural cycles. Hum Reprod JT - Human reproduction, 1991. 190-3.
    [4] Ubaldi F, Camus M, Smitz J, et al. Premature luteinization in in vitro fertilization cycles using gonadotropin-releasing hormone agonist (GnRH-a) and recombinant follicle-stimulating hormone (FSH) and GnRH-a and urinary FSH. Fertil Steril,1996. 275-80.
    [5] Younis JS, Haddad S, Matilsky M, et al. Premature luteinization: could it be an early manifestation of low ovarian reserve?. Fertil Steril,1998. 461-5.
    [6] Papanikolaou EG, Kolibianakis EM, Pozzobon C, et al. Progesterone rise on the day of human chorionic gonadotropin administration impairs pregnancy outcome in day 3 single-embryo transfer, while has no effect on day 5 single blastocyst transfer. Fertil Steril,2007.
    [7] Yovel I, Yaron Y, Amit A, et al. High progesterone levels adversely affect embryo quality and pregnancy rates in in vitro fertilization and oocyte donation programs. Fertil Steril, 1995,64:128-31.
    [8] Bridges PJ, Fortune JE. Characteristics of developing prolonged dominant follicles in cattle. Domest Anim Endocrinol, 2003,25: 199-214.
    [9] Fanchin R, Righini C, Olivennes F, et al. Computerized assessment of endometrial echogenicity: clues to the endometrial effects of premature progesterone elevation. Fertil Steril, 1999,71:174-81.
    [10] Fanchin R, Hourvitz A, Olivennes F, et al. Premature progesterone elevation spares blastulation but not pregnancy rates in in vitro fertilization with coculture. Fertil Steril, 1997,68:648-52.
    [11] Younis JS, Matilsky M, Radin O, et al. Increased progesterone/ estradiol ratio in the late follicular phase could be related to low ovarian reserve in in vitro fertilization-embryo transfer cycles with a long gonadotropin-releasing hormone agonist. Fertil Steril,2001. 294-9.
    [12] Bosch E, Valencia I, Escudero E, et al. Premature luteinization during gonadotropin-releasing hormone antagonist cycles and its relationship with in vitro fertilization outcome. Fertil Steril,2003. 1444-9.
    [13] Ozcakir HT, Levi R, Tavmergen E, et al. Premature luteinization defined as progesterone estradiol ratio >1 on hCG administration day seems to adversely affect clinical outcome in long gonadotropin- releasing hormone agonist cycles. J Obstet Gynaecol Res,2004. 100-4.
    [14] Segal S, Glatstein I, McShane P, et al. Premature luteinization and in vitro fertilization outcome in gonadotropin/ gonadotropin- releasing hormone antagonist cycles in women with polycystic ovary syndrome. Fertil Steril,2008.
    [15] Melo MA, Meseguer M, Garrido N, et al. The significance of premature luteinization in an oocyte-donation programme. Hum Reprod,2006.1503-7.
    [16] C.A.Venetis, E.M.Kolibianakis, E.Papanikolaou, J.Bontis, P.Devroey and B.C.Tarlatzis. Is progesterone elevation on the day of human chorionic gonadotrophin administration associated with the probability of pregnancy in in vitro fertilization? A systematic review and meta-analysis. Human Reproduction Update, 2007,13:343-355.
    [17] Nicola Doldi, Elena Marsiglio, Alessandro Destefani, Alessandra Gessi, Giampiero Merati and Augusto Ferrari. Elevated serum progesterone on the day of HCG administration in IVF is associated with a higher pregnancy rate in polycystic ovary syndrome. Human Reproduction, 1999,14:601-605.
    [18] Fanchin R, Hourvitz A, Olivennes F, et al. Premature progesterone elevation spares blastulation but not pregnancy rates in in vitro fertilization with coculture. Fertil Steril.,1997. 648-52.
    [19] Tsung-Hsuan Lai,Fa-Kung Lee, Tseng-Kai Lin, et al. An increased serum progesterone-to- estradiol ratio on the day of human chorionic gonadotropin administration does not have a negative impact on clinical pregnancy rate in women with normal ovarian reserve treated with a long gonadotropin releasing hormone agonist protocol. Fertil Steril,2008.
    [20] Glen E. Hofrnann, Jane Khoury, Chad Michener. Elevated serum progesterone-to-estradiol ratio during gonadotropin stimulation for intrauterine insemination or in vitro fertilization is not associated with diminished ovarian reserve. Fertil Steril, 2002,78.
    [21] Fa-Kung Lee, Tsung-Hsuan Lai, Tseng-Kai Lin,et al. Relationship of progesterone/estradiol ratio on day of hCG administration and pregnancy outcomes in high responders undergoing in vitro fertilization. Fertil Steril, 2008.
    [22] Tsung-Hsuan Lai, Fa-Kung Lee, Tseng-Kai Lin, et al. An increased serum progesterone-to-estradiol ratio on the day of human chorionic gonadotropin administration does not have a negative impact on clinical pregnancy rate in women with normal ovarian reserve treated with a long gonadotropin releasing hormone agonist protocol. Fertility and Sterility, 2008.
    [23] Linden A. Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract, 2006,12:132-9.
    [24] Greiner M, Sohr D, Gobel P. A modified ROC analysis for the selection of cut-off values and the definition of intermediate results of serodiagnostic tests. J Immunol Methods, 1995,185:123-32.
    [25] Eldar-Geva T, Margalioth EJ, Brooks B, et al. The origin of serum progesterone during the follicular phase of menotropin-stimulated cycles. Hum Reprod, 1998,13:9-14.
    [26] Yamamoto N, Christenson LK, McAllister JM, et al. Growth differentiation factor-9 inhibits 3'5'-adenosine monophosphate- stimulated steroidogenesis in human granulosa and theca cells. J Clin Endocrinol Metab, 2002,87:2849-56.
    [27] Leon J. Spicer , Pauline Y. Aad , Dustin T. Allen. Growth Differentiation Factor 9 (GDF9) Stimulates Proliferation and Inhibits Steroidogenesis by Bovine Theca Cells: Influence of Follicle Size on Responses to GDF9. BIOLOGY OF REPRODUCTION, 2008,78:243-253.
    [28] Salas C, Julio-Pieper M, Valladares M, et al. Nerve growth factor-dependent activation of trkA receptors in the human ovary results in synthesis of follicle-stimulating hormone receptors and estrogen secretion. J Clin Endocrinol Metab, 2006,91:2396-403.
    [29] Okutsu Y, Itoh MT, Takahashi N, et al. Exogenous androstenedione induces formation of follicular cysts and premature luteinization of granulosa cells in the ovary. Fertil Steril, 2008.
    [30] Diachenko L , Lau Y F , Campbell A P , et al . Supression subtractive hybridization : a method for generating differentially regulated or tissue sepecific cDNA probe and libraries . Proc Natl Acad Sci USA , 1996,93:6025 - 6030.
    [31] K. Terras, S. Gasca, F. Zhioua, T. Hfaiedh, L. Hamdoun, S. Hamamah. Comparing the gene expression profile ofhumanendometrial cells between day 2 (1h+2) andday 7 (1h+7) after the 1h surge, during natural cycles of women scheduled for controlled ovarian stimulation. Fertility and Sterility, 2007,88:194.
    [32] Napoli C, Lerman LO, Sica V. Microarray analysis: a novel research tool for cardiovascular scientists and physicians. Heart, 2003,89: 597-604.
    [33] Miller RA, Galecki A, and Shmookler-Reis RJ. Interpretation, design,and analysis of gene array expression experiments. J Gerontol A Biol Sci Med Sci, 2001,56:B52-B57.
    [34] Diatchenko L , Lukyanov S , Lau Y F , et al . Suppression subtractive hybridization : a versatile method for identifying differentially expressed genes . Methods Enzymol, 1999,303:349 - 380.
    [35] Diachenko L , Lau Y F , Campbell A P , et al . Supression subtractive hybridization : a method for generating differentially regulated or tissue2sepecific cDNA probe and libraries . Proc Natl Acad Sci USA , 1996,93:6025-6030.
    [36] Diachenko L , Lau Y F , Campbell A P , et al . Supression subtractive hybridization : a method for generating differentially regulated or tissue sepecific cDNA probe and libraries. Proc Natl Acad Sci USA , 1996,93:6025 - 6030.
    [37] Sudip Sen , Bushra Ateeq , Himani Sharma. Molecular profiling of genes in squamous cell lung carcinoma in Asian Indians. Life Sciences, 2008,82:772-779.
    [38] Nannan Liu , Huqi Liu , Fang Zhu . Differential expression of genes in pyrethroid resistant and susceptible mosquitoes, Culex quinquefasciatus (S.). Gene, 2007,394:61-68.
    [39] Fayad T, Levesque V, Sirois J, et al. Gene expression profiling of differentially expressed genes in granulosa cells of bovine dominant follicles using supper- ssion subtractive hybridization. Biol Reprod, 2004,70:523-33.
    [40] Xiao-Wei Xing, Lu-Yun Li, Gang Liu, Jun-Jiang Fu, Xiao-Jun Tan, and Guang-Xiu Lu. Identification of a Novel Gene SRG4 Expressed at Specific Stages of Mouse Spermatogenesis.Acta Biochim Biophys Sin,2004,36:351-359.
    [41]姜宏,李麓芸,卢光琇.小鼠生精细胞凋亡相关基因的分子克隆.生物化学与生物物理学报,2001,33:421-5.
    [42]杜鹃,林戈,卢光琇.人胚胎干细胞和分化细胞差别基因的筛选.遗传学报,2004.31:956-62.
    [43]JoAnne S.Richards,Darryl L.Russell,Rebecca L.Robker.Molecular mechanisms of ovulation and luteinization.Molecular and Cellular Endocrinology,1998,145:47-54.
    [44]JoAnne S.Richards,Darryl L.Russell,Scott Ochsner.Novel Signaling Pathways That Control Ovarian Follicular Development,Ovulation,and Luteinization.Recent Prog.Horm.Res,2002,57:195.
    [45]Strauss JF 3rd,Kallen CB,Christenson LK,et al.The steroidogenic acute regulatory protein(STAR):a window into the complexities of intracellular cholesterol trafficking.Recent Prog Horm Res,1999,54:369-94.
    [46]Walter L.Miller.StAR Search-What We Know about How the Steroidogenic Acute Regulatory Protein Mediates Mitochondrial Cholesterol Import.Mol.Endocrinol,2007,21:589 - 601.
    [47]Carlos Stocco,Carlos Telleria,and Geula Gibori.The Molecular Control of Corpus Luteum Formation,Function,and Regression.Endocrine Reviews,2007,28:117-149.
    [48]Kazuyoshi Tsutsui.Progesterone Biosynthesis and Action in the Developing Neuron.Endocrinology,2008,149:2757 - 2761.
    [49]Wright TC,Cant JP,Brenna JT,McBride BW.Acetyl CoA carboxylase shares control of fatty acid synthesis with fatty acid synthase in bovine mammary homogenate.J Dairy Sci,2006,89:2552-8.
    [50]Davis MS,Solbiati J,Cronan JE Jr.Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli.J Biol Chem,2000,275:28593-8.
    [51]Amsterdam A,Keren-Tal I,Aharoni D.Steroidogenesis and apoptosis in the mammalian ovary.Steroids,2003,68:861-867.
    [52]Mahmoud R.Hussein.Apoptosis in the ovary:molecular mechanisms.Human Reproduction Update,2005,11:162-178.
    [53]Park CG,Lee SY,Kandala G et al.A novel gene product that couples TCR signaling to Fas(CD95) expression in activation-induced cell death. Immunity, 1996,4:583-591.
    [54] R(?)diger Neef, Martina A. Kuske, Elma Prols. Identification of the Human PHLDA1/TDAG51 Gene: Down-Regulation in Metastatic Melanoma Contributes to Apoptosis Resistance and Growth Deregulation. CANCER RESEARCH, 2002,62:5920-5929.
    [55] Nagai MA, Fregnani JH, Netto MM. Down-regulation of PHLDA1 gene expression is associated with breast cancer progression. Breast Cancer Res Treat, 2007,106:49-56.
    [56] AC Marchiori, DA Casolari, and MA Nagai. Transcriptional up-regulation of PHLDA1 by 17beta-estradiol in MCF-7 breast cancer cells. Braz J Med Biol Res, 2008,41:579-82.
    [57] Hsu SY, Lai RJ, Finegold M, et al. Targeted overexpression of Bcl-2 in ovaries of transgenic mice leads to decreased follicle apoptosis, enhanced folliculogenesis, and increased germ cell tumorigenesis. Endocrinology, 1996,137:4837-4843.
    [58] Sasson, R, Tajima, K, Amsterdam, A. Glucocorticoids Protect against Apoptosis Induced by Serum Deprivation, Cyclic Adenosine 3',5'-Monophosphate and p53 Activation in Immortalized Human Granulosa Cells: Involvement of Bcl-2. Endocrinology, 2001,142:802-811.
    [59] McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth differentiation factor-9. Mol Endocrinol, 1995,9:131-136.
    [60] Elvin JA, Yan C, Matzuk MM. Oocyte-expressed TGF-Psuperfamily members in female fertility. Mol Cell Endocrinol, 2000,159:1-5.
    [61] Dong J, Albertini DF, Nishimori K, et al. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature, 1996,383:531-535.
    [62] Li-Ming Gui and Ieuan M. Joyce. RNA Interference Evidence That Growth Differentiation Factor-9 Mediates Oocyte Regulation of Cumulus Expansion in Mice. BIOLOGY OF REPRODUCTION, 2005,72:195-199.
    [63] Hayashi M, McGee EA, Min G, et al. Recombinant growth differentiation factor-9 (GDF-9) enhances growth and differentiation of cultured early ovarian follicles. Endocrinology, 1999,140:1236-1244.
    [64] Prochazka R, Nemcova L, Nagyova E. Expression of growth differentiation factor 9 messenger RNA in porcine growing and preovulatory ovarian follicles. Biol Reprod, 2004,71:1290-5.
    [65] Huang H, Huang Q, Wu S, et al. Growth differentiation factor-9(GDF-9)mRNA expression in human granulosa cells:relation to IVF outcome. Fertil Steril, 2001,76:559.
    [66] YILI YANG, XIAODAN YU. Regulation of apoptosis: the ubiquitous way. The FASEB Journal, 2003,17:790-799.
    [67] Eyal Reinstein, MD, PhD, and Aaron Ciechanover, MD, DSc. Narrative Review: Protein Degradation and Human Diseases: The Ubiquitin Connection. Annals of Internal Medicine, 2006,145:676-684.
    [68] Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem, 1998,67:425-79.
    [69] Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta, 2006,1695:55-72.
    [70] Yang CS, Yu C, Chuang HC, Chang CW, Chang GD, Yao TP, Chen H. FBW2 targets GCMa to the ubiquitin-proteasome degradation system. J Biol Chem, 2005,280:10083-90.
    [71] Ronald W. Estabrook and William E. Rainey. Twinkle, twinkle little StAR, how we wonder what you are. PNAS, 1996,93:13552-13554.
    [72] Miller WL. Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta, 2007,1771:663-76.
    [73] BeniflaJI, SiferC, BringuierAF, et al. Induced apoptosis and expression of related protein in granulosa cells from women undergoing IVF: a preliminary study. Hum Reprod, 2002,17:916-920.
    [74] Oosterhuis GJE, Michgelesn HB, Lambalk CB, et al. Apoptotic cell death in human granulOsalutein cells: a possible indicator of in vitro fertilization outcome. Fertil Steril, 1998,70:747-749.
    [75] SiferC, Benifla JL。 Bringuier AF, et al. Could induced apoptosis of human granulosa cells predict in vitro fertilization-embryo transfer outcome?. Eur J Obste Gynecol Reprod Biol, 2002,103:150-153.
    [76] Otsuka F, Yamamoto S, Erickson GF, Shimasaki S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem, 2001,276:11387-11392.
    [77] Johnson AL, Bridgham JT, Witty JP, Tilly JL. Susceptibility of avian ovarian granulosa cells to apoptosis is dependent upon stage of follicle development and is related to endogenous levels of bcl-x long gene expression. Endocrinology, 1996,137:2059-66.
    [78] Tilly JL. Apoptosis and ovarian function. Rev Reprod, 1996,1:162-72.
    [79] Ana Clavero, Jose A. Castillab, Ana I. Nunez. Apoptosis in human granulosa cells after induction of ovulation in women participating in an intracytoplasmic sperm injection program. European Journal of Obstetrics & Gynecology and Reproductive Biology, 2003,110:181-185.
    [80] O'Brien IE, Reutelingsperger CP, Holdaway KM. The use of Annexin-V and TUNEL to monitor the progression of apoptosis in plants. Cytometry, 1997,29:28-33.
    [81] Van Engeland M, Nieland LJ, Ramaekers FC. Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry, 1998,31:1-9.
    [82] Elvin JA, Yan C, Wang P, et al. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol, 1999,13:1018-1034.
    [83] Yan C, Wang P, DeMayo J, DeMayo FJ, Elvin JA, Carino C, Prasad SV, Skinner SS, Dunbar BS, Dube JL, Celeste AJ, Matzuk MM. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function. Mol Endocrinol, 2001,15:854-866.
    [84] Tamer S. Hussein, David A. Froiland, Fred Amato. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J. Cell Sci, J. Cell Sci, Nov 2005; 118: 5257 - 5268, 2005,18:5257-5268.
    [85] Koji Sugiura, You-Qiang Su, Francisco J. Diaz. Oocyte-derived BMP15 and FGFs cooperate to promote glycolysis in cumulus cells. Development, 2008,134:2593-2603.
    [86] Makoto Orisaka, Sanae Orisaka, Jin-Yi Jiang. Growth Differentiation Factor 9 Is Antiapoptotic during Follicular Development from Preantral to Early Antral Stage. Mol. Endocrinol, 2006,20:2456 - 2468.
    [1]Kerr JF,Wyllie AH,Currie AR.Apoptosis:a basic biological phenomenon with wide-ranging implications in tissue kinetics.Br J Cancer,1972,26:239-257.
    [2]Mahmoud R.Hussein.Apoptosis in the ovary:molecular mechanisms.Human Reproduction Update,2005,11:162-178.
    [3]De Pol A,Marzona L,Vaccina F,Negro R,et al.Apoptosis in different stages of human oogenesis.Anticancer Res,1998,18:3457-3461.
    [4]Devine PJ,Payne CM,McCuskey MK et al.Ultrastructural evaluation of oocytes during atresia in rat ovarian follicles.Biol Reprod,2000,63:1245-1252.
    [5]James F.Curtin,Thomas G.Cotter.Live and let die:regulatory mechanisms in Fas-mediated apoptosis.Cellular Signalling,2003,15:983-992.
    [6]Khan SM,Dauffenbach LM,Yeh J.Mitochondria and caspases in induced apoptosis in human luteinized granulosa cells.Biochem Biophys Res Commun,2000,269:542-5.
    [7]Hussein MR,Haemel AK and Wood GS.Apoptosis and melanoma:molecular mechanisms.J Pathol,2003,199:275-288.
    [8]Hussein MR,Haemel AK and Wood GS.p53-related pathways and the molecular pathogenesis of melanoma.Eur J Cancer Prev,2003,12:93-100.
    [9]Morita Y and Tilly JL.Oocyte apoptosis:like sand through an hourglass.Dev Biol,1999,213:1-17.
    [10]Wei Yuan and Linda C.Giudice.Programmed Cell Death in Human Ovary Is a Function of Follicle and Corpus Luteum Status.J Clin Endocrinol Metab,1997,82:3148-3155.
    [1 l]Tilly JL, Kowalski KI, Johnson AL and Hsueh AJ. Involvement of apoptosis in ovarian follicular atresia and postovulatory regression. Endocrinology, 1991,129: 2799-2801.
    [12]McGee EA and Hsueh AJ. Initial and cyclic recruitment of ovarian follicles. Endocr Rev, 2000,21:200-214.
    [13]Jiang MR, Li YC, Yang Y et al. c-Myc degradation induced by DNA damage results in apoptosis of CHO cells. Oncogene, 2003,22:3252-3259.
    [14]Vaskivuo TE and Tapanainen JS. Apoptosis in the human ovary. Reprod Biomed Online, 2003,6:24-35.
    [15]Sugino N, Suzuki T, Kashida S, Karube A, Takiguchi S and Kato H. Expression of Bcl-2 and Bax in the human corpus luteum during the menstrual cycle and in early pregnancy: regulation by human chorionic gonadotropin. J Clin Endocrinol Metab, 2000,85:4379-4386.
    [16] Van Nassauw L, Tao L , Harrisson F . Distribution of apoptosis related proteins in the quail ovary during folliculogenesis: BCL-2, BAX and CPP32. Acta Histochem, 1999,101:103-112.
    [17]Abir R, Orvieto R, Dicker D, et al. Preliminary studies on apoptosis in human fetal ovaries. Fertil Steril, 2002,78:259-264.
    [18]Hockenbery DM , Qltvai IN , Yin XM , et al. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell, 1993,75:241-251.
    [19]Luo J, Xiao J, Tao Z and Li X. Detection of c-myc gene expression in nasopharyngeal carcinoma by nonradioactive in situ hybridization and immunohistochemistry. Chin Med J, 1997,110:229-232.
    [20]Kugu K, Ratts VS, Piquette GN, et al. Analysis of apoptosis and expression of bcl-2 gene family members in the human and baboon ovary. Cell Death Differ, 1998,5:67-76.
    [21 ]Nandedkar TD,Dharma SJ. Expression of bcl(xs) and c-myc inatretic follicles of mouse ovary. Reprod Biomed Online, 2001,3:221-225.
    [22]A Villavicencio, G Iniguez, MC Johnson, et al. Regulation of steroid synthesis and apoptosis by insulin-like growth factor I and insulin-like growth factor binding protein 3 in human corpus luteum during the midluteal phase. Reproduction, 2002,124:501 - 508.
    [23]Wada M, Amae S, Sasaki H, et al. The functional roles of porcine CD80 molecule and its ability to stimulate and regulate human anti-pig cellular response. Transplantation, 2003,75:1887-1894.
    [24]Malinin NL, Boldin MP, Kovalenko AV et al MAP3K related kinase involved in NF-kappaB induction by TNF, CD95 and IL-1. Nature, 1997, 385:540-544.
    [25]Hsu SY, Lai RJ, Finegold M et al. Targeted overexpression of Bcl-2 in ovaries of transgenic mice leads to decreased follicle apoptosis, enhanced folliculogenesis, and increased germ cell tumorigenesis. Endocrinology, 1996,137:4837-4843.
    [26]Fulda S, Sieverts H, Friesen C, et al. The CD95 (APO-1/Fas) system mediates drug-induced apoptosis in neuroblastoma cells. Cancer Res, 1997,57:3823-3829.
    [27]Franco AV, Zhang XD, Van Berkel E, et al. The role of NF-kappa B in TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis of melanoma cells. J Immunol, 2001,166:5337-5345.
    [28]Chawla-Sarkar M, Leaman DW, Borden EC. Preferential induction of apoptosis by interferon (IFN)-beta compared with IFN-alpha2: correlation with TRAIL/Apo2L induction in melanoma cell lines. Clin Cancer Res, 2001,7:1821-1831.
    [29]Arch RH and Thompson CB. 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor- associated factors and activate nuclear factor kappaB. Mol Cell Biol, 1998,18: 558-565.
    [30]Ivanov VN, Kehrl JH ,Ronai Z. Role of TRAF2/GCK in melanoma sensitivity to UV-induced apoptosis. Oncogene, 2000,19:933-942.
    [31]Raisova M, Bektas M, Wieder T, et al. Resistance to CD95/Fas-induced and ceramide-mediated apoptosis of human melanoma cells is caused by a defective mitochondrial cytochrome c release. FEBS Lett, 2000,473:27-32.
    [32]Jiang, MR, Li YC, Yang Y et al. c-Myc degradation induced by DNA damage results in apoptosis of CHO cells. Oncogene , 2003,22:3252-3259.
    [33]Kim JM, Yoon YD ,Tsang BK. Involvement of the Fas/Fas ligand system in p53-mediated granulosa cell apoptosis during follicular development and atresia. Endocrinology, 1999,140:2307-2317.
    [34]Driancourt MA, Fair T and Reynaud K. Oocyte apoptosis: when,how, why?. Contracept Fertil Sex, 1998,26:522-527.
    [35] Porter SB. Current status of clinical trials with anti-TNF. Chest, 1997,112: 339S-341S.
    [36]Hakuno N, Koji T, Yano T, et al. Fas/APO-1/CD95 system as a mediator of granulosa cell apoptosis in ovarian follicle atresia. Endocrinology, 1996,137: 1938-1948.
    [37]Bridgham JT, Johnson AL. Expression and regulation of Fas antigen and tumor necrosis factor receptor type I in hen granulosa cells. Biol Reprod, 2001,65: 733-739.
    [38]Bobe J ,Goetz FW. Molecular cloning and expression of a TNF receptor and two TNF ligands in the fish ovary. Comp Biochem Physiol B Biochem Mol Biol, 2001,129:475-481.
    [39] Wada M, Amae S, Sasaki H, I et al. The functional roles of porcine CD80 molecule and its ability tostimulate and regulate human anti-pig cellular response. Transplantation, 2003,75:1887-1894.
    [40]Hu CL, Cowan RG, Harman RM, Porter DA and Quirk SM. Apoptosis of bovine granulosa cells after serum withdrawal is mediated by Fas antigen (CD95) and Fas ligand. Biol Reprod, 2001,64:518-526.
    [41]Fenwick MA and Hurst PR. Immunohistochemical localization of active caspase-3 in the mouse ovary: growth and atresia of small follicles. Reproduction, 2002,124:659-665.
    [42]Shah M. Khan, Lisa M. Dauffenbach, John Yeh. Mitochondria and Caspases in Induced Apoptosis in Human Luteinized Granulosa Cells. Biochemical and Biophysical Research Communications, 2000,269:542-545.
    [43]Violeta Glamocolija, Katarina Vilovic, Mirna Saraga-Babic. Apoptosis and active caspase-3 expression in human granulosa cells. Fertility and Sterility, 2005,83:2005.
    [44]Song Q, Kuang Y, Dixit VM et al. A novel negative regulator of cell death, interacts with Apaf-1. Embo J, 1999,18:167-178.
    [45]Deveraux QL and Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev, 1999,13:239-252.
    [46]Haapajarvi T, Pitkanen K and Laiho M. Human melanoma cell line UV responses show independency of p53 function. Cell Growth Differ, 1999,10:163-171.
    [47]Tilly JL, Tilly KI, Kenton ML et al. Expression of members of the bcl-2 gene family in the immature rat ovary: equine chorionic gonadotropin-mediated inhibition of granulosa cell apoptosis is associated with decreased bax and constitutive bcl-2 and bcl-xlong messenger ribonucleic acid levels. Endocrinology, 1995,136:232-241.
    [48]Zwain IH , Amato P. cAMP-induced apoptosis in granulosa cells is associated with up-regulation of P53 and bax and down-regulation of clusterin. Endocr Res, 2001,27:233-249.
    [49]Miyazawa K, Shinozaki M, Hara T, et al. Two major Smad pathways in TGF-beta superfamily signaling. Genes and Cells, 2002,7:1191-1204.
    [50]Chang H, Brown CW & Matzuk MM. Genetic analysis of the mammalian transforming growth factor-beta superfamily. Endocrine Reviews, 2002,23:787-823.
    [51]Bristol SK ,Woodruff TK. Follicle-restricted compartmentalization of transforming growth factor beta superfamily ligands in the feline ovary. Biol Reprod, 2004,70: 846-859.
    [52]Billiar RB, Zachos NC, Burch MG, Albrecht ED and Pepe GJ. Up-regulation of alpha-inhibin expression in the fetal ovary of estrogensuppressed baboons is associated with impaired fetal ovarian folliculogenesis. Biol Reprod, 2003,68: 1989-1996.
    [53]Christopher B. Immunolocalization of transforming growth factor beta during follicular development and atresia in the mouse ovary. Endocr J, 2000,47:475-480.
    [54]Li-Ming Gui, Ieuan M. Joyce. RNA Interference Evidence That Growth Differentiation Factor-9 Mediates Oocyte Regulation of Cumulus Expansion in Mice. Biol Reprod, 2005,72:195-199.
    [55]Elvin JA, Yan C, Wang P, et al. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary. Mol Endocrinol, 1999,13:1018-1034.
    [56]Erickson GF, Fuqua L and Shimasaki S. Analysis of spatial and temporal expression patterns of bone morphogenetic protein family members in the rat uterus over the estrous cycle. J Endocrinol, 2004,182:203-217.
    [57]Erickson GF and Shimasaki S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod Biol Endocrinol, 2003,1:9.
    [58]Symonds D, Tomic D, Borgeest C, et al. Smad 3 regulates proliferation of the mouse ovarian surface epithelium. Anat Rec, 2003,273A:681-686.
    [59]Tomic D, Brodie SG, Deng C, et al. Smad 3 may regulate follicular growth in the mouse ovary. Biol Reprod, 2002,66:917-923.
    [60] Li F, Ambrosini G, Chu EY. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature, 1998,396:580-4.
    [61]Li F, Ackermann EJ, Bennett CF. Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat Cell Biol, 1999,1:461-466.
    [62]Johnson AL and Bridgham JT. Caspase-mediated apoptosis in the vertebrate ovary. Reproduction, 2002,124:19-27.
    [63]Xiao CW, Ash K and Tsang BK. Nuclear factor-kappaB-mediated X-linked inhibitor of apoptosis protein expression prevents rat granulosa cells from tumor necrosis factor alpha-induced apoptosis. Endocrinology, 2001,142:557-563.
    [64]Li J, Kim JM, Liston P, Li M, et al. Expression of inhibitor of apoptosis proteins (IAPs) in rat granulosa cells during ovarian follicular development and atresia. Endocrinology, 1998,139:1321-1328.
    [65]Wang Y, Asselin E,Tsang BK. Involvement of transforming growth factor alpha in the regulation of rat ovarian X-linked inhibitor of apoptosis protein expression and follicular growth by follicle-stimulating hormone. Biol Reprod, 2002,66:1672-1680.
    [66]Gougeon A and Busso D. Morphologic and functional determinants of primordial and primary follicles in the monkey ovary. Mol Cell Endocrinol, 2000,163:33-42.
    [68]Felici MD, Carlo AD, Pesce M, et al. Bcl-2 and Bax regulation of apoptosis in germ cells during prenatal oogenesis in the mouse embryo. Cell Death Differ, 1999:6,908-915.
    [69]Driancourt MA, Reynaud K, Cortvrindt R and Smitz J . Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod, 2000,5:143-152.
    [70]Amsterdam A, Sasson R, Keren-Tal I, et al. Alternative pathways of ovarian apoptosis: death for life. Biochem Pharmacol, 2003,66.
    [71]Bladergroen BA, Strik MC, Bovenschen N, et al. The granzyme B inhibitor,protease inhibitor 9, is mainly expressed by dendritic cells and at immune-privileged sites. J Immunol, 2001,166:3218-3225.
    [72]Amsterdam A, Keren-Tal I, Aharoni D, et al. Steroidogenesis and apoptosis in the mammalian ovary. Steroids, 2003,68:861-867.
    [73]Winston E. Thompson, Eric Asselin, Alicia Branch, J. Regulation of Prohibitin Expression During Follicular Development and Atresia in the Mammalian Ovary. Biol Reprod, 2004,71:282 - 290.
    [74]Sanz, M. A, Tsang, W. Y, Willems, E et al. The Mitochondrial Prohibitin Complex Is Essential for Embryonic Viability and Germline Function in Caenorhabditis elegans. J. Biol. Chem, 2003,278:32091-32099.
    [75]De Felici M. Regulation of primordial germ cell development in the mouse. Int J Dev Biol, 2000,44:575-580.
    [76]Giebel J and Rune GM. Relationship between expression of integrins and granulosa cell apoptosis in ovarian follicles of the marmoset (Callithrix jacchus). Tissue Cell, 1997,29:525-531.
    [77]Schams D, Berisha B, Neuvians T, et al. Real-time changes of the local vasoactive peptide systems (angiotensin, endothelin) in the bovine corpus luteum after induced luteal regression. Mol Reprod Dev, 2003,65:57-66.
    [78]Wandji SA, Wood TL, Crawford J, et al. Expression of mouse ovarian insulin growth factor system components during follicular development and atresia. Endocrinology, 1998,139:5205-5214.
    [79]Peter AT and Dhanasekaran N. Apoptosis of granulosa cells: a review on the role of MAPK-signalling modules. Reprod Domest Anim, 2003,38:209-213.
    [80]Suzumori N, Yan C, Matzuk MM et al. Nobox is a homeobox-encoding gene preferentially expressed in primordial and growing oocytes. Mech Dev, 2002,111: 137-141.
    [81]Rajkovic A, Pangas SA, Ballow D, et al NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science, 2004,305:1157-1159.
    [82]Huntriss J, Hinkins M, Picton H M. cDNA cloning and expression of the human NOBOX gene in oocytes and ovarian follicles. Mol Hum Reprod, 2006,12:283- 289.
    [83]Robles R, Morita Y, Mann KK, et al. The aryl hydrocarbon receptor, a basic helix- loophelixtranscription factor of the PAS gene family, is required for normal ovarian germ cell dynamics in the mouse. Endocrinology, 2000,141:450-453.
    [84]Matsumoto K, Nakayama T, Sakai H, et al Neuronal apoptosis inhibitory protein (NAIP) may enhance the survival of granulosa cells thus indirectly affecting oocyte survival. Mol Reprod Dev, 1999,54:103-111.
    [85]Gillio-Meina C, Hui YY, LaVoie HA. DATA-4 and GATA-6 transcription factors: expression, immunohistochemical localization, and possible function in the porcine ovary. Biol Reprod, 2003,68:412-422.
    [86]Laitinen MP, Anttonen M, Ketola I, et al. Transcription factors GATA-4 and GATA -6 and a GATA family cofactor, FOG-2, are expressed in human ovary and sex cord-derived ovarian tumors. J Clin Endocrinol Metab, 2000,85:3476-3483.
    [87]MR Jiang, YC Li, Y Yang, JR Wu. c-Myc degradation induced by DNA damage results in apoptosis of CHO cells. Oncogene, 2003,22:3252-9.
    [88]Nandedkar TD and Dharma SJ. Expression of bcl(xs) and c-myc in atretic follicles of mouse ovary. Reprod Biomed Online, 2001,3:221-225.
    [89]Komatsu K, Manabe N, Kiso M, Nandedkar. Soluble Fas (FasB) regulates luteal cell apoptosis during luteolysis in murine ovaries. Mol Reprod Dev, 2003,65:345-352.
    [1]Penzias AS.Luteal phase support.Fertil Steril,2002,77:318-323.
    [2]Kolibianakis EM,Devroey P.The luteal phase after ovarian stimulation.Reprod Biomed Online,2002,5(Suppl 1):26-35.
    [3]Macklon NS,Fauser BC.Impact of ovarian hyperstimulation on the luteal phase.J Reprod Fertil,2000,55(Suppl):101-108.
    [4]Ubaldi F,Rienzi L,Ferrero,et al.Low dose prednisolone administration in routine ICSI patients does not improve pregnancy and implantation rates.Hum Reprod,2002,17:1544-1547.
    [5]Fatemi HM,Kolibianakis EM,Camus M,et al.Addition of estradiol to progesterone for luteal supplementation in patients stimulated with GnRH antagonist/ rFSH for IVF:a randomized controlled trial.Hum Reprod,2006,21:2628-2632.
    [6]Jones GS.Luteal phase defect:a review of pathophysiology.Curr Opin Obstet Gynecol,1991,3:641-648.
    [7]Rosenberg SM,Luciano AA,Riddick DH.The luteal phase defect:the relative frequency of,and encouraging response to,treatment with vaginal progesterone.Fertil Steril,1980,34:17-20.
    [8]Edwards RG,Steptoe PC,Purdy JM.Establishing full-term human pregnancies using cleaving embryos grown in vitro.Br J Obstet Gynaecol,1980,87:737-756.
    [9]Kerin JF,Broom TJ,Ralph MM,et al.Human luteal phase function following oocyte aspiration from the immediately preovular graafian follicle of spontaneous ovular cycles. Br J Obstet Gynaecol, 1981, 88:1021-1028.
    [10] Smitz J, Erard P, Camus M, Devroey P, et al. Pituitary gonadotrophin secretory capacity during the luteal phase in superovulation using GnRH-agonists and HMG in a desensitization or flare-up protocol. Hum Reprod, 1992:1225-1229.
    [1 l]Miyake A, Aono T, Kinugasa T, et al. Suppression of serum levels of luteinizing hormone by short- and long-loop negative feedback in ovariectomized women. J Endocrinol, 1979,80:353-356.
    [12]Tavaniotou A, Devroey P. Effect of human chorionic gonadotropin on luteal luteinizing hormone concentrations in natural cycles. Fertil Steril, 2003,80:654-655.
    [13]Beckers NG, Macklon NS, Eijkemans MJ, et al. Nonsupplemented luteal phase characteristics after the administration of recombinant human chorionic gonadotropin, recombinant luteinizing hormone, or gonadotropin- releasing hormone (GnRH) agonist to induce final oocyte maturation in in vitro fertilization patients after ovarian stimulation with recombinant follicle-stimulating hormone and GnRH antagonist cotreatment. J Clin Endocrinol Metab, 2003,88:4186-4192.
    [14]Albano C, Grimbizis G, Smitz J, et al. The luteal phase of nonsupplemented cycles after ovarian superovulation with human menopausal gonadotropin and the gonadotropin-releasing hormone antagonist Cetrorelix. Fertil Steril, 1998,70: 357-359.
    [15]Albano C, Smitz J, Camus M, et al. Hormonal profile during the follicular phase in cycles stimulated with a combination of human menopausal gonadotrophin and gonadotrophin-releasing hormone antagonist (Cetrorelix). Hum Reprod, 1996,11:2114-2118.
    [16]Elter K, Nelson LR. Use of third generation gonadotropin-releasing hormone antagonists in in vitro fertilization-embryo transfer: a review. Obstet Gynecol Surv, 2001,56:576-588.
    [17]Ragni G, Vegetti W, Baroni E, et al. Comparison of luteal phase profile in gonadotrophin stimulated cycles with or without a gonadotrophin- releasing hormone antagonist. Hum Reprod, 2001,16:2258-2262.
    [18]Dal Prato L, Borini A. Use of antagonists in ovarian stimulation protocols. Reprod Biomed Online, 2005,10:330-338.
    [19]Tarlatzis BC, Fauser BC, Kolibianakis EM, et al . GnRH antagonists in ovarian stimulation for IVF. Hum Reprod Update, 2006,12:333-340.
    [20]Fauser BC, Devroey P. Reproductive biology and IVF: ovarian stimulation and luteal phase consequences. Trends Endocrinol Metab, 2003,14:236- 242.
    [21]Duffy DM, Stewart DR, Stouffer RL. Titrating luteinizing hormone replacement to sustain the structure and function of the corpus luteum after gonadotropin-releasing hormone antagonist treatment in rhesus monkeys. J Clin Endocrinol Metab, 1999,84:342-349.
    [22]Martin J, Dominguez F, Avila S, Castrillo JL, Remohi J, Pellicer A, Simon C. Human endometrial receptivity: gene regulation. J Reprod Immunol. 2002,55:131-139.
    [23]Bulletti C, de Ziegler D. Uterine contractility and embryo implantation. Curr Opin Obstet Gynecol, 2005,17:265-276.
    [24]Fanchin R, Righini C, Olivennes F, et al. Uterine contractions at the time of embryo transfer alter pregnancy rates after in-vitro fertilization. Hum Reprod, 1998,13: 1968-1974.
    [25]de Ziegler D, Seidler L, Scharer E, et al. Non-oral administration of progesterone: experiences and possibilities of the transvaginal route. Schweiz Rundsch Med Prax, 1995,84:127-133.
    [26]Buvat J, Marcolin G, Guittard C, et al. Luteal support after administration of an LHRH analog for in vitro fertilization. Superiority of vaginal progesterone in comparison with oral progesterone. Presse Med, 1990,19:527.
    [27]Pritts EA, Atwood AK. Luteal phase support in infertility treatment: a meta-analysis of the randomized trials. Hum Reprod, 2002,17:2287- 2299.
    [28]Devroey P, Palermo G, Bourgain C, et al. Progesterone administration in patients with absent ovaries. Int J Fertil, 1989,34:188-193.
    [29]Bourgain C, Devroey P, Van Waesberghe L, et al. Effects of natural progesterone on the morphology of the endometrium in patients with primary ovarian failure. Hum Reprod, 1990,5:537-543.
    [30]Chakravarty BN, Shirazee HH, Dam P, et al. Oral dydrogesterone versus intravaginal micronised progesterone as luteal phase support in assisted reproductive technology (ART) cycles: results of a randomised study. J Steroid Biochem Mol Biol, 2005,97:416-420.
    [31]Fatemi HM, Bourgain C, Donoso P, et al. Effect of oral administration of dydrogestrone versus vaginal administration of natural micronized progesterone on the secretory transformation of endometrium and luteal endocrine profile in patients with premature ovarian failure: a proof of concept. Hum Reprod, 2007,22:1260-1263.
    [32]Fatemi HM, Camus M, Kolibianakis EM, et al P. The luteal phase of recombinant folliclestimulating hormone/gonadotropin-releasing hormone antagonist in vitro fertilization cycles during supplementation with progesterone or progesterone and estradiol. Fertil Steril, 2006,87:504-508.
    [33]Levine H. Luteal support in IVF using the novel vaginal progesterone gel Crinone 8%: results of an open-label trial in 1184 women from 16 US centers. Fertil Steril, 2000,74:836-837.
    [34]Simunic V, Tomic V, Tomic J, et al. Comparative study of the efficacy and tolerability of two vaginal progesterone formulations, Crinone 8% gel and Utrogestan capsules, used for luteal phase support. Fertil Steril, 2007,87:83-87.
    [35]Ludwig M, Schwartz P, Babahan B, et al. Luteal phase support using either Crinone 8% or Utrogest: results of a prospective, randomized study. Eur J Obstet Gynecol Reprod Biol, 2002,103:48-52.
    [36]Cicinelli E, Schonauer LM, Galantino P, et al. Mechanisms of uterine specificity of vaginal progesterone. Hum Reprod, 2000,15(Suppl 1): 159-165.
    [37]Ficicioglu C, Gurbuz B, Tasdemir S, et al. High local endometrial effect of vaginal progesterone gel. Gynecol Endocrinol, 2004,18: 240-243.
    [38]Penzias AS, Alper MM. Luteal support with vaginal micronized progesterone gel in assisted reproduction . Reprod Biomed Online, 2003,6:287-295.
    [39]Jean Luc Pouly, Salim Bassil, Rene Frydman. Endocrinology: Luteal support after in-vitro fertilization: Crinone 8%, a sustained release vaginal progesterone gel, versus Utrogestan, an oral micronized progesterone. Hum. Reprod, 1996,11:2085 - 2089.
    [40]Schoolcraft WB, Hesla JS, Gee MJ. Experience with progesterone gel for luteal support in a highlysuccessful IVF programme. HumReprod, 2000,15:1284-1288.
    [41]Chakmakjian ZH, Zachariah NY. Bioavailability of progesterone with different modes of administration. J Reprod Med, 1987,32:443-448.
    [42]Ioannidis G, Sacks G, Reddy N, et al. Day 14 maternal serum progesterone levels predict pregnancy outcome in IVF/ ICSI treatment cycles: a prospective study. Hum Reprod, 2005,20:741-746.
    [43]Costabile L, Gerli S, Manna C, et al. A prospective randomized study comparing intramuscular progesterone and 7alpha-hydroxyprogesterone caproate in patients undergoing in vitro fertilization-embryo transfer cycles. Fertil Steril, 2001,76:394-396.
    [44]H.M. Fatemi, B. Popovic-Todorovic, E. Papanikolaou, et al. An update of luteal phase support in stimulated IVF cycles. Hum. Reprod. Update, 2007,13:581 - 590.
    [45]Lightman A, Kol S, Itskovitz-Eldor J. A prospective randomized study comparing intramuscular with intravaginal natural progesterone in programmed thaw cycles. Hum Reprod, 1999,14:2596-2599.
    [46]Propst AM, Hill JA, Ginsburg ES, et al. A randomized study comparing Crinone 8% and intramuscular progesterone supplementation in in vitro fertilization-embryo transfer cycles. Fertil Steril, 2001,76: 1144-1149.
    [47] Veysman B, Vlahos I, Oshva L. Pneumonitis and eosinophilia after in vitro fertilization treatment. Ann Emerg Med, 2006,47:472-475.
    [48]Bouckaert Y, Robert F, Englert Y, et al. Acute eosinophilic pneumonia associated with intramuscular administration of progesterone as luteal phase support after IVF: case report. Hum Reprod, 2004,19: 1806-1810.
    [49]E.M. Kolibianakis, C.A. Venetis, E.G. Papanikolaou, et al. Estrogen addition to progesterone for luteal phase support in cycles stimulated with GnRH analogues and gonadotrophins for IVF: a systematic review and meta-analysis. Hum. Reprod, 2008,23:1346- 1354.
    [50]Farhi J, Weissman A, Steinfeld Z, et al. Estradiol supplementation during the luteal phase may improve the pregnancy rate in patients undergoing in vitro fertilization- embryo transfer cycles. Fertil Steril, 2000,73:761-766.
    [51]Smitz J, Bourgain C, Van Waesberghe L, et al. A prospective randomized study on oestradiol valerate supplementation in addition to intravaginal micronized progesterone in buserelin and HMG induced superovulation. Hum Reprod, 1993,8:40-45.
    [52]Lewin A, Benshushan A, Mezker E, et al. The role of estrogen support during the luteal phase of in vitro fertilization-embryo transplant cycles: a comparative study between progesterone alone and estrogen and progesterone. Fertil Steril, 1994,62:121-125.
    [53]Tav PY, Lenton EA. Inhibition of progesterone secretion by oestradiol administered in the luteal phase of assisted conception cycles . Med J Malaysia, 2003,58:187-195.
    [54]Friedler S, Gilboa S, Schachter M, et al. Luteal phase characteristics following GnRH antagonist or agonist treatment-a comparative study. Reprod Biomed Online, 2006,12:27-32.
    [55]Buettner GR. The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys, 1993,300:535-543.
    [56]Wagner F, Hofmann KD, Preibsch W, et al. Ascorbic acid content of the human ovary. Zentralbl Gynakol. 1970,92:1060-1061.
    [57]Paeschke KD. The role of ascorbic acid in ovulation. Zentralbl Gynakol, 1969,91: 1129-1132.
    [58] Millar J. Vitamin C-the primate fertility factor?. Med Hypotheses, 1992,38:292-29.
    [59]Margolin Y, Aten RF, Behrman HR. Antigonadotropic and antisteroidogenic actions of peroxide in rat granulosa cells. Endocrinology, 1990,127:245-250.
    [60]Behrman HR, Preston SL. Luteolytic actions of peroxide in rat ovarian cells. Endocrinology, 1989,124:2895-2900.
    [61]Polak G, Koziol-Montewka M, Gogacz M, et al. Total antioxidant status of peritoneal fluid in infertile women. Eur J Obstet Gynecol Reprod Biol, 2001,94: 261-263.
    [62]Griesinger G, Franke K, Kinast C, et al Ascorbic acid supplement during luteal phase in IVF. J Assist Reprod Genet, 2002,19:164-168.
    [63]Lee KA, Koo JJ, Yoon TK, et al. Immunosuppression by corticosteroid has no effect on the pregnancy rate in routine in-vitro fertilization/embryo transfer patients. Hum Reprod, 1994,9:1832- 1835.
    [64]Moffitt D, Queenan JT, Jr, Veeck LL, et al. Low-dose glucocorticoids after in vitro fertilization and embryo transfer have no significant effect on pregnancy rate. Fertil Steril, 1995,63:571-577.
    [65]Okuda K, Miyamoto Y, Skarzynski DJ. Regulation of endometrial prostaglandin F(2alpha) synthesis during luteolysis and early pregnancy in cattle. Domest Anim Endocrinol, 2002,23:255-264.
    [66]Vane JR, Flower RJ, Botting RM. History of aspirin and its mechanism of action. Stroke, 1990,21:Ⅳ12-Ⅳ23.
    [67] Wada I, Hsu CC, Williams G, et al. The benefits of low-dose aspirin therapy in women with impaired uterine perfusion during assisted conception. Hum Reprod 1994;9:1954-1957.
    [68]Weckstein LN, Jacobson A, Galen D, et al. Low-dose aspirin for oocyte donation recipients with a thin endometrium: prospective, randomized study. Fertil Steril, 1997,68:927-930.
    [69]Rubinstein M, Marazzi A, Polak dF. Low-dose aspirin treatment improves ovarian responsiveness, uterine and ovarian blood flow velocity, implantation, and regnancy rates in patients undergoing in vitro fertilization: a prospective, randomized, double-blind placebo-controlled assay. Fertil Steril, 1999,71:825-829.
    [70]Urman B, Mercan R, Alatas C, et al. Low-dose aspirin does not increase implantation rates in patients undergoing intracytoplasmic sperm injection: a prospective randomized study. J Assist Reprod Genet, 2000,17.
    [71]Hurst BS, Bhojwani JT, Marshburn PB, et al. Low-dose aspirin does not improve ovarian stimulation, endometrial response, or pregnancy rates for in vitro fertilization. J Exp Clin Assist Reprod, 2005,2:2:8.
    [72]Geva E, Amit A, Lerner-Geva L, et al. Prednisone and aspirin improve pregnancy rate in patients with reproductive failure and autoimmune antibodies: a prospective study. Am J Reprod Immunol, 2000,43:36-40.
    [73]Hutchinson-Williams KA, DeCherney AH, Lavy G, Diamond MP, et al. Luteal rescue in in vitro fertilization-embryo transfer. Fertil Steril, 1990,53:495-501.
    [74]Anthony FW, Smith EM, Gadd SC, et al. Placental protein 14 secretion during in vitro fertilization cycles with and without human chorionic gonadotropin for luteal support. Fertil Steril, 1993,59:187-191.
    [75]Honda, Hiroshi Fujiwara, Shigetoshi Yamada Fujita K, et al. Integrin α5 is expressed on human luteinizing granulosa cells during corpus luteum formation, and its expression is enhanced by human chorionic gonadotrophin in vitro. Mol Hum Reprod, 1997,3:979-984.
    [76]Ghosh D, Stewart DR, Nayak NR, et al. Serum concentrations of oestradiol-17beta, progesterone, relaxin and chorionic gonadotrophin during blastocyst implantation in natural pregnancy cycle and in embryo transfer cycle in the rhesus monkey. Hum Reprod, 1997,12:914-920.
    [77]Nosarka S, Kruger T, Siebert I, et al. Luteal phase support in in vitro fertilization: meta-analysis of randomized trials. Gynecol Obstet Invest, 2005,60:67-74.
    [78]Mochtar MH, Hogerzeil HV, Mol BW. Progesterone alone versus progesterone combined with HCG as luteal support in GnRHa/HMG induced IVF cycles: a randomized clinical trial. Hum Reprod, 1996,11:1602- 1605.
    [79]Araujo E, Jr, Bernardini L, Frederick JL, et al. Prospective randomized comparison of human chorionic gonadotropin versus intramuscular progesterone for luteal-phase support in assisted reproduction. J Assist Reprod Genet, 1994,11:74-78.
    [80]Tesarik J, Hazout A, Mendoza-Tesarik R, et al. Beneficial effect of luteal-phase GnRH agonist administration on embryo implantation after ICSI in both GnRH agonist- and antagonist-treated ovarian stimulation cycles. Hum Reprod, 2006,21:2572-2579.
    [81]Pirard C, Donnez J, Loumaye E. GnRH agonist as novel luteal support: results of a randomized, parallel group, feasibility study using intranasal administration of buserelin. Hum Reprod, 2005,20: 1798- 1804.
    [82]Fatemi HM, Popovic-Todorovic B, Papanikolaou E, et al. An update of luteal phase support in stimulated IVF cycles. Hum Reprod Update, 2007,13:581-90.
    [83]Tesarik J, Hazout A and Mendoza C. Enhancement of embryo developmental potential by a single administration of GnRH agonist at the time of implantation. Hum Reprod, 2004,19:1176-1180.
    [84]Lambalk CB, Homburg R. GnRH agonist for luteal support in IVF? Setting the balance between enthusiasm and caution. Hum Reprod, 2006,21: 2580-2582.
    [85]Rossmanith WG, Monn M, Benz R. Effects of chronic opioid antagonism on gonadotrophin and ovarian sex steroid secretion during the luteal phase. Clin Endocrinol (Oxf), 1998,49:343-351.
    [86]Baruffi R, Mauri AL, Petersen CG, et al. Effects of vaginal progesterone administration starting on the day of oocyte retrieval on pregnancy rates. J Assist Reprod Genet, 2003,20:517-520.
    [87]Mochtar MH, Van Wely M, Van der Veen. Timing luteal phase support in GnRH agonist down-regulated IVF/embryo transfer cycles. Hum Reprod, 2006,21: 905-908.
    [88]Williams SC, Oehninger S, Gibbons WE, et al. Delaying the initiation of progesterone supplementation results in decreased pregnancy rates after in vitro fertilization: a randomized, prospective study. Fertil Steril, 2001,76:1140-1143.
    [89]Schmidt KL, Ziebe S, Popovic B, et al. Progesterone supplementation during early gestation after in vitrofertilization has no effect on the delivery rate. Fertil Steril, 2001,75:337-341.
    [90]Nyboe AA, Popovic-Todorovic B, Schmidt KT, et al. Progesterone supplementation during early gestations after IVF or ICSI has no effect on the delivery rates: a randomized controlled trial. Hum Reprod, 2002,17:357-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700