荧光物质对受激拉曼散射的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光在受激拉曼散射中能发挥良好的外部种子作用,可以极大幅度降低受激拉曼阈值、增加散射模式的强度.将溶解了荧光物质的CS2溶液作为液芯光纤的芯液体进行荧光增强受激拉曼散射研究.结果表明,很小能量(1.86mJ)的激光激发就能获得较强的Stokes和anti-Stokes拉曼光.以荧光光谱范围较小的Rhodamine B作为荧光种子,由于Rhodamine B吸收与荧光的共同作用,只获得了强度较高的一阶anti-Stokes谱线和强度较低的一阶Stokes谱线;以荧光光谱范围很大的β-carotene作为荧光种子,由于β-carotene的双荧光特性和三阶非线性光学系数较大的性质,很小的泵浦能量就获得了七阶Stokes光谱.因此可以选用不同光学性质的荧光种子来选择性增强受激拉曼散射的某一散射模式。
The fluorescence is demonstrated a well out-seeding effect in the stimulated Raman scattering(SRS), which can drastically low the SRS threshold and enhance the intensity of scattering-mode. The solution of fluorescent seeding in CS2 is used to study of the fluorescence enhancement SRS in liquid core optical fiber(LCOF). The results demonstrate that the stronger intensity of Stokes and anti-Stokes can be observed at low pump energy. The RhodamineB of narrow fluorescent spectrum is used, the high intensity of first-order anti-Stokes line and low intensity of first-order Stokes line are obtained because of the absorption and fluorescence effect of Rhodamine B; theβ-carotene of broad fluorescent seeding is used, the seventh-order Stokes lines are obtained at low pump energy because of the double-fluorescence and larger third-order nonlinear optical coefficient ofβ-carotene. So, we can selectively enhance the scattering-mode of SRS according to the different optical characteristics of fluorescent seeding.
引文
[1]Kaminskii A A, Rhee H, Eichler H J, et al. Wide-band Raman stokes and anti-stokes comb lasing in a BaF2 single crystal under picosencond puning.Laser Phys. Lett,2008,5(4):304-310
    [2]Garruthers T F, Duling I N, Horowitz M, et al. Dispersion management in a harmonically mode-locked fiber soliton laser. Opt. lett,2000,25(3):153-155
    [3]Ippen E P. Low-power quasi-cw Raman oscillator. Appl Phys. Lett,1970,16(7):303-305
    [4]Dirda P T, Millot G, Wabnicz S. Polarization switching and suppression of stimulated Raman scattering in birfringent optical fibers. J Opt Soc Am B.1998,15(5):1433-1441
    [5]Stolen R H, Ippen E P.Raman gain in glass optical waveguides. Appl Phys. Lett,1973,22(6):276-278
    [6]Zhang J T. Stimulated Raman scattering instability in partially ionized laser-plasma. Chin. Phys, 2005,14(2):169-171
    [7]Stolen R H, Ippen E P, Tynes A R.Raman Oscillation in Glass Optical Waveguide. Appl Phys. Lett,1972, 20(2):62-64
    [8]Xu B, Yue G M, Zhang Y C, et al. Generation of UV laser light by stimulated Raman scattering in D2, D2/Ar and D2/He using a pulsed Nd:YAG laser at 355nm. Chin Phys,2003,12(9):1021-1025
    [9]左浩毅,高洁,杨经国.混合染料荧光选择性增强受激拉曼散射Stokes波.光谱学与光谱分析.2003,27(3):552-555
    [10]钟先琼,杨经国,哈元清,等.若丹明B荧光增强二硫化碳高阶受激拉曼散射.强激光与粒子束.2000,12(2):172-174
    [11]左浩毅,李振声,杨经国.若丹明6G和若丹明B混合染料选择性增强四氯化碳Stokes波实验研究.光散射学报.2006,18(4):371-373
    [13]程娟,贺应红,左浩毅.若丹明6G共振增强苯的受激拉曼散射实验研究.光子学报.2005,24(3):379-381
    [14]黄保坤,高淑琴,里佐威,等.用液芯光纤stokes/anti-stokes拉曼强度比测温.光学技术.2004,30(4):446-449
    [15]高淑琴,里佐威,张伟,等.液芯光纤预共振和共振拉曼光谱及其应用.分析化学.1997,25(5):501-504
    [16]高淑琴,陆国会,里佐威,等.液芯光纤方法研究溶剂对分子拉曼光谱强度的影响.物理实验.2005,25(4):3-5
    [17]高淑琴,里佐威,李继南,等.液芯光纤共振拉曼光谱.中国激光.1997,24(8):738-740
    [18]房文汇,贾敏,冯登吉,等.苯溶液液芯光纤拉曼光谱的研究.长春理工大学学报.2007,30(2):106-109
    [19]Stolen R H, Gordon J P, Tomlinson W J, et al. Raman response function of silica-core fibers. J Opt Soc Am B.Lett,1989,6(6):1159-1166
    [20]Ippen E P. Low-Power Quasi-CW Raman Oscillator. Appl.Phys. Lett,1970,16(5):303-305.
    [21]He G S, Xu G C. Efficient Amplification Of A Broad-Band Optical Signal Through Stimulated Kerr Scattering In A CS2 Liquid-Core Fiber System. IEEE J. Quantum. Electron.1992,28(4):323-329.
    [22]张桂兰,陈文驹.若丹明6G-甲酚紫分子间能量转移的荧光光谱研究.物理化学学报,1999,6(2):163-168
    [23]Stone J, Raman C W, fiber amplifier, Appl. Phys. Lett 1975.4(15):163-165
    [24]Shen Y R. Nonlinear Optics.3rd Ed. Berlin:Springer,2003.
    [25]Picozzi A, Montes C, Botineau J, et al. Inertial model for stimulated Raman scattering inducing chaotic dynamics. J Opt Soc Am B,1998,15(4):1309-1314
    [26]Cheng J, Sun AY, He Y H, et al. Enhancement of stimulated Raman scattering of cs2 by using fluorescence. Opt Comm,2005,246(10):141-145
    [27]杨睿,江楠,普小云.用染料荧光增益增强弱增益拉曼模式的受激拉曼散射的经典理论.光散射学报.2007,19(1):30-36
    [28]普小云,杨正,江楠,等.用激光增益获取弱增益拉曼模式的受激拉曼散射光谱.物理学报.2003,52(10):2443-2448
    [29]Stone J. Acoustic microscope-scanning version. Appl.Phys.Lett,1974,24(2):163-165
    [30]普小云,杨正,江楠,等.用激光增益获取弱增益拉曼模式的受激拉曼散射光谱.物理学报.2003,52(10):2443-2448
    [31]左剑,里佐威,田艳杰,等.液芯光纤中溶液吸收和荧光的性质对CS2受激拉曼散射域值的影响.物理学报.2007,56(2):889-894
    [32]Bhattacherjee A B, Bulg J. Phys.1998,25(1):166-169
    [33]Marder S R, Torruellas W E, Desce M B, et al. Large Molecular third-order optical nonlinearities in polarized carotenoids. Science,1997,276(5316):1233-1236
    [34]郭光灿.放大自发辐射的若干问题.物理.1982,10:593-596
    [35]Agrawal G P. Nonlinear Fiber Optics 3 rd edition. New York. Academic,2005:298-303
    [36]Penzkofer A, Laubereau A, Kaiser W. High intensity Raman interactions. Prog Quant Electron,1979, 6(2):55-140

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700