被动锁模光纤激光器和超连续谱产生的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要围绕非线性光学领域中的超短脉冲光源以及超连续谱的产生,结合实验室现有条件进行了如下工作:
     在被动锁模激光器部分,我们先对被动锁模光纤激光器的应用和分类进行了简单介绍,接着阐述了基于非线性偏振旋转(NPR: Nonlinear Polarization Rotation)效应的被动锁模光纤激光器的基本原理及光腔参数对输出脉冲特性的影响,并简要分析了频谱边带和多脉冲的产生机理,并构建起一套采用σ形腔的非线性偏振旋转被动锁模掺铒光纤激光器,实现了重复频率6.25MHz、脉宽691.2fs、中心波长1562.5nm、平均输出功率1.487mW的稳定自起振被动锁模脉冲输出。
     在超连续谱部分,我们分析了光纤中的自相位调制(SPM: Self Phase Modulation)、光纤群速度色散(GVD: Group Velocity Dispersion)、三阶色散(TOD: Third-Order Dispersion)、四波混频(FWM: Four Wave Mixing)和受激拉曼散射(SRS: Stimulated Raman Scattering)等非线性效应对超连续(SC: supercontinuum)谱特性的影响,并利用所构建的被动锁模光纤激光器经放大后泵浦不同色散特性和长度的光纤,完成产生超连续谱的实验。实验中,通过泵浦4.57km的色散位移光纤(DSF:Dispersion-Shifted Fiber)得到:小于泵浦波长一侧的15dB谱宽为330nm,大于泵浦波长一侧的20dB谱宽大于238nm的超连续谱。通过泵浦4.28km的色散平坦光纤(DFF:Dispersion-Flattened Fiber)得到:小于泵浦波长一侧的15dB谱宽为372nm,大于泵浦波长一侧的20dB谱宽大于232nm的超连续谱,并且在百纳米范围内的不平坦度<±0.25dB。
This dissertation was focused on ultra-short pulse sources and fiber supercontinuum (FSC) pulse source, which include:
     In the section of passively mode-locked fiber laser, we introduced the applications and classification of the passively mode-locked fiber laser. Then, the physical mechanism of nonlinear polarization rotation (NPR) passively mode-locked fiber laser, spectral sidebands and multi-pulse generation were analyzed in theory. Aσ-shaped cavity nonlinear polarization rotation passively mode-locked erbium-doped fiber laser was built up. Stable, self-starting 691.2fs mode-locked pulse at 6.25MHz repetition rate was obtained with an average output power of 1.487mW and a center wavelength of 1562.5nm.
     In the section of supercontinuum, we studied the influences of the self-phase modulation (SPM), the group velocity dispersion (GVD),the third-order dispersion (TOD), the four-wave mixing (FWM ) and the stimulated Raman scattering (SRS) on supercontinuum(SC) spectrum. SC was generated in fibers with different dispersion characteristic and length. SC was generated from a 4.57km DSF with 691.2fs pump pulses, 330nm 15dB bandwidth spectrum shorter than pump wavelength was obtained, while on the opposite side more than 238nm 20dB bandwidth was also obtained. SC was generated from a 4.28km DFF with 691.2fs pump pulses, 372nm 15dB bandwidth spectrum shorter than pump wavelength was obtained, while on the opposite side more than 232nm 20dB bandwidth was also obtained with 0.25dB spectral uniformity over 100nm.
引文
[1]黄绣江,刘永智,隋展等,超短脉冲光纤激光器新进展及其应用,应用光学,2004,25(6):16-21.
    [2]姜宇,姚建铨,王瑞康等,光学相干层析系统的建立与研究,光学仪器,2003,25(2):33-37.
    [3] M.Nakazawa, T.Yamamoto and K.Tamura, Ultra-high-speed OTDM transmission using femto-second pulses. Lasers and Electro-Optics, 2001, 16(1):618-619.
    [4] J.R.Burie, J.F.Cadiou, O.L.Gouezigou, et al., Transform limit optical pulse at 40 GHz from a 1550nm module with an integrated DFB laser/electroabsorption modulator. International Semiconductor Laser Conference, 1998, TuD5:91-92.
    [5] H.Takeuchi, K.Tsuzuki, K.Sato, et al., Very high-speed light-source module up to 40Gb/s containing an MQW electro-absorption modulator integrated with a DFB laser. IEEE J. Sel. Top. Quant. Electron., 1997, 3(2):336-343.
    [6] H.Feng, T.Makino, S.Ogita et al., 40 Gb/s electro-absorption-modulator-integrated DFB laser with optimized design.OFC'02, March: 340-341.
    [7] Y.Akage, K.Kawano, S.Oku,et al., Wide bandwidth of over 50GHz traveling-wave electrode electroabsorption modulator integrated DFB lasers. Electron. Lett., 2001, 37(5):299-300.
    [8] C.J.Chang-Hasnain, M.W.Maeda, N.G.Stoffel et al., Surface emitting laserarrays with uniformly separated wavelengths. IEEE Semiconductor Laser Conference, 1990, Sep.9- 14:18-19.
    [9] T.Pfeifer and G.Veith, 40GHz pulse generation using a widely tunable all-polarisation preserving erbium fibre ring laser. Electron. Lett., 1993, 29(21):1849-1850.
    [10] E.Yoshida and M.Nakazawa, 80-200GHz erbium doped fiber laser using a rational harmonic mode-locking technique. Electron. Lett., 1996, 32(15):1370-1372.
    [11] E.Yoshida T.Yamamoto, A.Sahara, et al., 320Gbit/s TDM transmission over 120km using 400fs pulse train. Electron. Lett., 1998, 34(10):1004-1005.
    [12] R.Hayashi and S.Yamashita, Multi-wavelength actively mode-locked polarization maintaining fiber laser at 10 GHz. OFC'03, TuL6, pp. 239-240.
    [13] G.T.Harvey and L.F.Mollenauer, Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission. Opt.Lett., 1993,18(2):107-109.
    [14] B.Bakhshi and P.A.Andrekson, 40GHz actively modelocked polarization maintaining erbium fiber ring laser, Electron. Lett., 2000, 36(5):411-413.
    [15] T.Yamamoto, E.Yoshida, K.R.Tamura, et al., Single channel 640Gbit/s OTDM transmission over 100km, ECOC'99,1999:38-39.
    [16]王肇颖,王永强,林冉等,亚皮秒自起振被动锁模掺铒光纤激光器,光电子.激光,2004,15(3):295-298.
    [17] S.Li, C.Lou and K.T.Chan, Rational harmonic active and passive modelocking in a figure-of-eight fiber laser, Electron. Lett., 1998, 34(4):375-376.
    [18] M.Y.Jeon, H.K.Lee, J.T.Ahn, et al., External fibre laser based pulse amplitude equalization scheme for rational harmonic modelocking in a ring-type fibre laser, Electron. Lett., 1998, 34(2):182-184.
    [19] M.E.Fermann, M.L.Stock, D.Harter. Wavelength-tunable soliton generation in the 1400-1600nm region using an Yb3+ fiber laser. OFC'2001, Tu12.
    [20] Y.Gong, P.Shum, D.Tang, et al., Bound Soliton Pulse with FWHM Duration of 326fs and Separation of 938fs in a Passively Mode Locked Fiber Laser. OFC'2002, ThG32.
    [21] R.Hayashi, S.Yamashita and T.Saida. 16-Wavelength 10GHz Actively Mode-Locked Fiber Laser With Demultiplexed Outputs Anchored on the ITU-T Grid. IEEE Photon. Techn. Lett., 2003,15(12):1692-1694.
    [22] J.Vasseur, M.Hanna and J.Dudley, Alternate Multiwavelength modelocked Fiber Laser. IEEE Photon. Techn.Lett., 2004, 16(8):1816-1818.
    [23] K.Tamura, E.P.Ippen, et al., Technique for obtaining high power ultra short pulses from an erbium-doped fiber ring laser. Opt. Lett., 1994, 19(1):46-48.
    [24] F.O.Hday, F.W.Wise and T.Sosnowski, High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror. Opt. Lett., 2002, 27(17):1531-1533.
    [25] H.Lim, F.O.Hday and F.W.Wise, Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control.Opt.Exp.2002, 10(25):1497-1502.
    [26] A.Hideur, T.Chartier, S.Louis, et al., High power double-clad Yb3+-doped fiber laser. Proceedings of SPIE-The International Society for Optical Engineering, 2002, 4751:510-520.
    [27] J.Limpert, T.Clausnitzer, A.Liem, et al., High-average-power femtosecond fiber chirped-pulse amplification system. Opt.Lett., 2003,28(20):1984-1986.
    [28] A.Albert, V.Couderc. High-energy femtosecond pulses from an ytterbium-doped fiber laser with a new cavity design. IEEE Photon. Techn. Lett., 2004, 16(2):416-418.
    [29] Agrawl G P, Nonlinear fiber optics.San Francisco,California:Academic Press,1995。
    [30] T.Morika, S.Kawanishi and K.Mori, et al., Nearly penalty-free, <4ps supercontinuum Gbit/s pulse generation over 1535-1560nm.Electron.Lett., 1994, 30(10):790-791.
    [31] K.Mori, H.Takara and S.Kawanishi,et al., Flatly broadened super-continuum spectrum generation in a dispersion decreasing fiber with convex dispersion profile. Electron.Lett.,1997, 33(21):1806-1808.
    [32] H.Sotobayashi and K.Kitayama. 325nm bandwidth supercontinuum generation at 10Gbit/s using dispersion-flattened and non-decreasing normal dispersion fiber with pulse compression technique. Electron.Lett., 1998, 34(13): 1336-1337.
    [33] T.A.Birks, W.J.Wadsworth and P.S.J.Russell, Supercontinuum generation tapered fibers. Opt.Lett.,2000, 25(19):1415-1417.
    [34]王肇颖,王永强,李智勇等,皮秒脉冲在色散位移光纤中产生的超连续谱,光电子.激光,2004,15(5):528-533.
    [35]贾东方,王永强,王肇颖等,色散平坦光纤中的超连续谱,天津大学学报,2005,38(5):381-384.
    [36] B.P.Nelson and N.J.Doran, Optical sampling oscilloscope using nonlinear fiber loop mirror.Electron.Lett.1991, 27(3):204-205.
    [37] P.A.Nndrekson, Picosecond optical sampling using four-wave-mixing in fiber. Electron.Lett.,1991, 27(16):1440-1441.
    [38] H.Takara, S.Kawanishi and T.Morioka, et al., 100Gbit/s optical wave-form measurement with 0.6ps resolution optical sampling using subpicosecond supercontinuum pulses. Electron. Lett., 1994, 30(14):1152-1153.
    [39] H.T.Shang, Chromatic dispersion measurement by white-light interferometry of metre-length single-mode optical fibers. Electron.Lett., 1981, 17:603-605.
    [40] B.Costa, D.Mazzioni and M.Puleo,et al., Phase shift technique for the measurement of chromatic dispersion in optical fibers using LED's. IEEE J.Quantum Electron.,1982, QE-18:1509-1515.
    [41] M.Fujise, M.Kuwazuru and M.Numokawa,et al., Chromatic dispersion measurement over a 100km dispersion-shifted single-mode fiber by a new phase-shift technique. Electron.Lett.,1986, 22:570-572.
    [42] L.G.Cohen, Comparison of single-mode fiber dispersion measurement techniques. J.Lightwave Technol., 1985, LT-3:958-966.
    [43] L.G.Cohen and C.Lin, Pulse delay measurements in the zero material dispersion wavelength region for optical fibers. Appl. Opt., 1977, 16(12):3136-3136.
    [44] K.Mori, T.Moroka and M.Saruwatari, Group velocity dispersion measurement using supercontinuum picosecond pulses generation in an optical fiber. Electron. Lett., 1993, 29(11):987-988.
    [45] K.Morioka, K.Mori and S.Kawanishi,et al., Pulse-width tunable,self-frequency conversion of short optical pulses over 200nm based on supercontinuum generation. Electron. Lett., 1994, 30(23):1960-1962.
    [1] Matsas, V. J., T. P. Newson, et al., Selfstarting passively mode-locked fiber ring soliton laser exploration nonlinear polarization rotation, Electron. Lett., 1992,28(15),: 1391-1393.
    [2] K. S. Abedin, J. T. Gopinath, L. A. Jiang,et al., Self-stabilized passive, harmonically mode-locked stretched-pulse erbium fiber ring laser, Optic. Lett., 2002,27(20): 1758-1760.
    [3] Lefort L, Price J H V,Richardson D J, et al., Practical low-noise stretched-pulse doped fiber laser[J]. 2002,Opt Lett,27(5):291-293.
    [4]刘东峰,陈国夫,王贤华等,自起振被动锁模掺Er^3+光纤环形腔孤子激光器的实验研究,中国科学(A辑),1999,29(7):656-661.
    [5]王肇颖,王永强,林冉等,亚皮秒自起振被动锁模掺饵光纤激光器,光电子激光,2004,15(3):295-298.
    [6] G .P. Agrawal.著,贾东方,余震虹等译,非线性光纤光学原理及应用,北京电子工业出版社,2002:4 14-415.
    [7] Holger Hundertmark, Dieter Wandt, Carsten Fallnich,et al., Octave-spanning supercontinuum generation in an extruded PCF with an Er-doped fiber laser-amplifier system, Optical Fiber Communication Conference, 2004. OFC 2004 Volume 2, 23-27 Feb. 2004 Page(s):3 pp. vol.2.
    [8] H. A. Haus, K. Tamura, L. E. Nelson, et al., Structures for additive pulse mode locking, J. Opt. Soc. Am. B., 1991, 8(10):2068-2076.
    [9] V.J.Matsas,T.P.Newson,D.J.Richardson,and D.N.Payne.Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation.E lectron.Let., 1992,28(15):1391-1393
    [10] T.O.Tsun,M.K.Islam,and P.L.Chu.High-energy femtosecond figure-eight fiber laser.Optics Communications,1997,141(1-2):65-68.
    [11] N.H.Seong,and D.Y.Kim.A new figure-eight fiber laser based on a dispersion-imbalanced nonlinear optical loop mirror with lumped dispersive elements.IEEE Photon.Techn.Lett.,2002,14(4):459-461.
    [12] G.P.Agrawal, Modulation instability in erbium-doped fiber amplifiers, Phot.Tech.Lett.1992, 4(3):562-564.
    [13] M. Nakazawa, K.Suzuki, and H.A.Haus. The modulational instability laser part I: experiment. IEEE J.Quant.Electron.1989, 25(9):2036-2044.
    [14] S.M.J. Kelly, Characteristic sideband instability of periodically amplified average soliton. Electron.Lett.1992, 28(8):806-807.
    [15] L.D.Michael and I.N.Duling III. Experimental study of sideband generation in femtosecond fiber lasers, IEEE J.Quant.Electron.1994, 30(6):1469-1477.
    [16] Richardson, D.J., R.I. Laming, et al., 320fs soliton generation with laser passively mode-locked erbium fibre. Electron.Lett. 1991, 27(9):731-732.
    [1] R.H.Stolen and Chinlon Lin, Self-phase-modulation in silica optical fibers, Phy.Rev., Vol.A17, No.4,pp.1448-1453,1978.
    [2] C.C.Chang, H.P.Sardesai and A.M.Weiner, Code-division multiple-access encoding and decoding of a femtosecond optical pulses over a 2.5km fiber link, IEEE Photon. Technol. Lett., 1999, 10(2): 171-173.
    [3] T.Morioka, H.Takara, S.Kawaishi,et al., Error-free 500Gbit/s all-optical demultiplexing using low-noise, low-jitter supercontinuum short pulses. Electron.Lett. 1996, 32(9):833-834.
    [4] K. Mori, T. Morioka and M. Saruwatari, Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5m compact laser source, IEEE Tran. Instru. Measure., 1995, 44(3): 712-715.
    [5] I.Hartl, X.D.Li, C.Chudoba,et al., Ultra-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber, Opt. Lett., 2001, 26(5):608-610.
    [6] D.J.Jones, S.A.Diddams, J.K.Ranka,et al., Carrier-envelop phase control of femtosecond mode-locked lasers and direct optical frequency synthesis, Science, 2000, 288(4):635-659.
    [7] A.M.Zhetlikov, Holey fibers, Phys.Usp., 2000,170:1203-1224.
    [8] M.N.Islam, G.Sucha and I.Barjoseph, et al., Broad bandwidths from frequency-shift solitons in fibers. Opt.Lett., 1989,14(7):370-372.
    [9] B.Gross and J.T.Manassah, Supercontinumm in the anomalous group-velocity dispersion region. Opt. Lett., 1992, 9(21):1813-1818.
    [10] T.Morioka, K.Mori and M.Saruwatari. More than 100-wavelength-channel picosecond optical pulse generation from single lasers source using supercontinuum in optical fibers. Electron. Lett., 1993, 29(10):862-864.
    [11] T.Morioka, K.Mori and S.Kawanishi,et al., Multi-WDM-channel, Gbit/s pulse generation from a single laser source utilizing LD-pumped supercontinuum in optical fibers. IEEE Photon. Technol. Lett., 1994, 6(3):365-368.
    [12] J.U.Kang and R.Posey, Demonstration of supercontinuum generation in a long-cavity fiber ring laser. Opt. Lett., 1998, 23(16):1375-1377.
    [13] Y.Takushima, F.Fumio and K.Kikuchi, Generation of over 140-nm-wide supercontinuum from a normal dispersion fiber by using a mode -locked semiconductor laser source. IEEE Photon. Technol. Lett., 1998, 10(11):1560-1562.
    [14] S.Coen, A.H.L.Chau and R.Leonhardt, et al., White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber. Opt. Lett.,2001, 26(16):1356-1358.
    [15] S.Coen, A.H.L.Chau and R.Leonhardt, et al., Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers. J. Opt. Soc. Am. B, 2002, 19:753-764.
    [16] A.V.Husakou and J.Herrmann, Supercontinuum generation four-wave mixing and fission of higher-order solitons in photonic-crystal fibers. J. Opt. Soc. Am. B, 2002, 19:2171-2182.
    [17] G.P.Agrawal.著,贾东方,余震虹等译,非线性光纤光学原理及应用,北京电子工业出版社,2002:32-34.
    [18]贾东方,Tbit/s光纤通信系统若干关键技术研究,博士论文,天津大学,2002.
    [19] S.Taccheo and P.Vavassori, Dispersion-flattened fiber for efficient supercontinuum generation, OFC’2002, Paper ThY5, pp.565-567, 2002.
    [20] G.A.Nowak, J.Kim and M.N.Islam, Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber, Appl.Opt., 1999, 36(36):7364-7369.
    [21] J.Nicholson, M.Yan, A.Yablon,et al., A high coherence supercontinuum source at 1550nm, OFC'03,ThK5:511-512.
    [22] A.Abeeluck, K.Brar, J.Bouteilter,et al., Supercontinuum generation in a highly nonlinear fiber using a continuous wave pump, OFC'03,ThT1:561-562.
    [23] G.P.Agrawal.著,贾东方,余震虹等译,非线性光纤光学原理及应用,北京电子工业出版社,2002:188-189.
    [24] K.Mori, H.Takara and S.Kawanishi, Analysis and design of supercontinuum pulse generation in a single-mode optical fiber, J.Opt.Soc.Am.B, 2001, 18(12):1780-1792.
    [25] Nishizawa and T.Goto, Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers, IEEE J.Select.Top. Quant. Electron., 2001, 7(4):518-524.
    [26]王肇颖,光纤超短脉冲光源和全光波长变换技术的研究,博士论文,天津大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700