高速光纤通信系统调制格式的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,40Gb/s密集波分复用(DWDM)光纤通信系统研究的不断深入。系统中的传输损伤:主要有噪声积累;色散,包括群速度色散(GVD)和偏振模色散(PMD);非线性效应,包括自相位调制(SPM)、交叉相位调制(XPM)、受激拉曼散射(SRS)、受激布里渊散射(SBS)和四波混频(FWM),成为限制通信容量进一步增加的瓶颈。新型调制格式是减轻这些损伤,提高频带利用率的40Gb/s系统的关键技术之一。本文针对适合40Gb/s系统的调制格式作了广泛而深入的研究,并获得一些创新性成果,主要有
     (1)在广泛阅读国内外相关文献的基础上,归纳总结了近年来新出现的主要调制格式的特点及产生方式。
     (2)创新性的提出了一种新的,用保偏光纤环镜(PMFLM)产生改进的双二进制归零(MD-RZ)码的方法。从理论上详细推导了产生过程;在40Gb/s环境下,用实验证明了该方法的可行性并得到良好的结果。
     (3)用Optisystem 3.1软件模拟了四种调制格式:非归零(NRZ)、归零(RZ)、光双二进制(ODB)、MD-RZ在40Gb/s系统中单信道和多信道的传输实验。分析比较了四种码型的在色散容限,非线性容限,传输距离上的优势及不足。MD-RZ在抗非线性效应及长距离传输中有独特的优势。
     (4)全面分析了“多功能光纤型全光码型转换器”的码型转换功能。归纳总结了四种主要的码型转换功能:NRZ到伪归零码(PRZ);RZ到NRZ;差分相移键控(DPSK)码到通断键控(OOK)码;DPSK到MD-RZ。
At present, research on 40Gbit/s DWDM systems goes deeper. The bottleneck of further expanding system capacity is transmission impairments include accumulated noise from optical amplifiers, group-velocity dispersion (GVD), polarization mode dispersion (PMD) and fiber nonlinear effects such as self-phase modulation (SPM), cross-phase modulation (XPM), Stimulated Raman Scattering (SRS), Stimulated Brillouin Scattering (SBS) and four-wave mixing (FWM). Some modulation formats may to some extend overcome these transmission limitations and improve spectral efficiency. The paper deals with modulation formats and the main achievements are listed as the following
     (1) Domestic and foreign researches and development on advanced modulation formats are reviewed. Characteristics and generation methods of some primary modulation formats are presented.
     (2) A novel all-optical method is proposed out to generate Modified Duobinary RZ (MD-RZ) format by using a Polarization Maintaining Fiber Loop Mirror (PMFLM). Operation principle for all-optical format conversion is theoretically analyzed and 40Gb/s MD-RZ data format generation is experimentally demonstrated.
     (3) Transmission performance in 40Gb/s DWDM system of four modulation formats are simulated by Optisystem software. The four modulation formats are Non-Return to Zero (NRZ), Return to Zero (RZ), Optical Duobinary (ODB), and MD-RZ, performance of which are compared in terms of dispersion tolerance, non-linear tolerance, and transmission distance. MD-RZ has higher robust against non-linear effects and most suitable in ultra long transmission.
     (4) Comprehensive theoretical analysis and experiments on functions of "multi-functional fiber-based all-optical formats converter". Four major format conversions are concluded which are NRZ to Pseudo RZ (PRZ), RZ to NRZ, Differential Phase-Shift Keying (DPSK) to On-Off Keying (OOK), and DPSK to MD-RZ.
引文
[1]刘增基,周洋溢,胡辽林等.光纤通信.西安:西安电子科技大学出版社. 2001
    [2] P. J. Wintzer, S. Chandrasekhar. Return-to-Zero modulation with electrically continuously tunable duty cycle using single NRZ modulator. Electron. Lett., 2003, 39(11): 859~860
    [3] Yikai Su, Greg Raybon, Hao Feng, et al. 40-Gb/s RZ Transmission over 1200 km using an integrated electro absorption modulated laser. IEEE Photon. Lett., 2003, 15(8): 1156~1158
    [4] Yi Dong, Zhihong Li, Jinyu Mo, et al. Pulsewidth-tunable CS-RZ signal foramat with better tolerance to dispersion and nonlinear degradation in optical transmission system. IEEE Photon. Technol. Lett., 2004, 16(5): 1409~1411
    [5] A, Hirano, Y. Miyamoto, K. Yonenaga, et al. 40Gbit/s L-band transmission experiment using SPM-tolerant carrier-suppressed RZ format. Electron. Lett., 1999, 35(25): 2213~2215
    [6] Dong-soo Lee, Man Seop Lee, Yang Jing Wen, et al. Electrically band-limited CSRZ signal with simple generation and large dispersion tolerance for 40Gb/s WDM transmission systems. IEEE Photon. Technol. Lett., 2003, 15(7): 987~989
    [7] O. Vassilieva, T. Hoshida, S. Choudhary, et al. Numerical comparison of NRZ, CS-RZ and IM-DPSK formats in 43 Gbit/s WDM transmission. LEOS, 2001, 2: 673–674.
    [8] Jin Wang, Joseph M. Kahn. Impact of Chromatic and Polarization-Mode Dispersion on DPSK systems using interferometric demodulation and direct detection. J. Lighrwave Technol., 2004, 22(2): 362~371
    [9] Zhihong Li, Yi Dong, Jinyu Mo, et al. 1050-km WDM transmission of 8*10.709Gb/s DPSK signal using cascaded in-line semiconductor optical amplifier. IEEE Phnton. Technol.
    [10] J. K. Rhee, H. Kobayashi, and W. S. Warren. Optical frequency-domain differential phase shift keying in femtosecond-pulse WDM systems. J.Lightwave Technol., 1997, 15(9): 2214–2222
    [11] R. A. Griffin. Optical differential quadrature phase-shift keying (oDQPSK) for highcapacity optical transmission. OFC: 2002. 367~368.
    [12] A. F. Elrefaie, R. E. Wagner, D. A. Atlas, et al. Chromatic dispersion limitations in coherent lightwave transmission systems. J. Lightwave Technol., 1998, 6(4): 704~709
    [13] G. May, A. Solheim, J. Conradi. Extended 10Gb/s fiber transmission distance at 1538 nm using a duobinary receiver. IEEE Photon. Technol. Lett., 1994, 6(3): 648~650
    [14] X. Gu, L. C. Blank. 10Gb/s unrepeated three-level optical transmission over 100km of standard fiber. Electron. Lett., 1993, 29(11): 2209~2211
    [15] K. Yonenaga, S. Kuwano, S. Norimatsu, et al. Optical duobinary transmission system with no receiver sensitivity degradation. Electron. Lett., 1995, 31(2): 302~303
    [16] Kazushige Yonenaga, Shigeru Kuwano. Dispersion-Tolerant Optical Transmission System Using Duobinary Transmitter and Binary Receiver. J. Lightwave Technol., 1997, 15(8): 1530-1536
    [17] T. Ono, Y. Yano, K.Fukuchi, et al. Characteristics of optical duobinary signals in terabit/s capacity high-spectral efficiency WDM systems. J. Ligthwave Technol., 1998, 16(3): 788-797
    [18] Djafar K. Mynbaev, Lowell L. Scheiner.光纤通信技术. (第一版).徐公权,段鲲,廖光裕等译:机械工业出版社, 2002
    [19] B. Kim, J. Jeong, J. Lee, et al. Improvement of dispersion tolerance for electrical-binary-signal-based duobinary transmitters. Opt. Express, 2005, 13(22): 5100-5105
    [20] Govind P. Agrawal.非线性光纤光学原理及应用. (第一版).贾东方,余震虹译:电子工业出版社, 2002
    [21] E. Ciaramella, G. Contestabile, A. D’Errico. A Novel Scheme to Detect Optical DPSK Signals. IEEE Photon. Technol. Lett., 2004, 16(9): 2138-2140
    [22] Mu R M, Menyuk C R. Convergence of the chirped return-to-zero and dispersion managed soliton modulation formats in WDM systems. J. Lightwave Technol., 2002, 20(4): 608~617.
    [23] Leibrich J, Wree C, Rosenkranz W. CF-RZ-DPSK for suppression of XPM on dispersion-managed long-haul optical WDM transmission on standard single-mode fiber. IEEE Photon. Technol. Lett, 2002, 14(2): 155~157.
    [24] Hui R, Demarest K R, Allen C T. Cross-phase modulation in multi-span WDM optical fiber systems. J. Lightwave Technol., 1999, 17(6): 1018-1026
    [25] Dahan D, Eisenstein G. Numical comparison between distributed and discrete amplification in a point-to-point 40-Gb/s 40-WDM-based transmission system with three different modulation formats. J. Lightwave Technol., 2002, 20(3): 379~388.
    [26] Sieben M, Conradi J, Dodds D E .Optical single sideband transmission at l0Gb/s using only electrical dispersion compensation. J. Lightwave Technol., 1999, 17(4): 1742~17 49
    [27] Sahara A, Inui T, Komukai T, et al. 40-Gb/s RZ transmission over a transoceanic distance in a dispersion managed standard fiber using a modified inline synchronous modulation method. J. Lightwave Technol., 2000, 18(10): 1364~1373
    [28] Yamada E, Takara H, Ohara T, et al. 150 channel super continuum CW optical source with high SNR and precise 25GHz spacing for 10Gbit/s DWDM systems. Electron. L ett., 2001, 37(5): 304~306.
    [29] Yao X S. Brillouin selective sideband amplification of microwave photonic signals. IEEE Photon. Technol. Lett.,19 98,10(1):13814
    [30] Sunnered H, Karlsson M, Xie C, et al. Polarization-mode dispersion in high-speed fiber-optic transmission systems. J Lightwave Technol, 2002, 20(12): 2204~2219.
    [31] Monroy I T. Scalability of Optical Networks: Crosstalk Limitations. Photonic Network Commun, 2000, 2(2): 111~121.
    [32] Gustavsson M, Gillner L, Larsen C P. Statistical Analysis of Interferometric Cross talk Theory and Optical Network Examples. J Lightwave Technol, 1997, 15(11): 2006~2019.
    [33] Legg P J, Tur M, Andonovic I. Solution paths to limit interferometric noise induced performance degradation in ASK/direct detection lightwave networks. J Lightwave Technol, 1996, 14(9): 1943~1954.
    [34] Khosravani R, Hayee M I, Hoanca B, et al. Reduction of coherent crosstalk in WDM add/drop multiplexing nodes by bit pattern misalignment. IEEE Photon Technol Lett, 1999, 11(1): 134~136.
    [35] Siddiqui A S, Edirisinghe S G, Lepley J J, et al. Dispersion-tolerant transmission using a duobinary polarization-shift keying transmission scheme. IEEE Photon Technol Lett,2002, 14(2): 158-160
    [36] Smith G H, Novak D, Ahmed Z. Technique for optical SSB generation to overcome dispersion penalties in fiber-radio systems. Electron Lett, 1997, 33(1): 74~75.
    [37] Hirano A, Asobe M, Sato K, et al. Dispersion tolerant 80-Gbit/s carrier-suppressed return-to-zero(CS-RZ) format generated by using phase- and duty-controlled optical time division multiplexing(OTDM) technique. IEICE Trans Commun, 2002, E85-B(2): 431-435
    [38] Cartledge J C, Mckay R G. Performance of 10Gb/s lightwave systems using an adjusting chirp optical modulator and linear equalization. IEEE Photon Technol Lett, 1992, 4(12): 1394~1397
    [39] Penninckx D, Pierre M C L, Thiery J P. The phase-shaped binary transmission(PSBT): a new technique to transmit far beyond the chromatic dispersion limit. IEEE Photon T echnol Lett, 1997, 9(2): 259~261
    [40] Hodzic A, Konrad B, Petermann K. Prechirp in NRZ-based 40-Gb/s single-channel and WDM transmission systems. IEEE Photon Technol Lett, 2002, 14(2): 152~154
    [41] R. M. Mu, T. Yu, V. S. Grigoryan, et al. Dynamics of the chirped return-to-zero modulation format. J. Lightwave Technol. 2002, 20(1): 47~57
    [42] Akihide Sano, Yutaka Miyamoto. Performance evaluation of prechirped RZ and CS-RZ formats in high-speed transmission systems with dispersion management. J. Lightwave Technol., 2001, 19(12): 1864~1871

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700