锥束CT仿真系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锥束CT利用面阵探测器获取物体的二维射线投影,并通过三维重建得到物体在扫描体积范围内的所有切片图象。它与传统的二维CT相比,具有扫描速度快、空间分辨率高和射线利用率高等优点,在工业无损检测和医学应用领域中都有广阔的应用前景,是当今国际CT研究领域的前沿课题之一。
     锥束CT仿真是锥束CT研究的重要内容。本文重点研究了锥束CT仿真系统的数学建模、STL样本模型投影成像的并行快速仿真等关键技术,开发构建了一个支持混合样本、非点光源与多光谱投影仿真的锥束CT仿真系统平台。
     主要研究内容和成果如下:
     1.锥束CT仿真系统的数学建模。在分析X射线与物质的相互作用及其衰减规律的基础上,研究了锥束CT成像的物理原理。根据计算机仿真的一般模型和锥束CT系统的组成,提出了基于光线跟踪和X射线衰减定律的投影成像仿真总体思路。完成了射线源、探测器和检测样本等主要部件的数学建模,实现了通用锥束CT仿真系统的装配,并给出了投影仿真计算的算法流程。
     2.STL样本模型投影成像的并行快速仿真。针对STL样本基元,根据锥束CT仿真投影的特点,研究了一套基于八叉树的锥束CT仿真投影快速计算方法。采用SIMD技术对投影计算中的关键部分进行并行计算,进一步提高了生成仿真投影图象的速度。实验结果表明,在保证投影图象精度的前提下,该方法较之于UG样本投影计算有60~90倍左右的加速比,极大地提高了锥束CT仿真投影的计算速度,增强了仿真系统的实用性。
     3.锥束CT仿真系统平台研发。面向锥束CT仿真研究需求,研究了锥束CT仿真软件系统的功能划分、体系结构、系统数据模型、系统框架设计和组件集成方法。在集成CSG、UG、STL、Voxel四种样本独立仿真功能模块的基础上,提出并实现了混合检测样本的建模方法与仿真技术,开发了一个支持混合样本、非点光源与多光谱的锥束CT仿真系统;通过三个实例系统地验证了本文研究成果的有效性,为进一步开展锥束CT技术研究,提供了一个良好的研究开发和实验平台。
Cone-beam CT refers to a technique for imaging all cross-sections of an object using 3D image reconstruction algorithms based on a series of X-ray projections captured by an area detector from different angles around the object. Owing to the advantages of faster scanning speed, higher spatial resolution and better utilization of X-ray photons compared with traditional 2D CT, cone-beam CT has a broad application perspective in industrial non-destructive testing and medical applications, and is an advanced research topic in the current international CT community.Cone-beam CT simulation is an important part of cone-beam CT research. The dissertation mainly studied the key techniques which are the mathematics modeling of cone-beam CT simulation system, and the parallel rapid simulation of the projection imaging with STL phantom models. Then a cone-beam CT simulation system platform was developed, which provided the projection simulation for compounding phantoms, non-point X-ray source and multiple X-ray spectrums.The main research contents and achievements are articulated as follows:1. Mathematics modeling of cone-beam CT simulation system. Based on analysing the interaction with substances and the attenuation law of X-ray, the physical principle of cone-beam CT imaging was studied. According to the common model of computer simulation and the structure of cone-beam CT system, a whole design of projection imaging simulation based on ray-tracing and on the X-ray attenuation law was proposed. The mathematics modelings for main components, including X-ray source, detector and phantom, were accomplished. After achieving the assembly of universal cone-beam CT simulation system, the algorithm flow of projection simulated computation was presented.2. parallel rapid simulation of the projection imaging with STL phantom models. In respect that the properties of cone-beam CT simulated projection, a suite of rapid algorithms based on octree was studied for STL phantom models. By parallely computing the key parts in the projection calculation with SIMD technique, the speed of creating simulated projection images was more heightened. The experimental result shows that the algorithms achieve a speedup of 60-90 times than UG phantom projection without any image quality loss, which greatly enhance the computed speed of cone-beam CT simulated projection and intensify the practicality of the simulation system.3. Research and develop the Cone-beam CT simulation system phantom. Aiming at the cone-beam CT simulation research requirement, the function partition, system architecture and data model of cone-beam CT simulation software system were studied, as well as general framework and component integration method. The modeling method and simulation technique of compounding phantoms were brought forward and realized based on integrating the independence simulation function models of CSG, UG, STL and voxel phantoms. Then a cone-beam CT simulation system was developed, which provided the projection simulation for compounding phantoms, non-point X-ray source and multiple X-ray spectrums. All the research achievements were tested and verified systematically by using three instances in the system. The simulation system provides a favorable experimental platform for further research and application of cone-beam CT.
引文
[1] Radon J., Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten, Berichte Sachsische Akademie der Wissenschaften. Leipzig, Math. -Phys. KI., 69, 262-267, 1917. English translation in S. R. Deans, The Radon transform and some of its applications: John Wiley, 1983, 204-217
    [2] 李家伟,陈积慰.无损检测手册.北京:机械工业出版社,2002,1
    [3] R. N. Bracewell. Strip Integration in Radioastronomy. Aust. J. Phys, 1956, 9: 198
    [4] W. H. Oldendorf. Isolated Flying Spot Detection of Radio Density Discontinuities Displaying the Internal Structural pattern of a Complex object. IRE Trans, 1961, BME-8: 68-72
    [5] A.M. Corrnack. Representation of a function by its line integrals with some radiological applications. Journal of Applied Physics, 1963, 34: 2722-2727
    [6] GN Hounsfield. A Method of and Approaches for Examination of a Body by Radiation such as X or Gamma Radiation. The Patent Office, London, Patent Specificiation 1283915
    [7] GT Herman. Imaging Reconstruction from Projections: The Fundamentals of Computerized Tomography. Academic Press, 1980
    [8]王鸣鹏.实用CT检查技术学.北京:科学技术文献出版社,2000
    [9] WA Kalender, W Seissler and et al. Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiolo~: v. 1990, 176 (1): 181-183
    [10]先武,李时光,王珏.最佳无损检测手段——工业CT技术的发展.光电工程,1995,22(4):51-58
    [11] Alexander Sasov. Comparison of fan-beam, cone-beam, and spiral scan reconstruction in x-ray micro-CT. Proc. of SPIE, 4503: 124-131
    [12] 唐杰,张丽,高文焕.基于平板探测器的锥束CT系统综述.中国体视学与图象分析,2004,9(2):65-70
    [13] 王本,王革.锥束CT图象重建算法.CT理论与应用研究,2001,10(2):1-8
    [14] A. B. Della Rocca, S. Ferriani, L. La Porta. Radiographic Process Simulation by Integration of Boltzmann Equation on SIMD Architecture. HPCN Europe, 1996: 460-466
    [15] H. Ikeda, N. Hayashi. Three-dimensional image synthesis of MRI and CT angiography on an image-guided neurosurgical simulation system. Clinical Neurology and Neurosurgery, 1997, 99(S1): S221-S222
    [16] 国家自然科学基金委员会 2005年基金项目申请指南. http://www.nsfc.gov.cn/nsfc/cen/xmzn/2005xmzn/02zd/02/04.htm
    [17] Kevin M. Rosenberg. CTSim: The Open Source Computed Tomography Simulator. http://www.ctorg.com, 2004
    [18] Center for Nondestructive Evaluation Iowa State University. XRSIM USERS MANUAL. http://www.cnde.iastate.edu/ncce/RT_CC/Sec.6.5/Manua1499.PDF
    [19] Feyzi Inanc. ANALYSIS OF X-RAY AND GAMMA RAY SCATTERING THROUGH COMPUTATIONAL EXPERIMENTS. Iowa State University Center for Nondestructive Evaluation
    [20] Feyzi Inanc. A CT Image based deterministic approach to dosimerty and radiography simulation, Phys. Med. Biol, 2002(47): 3351-3368
    [21] Feyzi Inanc. Scattering and its rote in radiography simulations. NDT&E International, 2002, 35(8): 581-593
    [22] G. R. Tillack, C. Bellon, C. Nockemann. Computer Simulation of Radiographic Process-A Study of Complex Component and Defect Geometry. http://www.cnde, iastate.edu/qnde/database/Vol. 14A/p0665-0672.html
    [23] A P Colijn, W Zbijewski, A Sasov, et al. Experimental Validation of a Rapid Monte Carlo Based Micro-CT Simulator. Phys. Med. Biol., 2004, 49 (18): 4321-4333
    [24] D. W. O. Rogers. Monte Carlo Techniques in Radiotherapy. Physics in Canada Medical Physics Special Issue, 2002, 58(2): 63-70
    [25] Alexander Flisch, Joachim Wirth, Robert Zanini, et al. Industrial Computed Tomography in Reverse Engineering Applications. Computerized Tomography for Industrial Applications and linage Processing in Radiology, 1999, Berlin, Germany
    [26] P Hugonnard, A Gliere. X-Ray simulation and applications. Computerized Tomography for Industrial Applications and Image Processing in Radiology, 1999, Berlin, Germany
    [27] MR AY, S Sarkar, M Shahriari, et al, MCNP4C-based Monte Carlo simulator for fan- and cone-beam X Ray CT: development and experimental validation. Phys. Med. Biol., 2005, 50 (20): 4863-4885
    [28] Claire McCann and Hamideh Alasti. Comparative Evaluation of Image Quality from Three CT Simulation Scanners. J. of Applied Clinical Medical Physics, 2004, 5 (4): 55-70
    [29] WR Nelson, H Hirayama and DWO Rogers. The EGS4 Code System. http://www.slac. stanford.edu/pubs/slacreports/slac-r-265.html
    [30] JM Merbach. Simulation of X-ray Projections for Experimental 3D Tomography. Linkoping University, 1996
    [31] C Cagnon, M Mcnitt-Gray. Simulation of CT Scanner Geometry and Physics using Monte Carlo Methods. http://www.medpbysics.ucla.edu/research/, California University, 1999
    [32] 康克军,毛希平,刘亚强.在二维和三维CT图象重建理论方法的研究工作及新进展,CT理论与应用研究,1997,6(2):48-51
    [33] 秦中元,牟轩沁,王平,等.一种通用的X射线锥形束投影生成算法.西安交通大学学报,2002,36(2):160-164
    [34] 杨民,路宏年,张莉.分层层析成像中典型构件数字投影计算机仿真.兵工学报,2003,24(2): 180-183
    [35] 江鹏.面向装配体的ICY计算机仿真及相关技术研究。西北工业大学硕士学位论文,2003
    [36] 宋学医.CT仿真软件的算法分析与计算机实现.西北工业大学学士学位论文,2000
    [37] 谌飙,庄天戈.锥形束X线直接体积成像的理论研究.上海交通大学学报,1997,31 (4):72-76
    [38] 张丰收,张定华,赵歆波,等.航空发动机涡轮叶片CBVCT系统的设计.机床与液压,2005,(3):32-34
    [39] 张定华,Ruola Ning,卜昆,等.体积CT系统中的平板探测器校正方法.仪器仪表学报,2005,26(2):157-163
    [40] 毛海鹏,张定华,梁亮,等.一种基于PC的快速三维图象重建方法.系统仿真学报,2004,16(11):2486-2489
    [41] 程云勇,张定华,赵歆波,等.涡轮叶片锥束体积CT检测系统软件原型.中国机械工程,2005,16(20):1835-1839
    [42] (美)无损检测学会编.美国无损检测手册射线卷.上海:世界图书出版公司,1992
    [43] 刘德镇.现代射线检测技术.北京:中国标准出版社,1999
    [44] 王召巴.基于面阵CCD相机的高能X射线工业CT技术研究.南京理工大学博士学位论文,2001
    [45] Avinash C. Kak, Malcolm Slaney. Principles of Computerized Tomographic Imaging. IEEE PRESS, 1988
    [46] 袁柏琴,袁志强.对比度与半值层.无损检测,1997,19(10):294-297
    [47] 康晓东。现代医学影像技术.天津:天津科技翻译出版公司,2000,1
    [48] A. Filiz Baytas. The projection map interpolation in parallel beam gamma-ray computed tomography. Applied Radiation and Isotopes, 1999 (51): 717-724
    [49] 王延平,钟志刚.图象重建中规定直方图约束与最大熵方法比较.武汉大学学报,1993 (3): 35-41
    [50] Wang Yanping, Li Han, et al. A new iterative method with histogram equalization constraint for reconstructing image from phase. IEEE ICASSP, 1987: 1191-1194
    [51] LA Feldkamp, LC Davis and JW Kress. Practical Cone-beam Algorithm. J. Opt. Soc. Am. A, 1984, 1(6): 612-619
    [52] Mattew Nguyen. A Simulation of a Proposed Technique for Medical Imaging. http://www.slac.stanford.edu/grp/th/erulf-sise/1999/nguyen/nguyen.pdf
    [53] 吴维敏,曾建潮.一种面向对象的混合动态系统的仿真环境.系统仿真学报,2000,12(3):178-181
    [54] 张江平,吕俊芳.面向对象仿真建模的研究.航空计测技术,2001,21(6):1-16
    [55] 朱冬梅,丁蓉,周洪楠.实验物理学中的Monte Carlo方法.南京师大学报(自然科学版),1998,21(4):36-40
    [56] C Cagnon, M Mcnitt-Gray. Simulation of CT Scanner Geometry and Physics using Monte Carlo Methods. http://www.medphysics.ucla.edu/research/, California University, 1999
    [57] AliBENDAOUD、AFAHLI.应用蒙特卡罗方法计算能量低于3MeV的光子剂量.中国医学物理学杂志,1998,15(2):97-101
    [58] 曹军生,刘以农,倪建平.康普顿背散射成像的蒙特卡罗模拟.核电子学与探测技术,2003,23(2):155-158
    [59] Bielajew AF, Hirayama H, Nelson WR, et al. History, overview and recent improvements of EGS4. National Research council of Canada report NRC-PIRS-0436, 1994
    [60] 王正中.复杂系统仿真方法及应用.计算机仿真,2001,18(1):3-6
    [61] 谢黎明,孙元涛.面向对象仿真与建模特点.甘肃工业大学学报,2002,28(1):35-38
    [62] M. B. Aufderheide, H.Vantine, X-ray imaging and reconstruction of a detonation front. Nuclear Instruments and Methods in Physics Research, 1999, 422(1): 704-708
    [63] D.Lazos, Z.Kolitsi. A Software Data Generator for Radiographic Imaging. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2000, 4(1): 76-79
    [64] F.Inanc, J.N.Gray. Human body radiography simulations: development of a virtual radiography environment. Proceedings of the SPIE Conference on physics of Medical Imaging, 1998, Vot.3336
    [65] Hologic Inc. Digital Radiography Systems: An Overview. http://www.hologic.com/prod
    -dr/pdf/dr-whtpap.pdf, 2005
    [66] A. B. Della Rocca, S. Ferriani. Computer simulation of the radiographic image forming process: implementation and applications. NDT&E International, 1995, 28(3): 163-170
    [67] A. Gli e re. SINDBAD: From Cad Model to Synthetic Radiographs.
    http://www.cnde.isatate.edu/qnde/database/tmp-qnde17a/SINDBAD.htm
    [68] LA Shepp, BF Logan. The Fourier reconstruction of a head section. IEEE Trans. Nucl. Sci., 1974, 21(1): 21-43
    [69] 唐杰,高文焕,刑宇翔,等.通用CT算法研究实验平台的软件设计.CT和三维成像学术年会,北京,2004
    [70] 毛海鹏,张定华,卜昆,等.锥束三维CT仿真系统的研究与实现.计算机应用研究,2005,4
    [71] 美国国家标准技术局(NIST). Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients, http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html
    [72] 孙宏宇,三维CT算法及重建质量研究.华北工学院硕士学位论文,2003
    [73] 刘欣瑜.非均匀密度场的建模与ICT仿真投影计算方法研究.西北工业大学硕士学位论文,2005
    [74] Zhou, Man-Yuan;Xi, Jun-Tong;Yan, Jun-Qi. STEP-based direct slicing algorithm for rapid prototyping. Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University v 37 n 5 May 2003: 737-740
    [75] Hradek, Jan;Kuchar, Martin;Skala, Vaclav. Hash functions and triangular mesh reconstruction. Computers and Geosciences v 29 n 6 July 2003: 741-751
    [76] Zhou, Z. D.;Zhou, J. D.;Chen, Y. P;Ong, S. K.;Nee, A. Y. C. Geometric simulation of NC machining based on STL models. CIRP Annals-Manufacturing Technology v 52 n 1 2003: 129-134
    [77] 孙家广.计算机图形学(第三版).北京:清华大学出版社,1998
    [78] T. Wfitt. An Improved Illumination Model for Shaded Display. CACM, 1980, 23 (6)
    [79] T. L. Kay and J. T. Kajiya. Ray Tracing Complex Scenes. Computer Graphics, 1986, 20 (4): 264-278
    [80] 范昭炜.实时碰撞检测技术研究.浙江大学博士学位论文,2003
    [81] J. Amanatides and A. Woo. A Fast Voxel Traversal Algorithm for Ray Tracing. EUROGRAPHICS'87: 3-10
    [82] Q. Peng, Y. Zhu and Y. Liang. A Fast Ray Tracing Algorithm Using Space Indexing Techniques, EUROGRAPHICS'87, 1987
    [83] G. Simiakakis and A. M. Day. Five-Dimensional Adaptive Subdivision for Ray Tracing. Computer Graphics Forum, 1994
    [84] 张建民,朱均,孙国基,等.快速成型中基于立方单元体的三维模型及其应用.西安交通大学学报,2000,34(10):62-66
    [85] 彭群生,鲍虎军,金小刚.计算机真实感图形的算法基础.北京:科学出版社,1999
    [86] Moller T, Trumbore B. Fast, minimum storage ray-triangle intersection. Journal of Graphics Tools, 1997, 2(1): 21-28
    [87] Moller T. A fast triangle-triangle intersection test. Journal of Graphics Tools, 1997, 2(2): 25-30
    [88] M. J. Flynn. Some Computer Organization and Their Effectiveness. IEEE Trans. Computers, 1972, 21 (9): 948-960
    [89] 陈国良.并行算法的设计与分析.北京:高等教育出版社,1994
    [90] Intel Corporation. IA-32 Intel Architecture Software Developer's Manual Volume 1: Basic Architecture. http://www,intel,corn/Order Number 245470-012,2003
    [91] Intel Corporation. IA-32 Intel Architecture Software Developer's Manual Volume 2: Instruction Set Reference Manual. http://www,intel,com/Order Number 245471-012,2003
    [92] Intel Corporation. IA-32 Intel Architecture Software Developer's Manual Volume 3: System Programming Guide. http://www,intel, corn/Order Number 245472-012,2003
    [93] Intel Corporation. Data Alignment and Programming Issues for the Streaming SIMD Extensions with the Intel C/C + + Compiler. available at http://developer,intel.Com/vtune/cbts/strm simd/833down, htm/
    [94] Intel Corporation. Intel Architecture Optimization Reference Manual. available at http://developer. intel, com/dcsign/Pentium Ⅲ/manuals/
    [95] Intel Corporation. Software Development Strategies for the Streaming SIMD Extensions.available at http://developer,intel,com/vtune/cbts/strmsimd/814down,htm/
    [96] 程云勇,张定华,毛海鹏,等.一种基于工业ct的航空发动机涡轮叶片生产检测系统关键技术研究.制造技术与机床,2004(1):27-30
    [97] Hafedh Mill, Fatma Mili, Ali Mili. Reusing Software: Issues and Research Directions. IEEE Transactions on Software Engineering, 1995, 21(6): 528-562
    [98] Ehrig H., F. Orejas, B. Braatz, M. Klein, M. Piirainen. A Generic Component Framework for System Modeling. Proc. FASE 2002, Springer LNCS 2306 (2002): 33-48
    [99] W. M. E van der Aalst, K. M. van Hee, R. A. van der Toorn. Component-based software architectures: a framework based on inheritance of behavior. Science of Computer Programming, 2002, 42(2-3): 129-171
    [100] Joon-Sang Lee, Doo-Hwan Bae. An aspect-oriented framework for developing component-based software with the collaboration-based architectural style. Information and Software Technology, 2004, 46(2): 81-97
    [101] 杨东勇,张健,杨海清,等.基于组件的控制系统计算机辅助分析与设计系统.计算机工程与应用,2002,38(15):110-113
    [102] 王丽娟,孙西超,底松茂,等.软件复用与基于面向对象框架的软件开发方法.郑州大学学报(工学版),2003,24(3):24-28
    [103] Kitware Inc. http://www.vtk.org/
    [104] 杨顺徉,葛科,高仲仪.基于UML和组件技术的软件开发环境IUMLSE的研究与实现,计算机程与应用,2001,37(12):31-35
    [105] 朱午光,周斌,李文印,等.基于组件技术(COM)的工业控制软件的开发与应用,工矿自动化,2004,5:42-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700