具有执行器/控制器故障的时滞系统稳定性与反馈控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工业生产过程中,时滞现象普遍存在.不仅如此,控制系统在运行过程中,内部元件如控制器、执行器发生失效不可避免,这些都将导致系统性能下降甚至不稳,同时使得控制系统的分析和综合变得更加复杂,给控制系统的研究带来了新的挑战.
     不同于原有的可靠控制设计方案,本文引进了切换策略,利用切换系统的理论框架研究了具有执行器或控制器故障的时滞系统的稳定性及反馈控制问题.因连续动态、离散动态与时滞的相互作用和影响,使得这类系统的动态行为变得十分复杂,系统的运行机制远未清楚,大量问题亟待解决.本文通过构造分段Lyapunov-Krasovskii泛函,基于平均驻留时间技术、多Lyapunov函数的方法,采用积分不等式、自由加权矩阵、广义系统模型变换并结合Moon不等式等方法,研究因执行器或控制器故障导致的切换时滞系统的稳定性及控制器设计的一些问题,主要工作包括:
     针对多时变时滞不确定系统的状态反馈控制器彻底失效情况,通过将系统模型转化为包含稳定子系统和不稳定子系统的切换时滞系统模型,将切换时滞系统的激活时间划分为稳定子系统的激活时间和不稳定子系统的激活时间,采用平均驻留时间的方法并结合积分不等式,构造分段Lyapunov-Krasovskii泛函,证明了当切换时滞系统的平均驻留时间以及稳定子系统与不稳定子系统的激活时间之比不小于某一常数时,所设计的切换机制可以保证切换时滞系统是鲁棒指数稳定.本文还进一步推广到含有非线性扰动的情形.
     针对单时变时滞不确定系统的状态反馈控制器彻底失效情况,分别讨论了具有非线性干扰的不确定时滞系统、不确定区间时变时滞系统的状态反馈控制器的可解问题.首先针对具有非线性干扰的不确定时滞系统,利用所建立的鲁棒指数稳定的充分条件,通过采用矩阵变换,引进新的矩阵变量,获得了控制器可解的充分条件.类似地,针对不确定区间时变时滞系统,利用Lyapunov-Krasovskii泛函,结合积分不等式,得到了具有区间时变时滞的鲁棒指数稳定充分条件,进而给出控制器具体设计方案.最后通过数值例子验证了所提出方法的有效性.
     针对时变时滞不确定系统的执行器部分失效情况,分别讨论了包含稳定子系统和不稳定子系统的切换时滞系统的稳定性问题以及子系统均稳定的切换时滞系统的输出反馈控制器的设计问题.首先针对稳定与不稳定子系统共存的切换时滞系统,利用平均驻留时间技术及稳定与不稳定子系统的激活时间之比,给出时滞系统在某一合适时滞上界是鲁棒指数稳定的充分条件.特别地,通过求解LMIs,得到了保证时滞系统指数稳定所允许的时滞上界.针对子系统均稳定的切换时滞系统,利用广义系统模型变换并结合Moon不等式方法,通过锥补线性化算法,给出了确保所考虑系统鲁棒指数稳定的混杂动态输出反馈控制器设计方案.
     针对区间时变时滞线性系统的执行器部分失效情况,通过将系统模型转化为区间时变时滞切换系统,基于平均驻留时间技术,采用自由加权矩阵方法,得到时滞相关且依赖时滞区间的指数稳定及镇定的充分条件,从而解决了具有执行器失效故障的区间时变时滞系统指数稳定的混杂状态反馈控制器的设计问题.由于充分考虑了时滞下界的信息,所得结果具有更小的保守性.仿真例子表明所提出的方法确实有效.
     针对区间时变时滞不确定中立时滞系统的执行器部分失效情况,通过将系统模型转化为区间时变时滞不确定切换中立时滞系统,利用平均驻留时间技术及结合积分不等式,设计混杂状态反馈控制器并以LMIs形式给出闭环系统鲁棒指数稳定的充分条件.特别地,又得到了切换时滞系统的鲁棒指数镇定充分条件.
     针对执行器卡死故障,研究基于观测器的不确定时滞系统自适应控制问题.将系统模型转化成切换时滞系统,利用多Lyapunov函数方法,基于分段Lyapunov稳定性理论,设计了自适应控制器使得闭环系统渐近稳定并给出了系统渐近稳定的时滞无关充分条件.
Time delay phnomenon widely exists in many industrial processes. Also, the faults of components such as actuators, controllers, occur inevitably with the running of systems. These may result in instability and poor performance of the resulting systems and complicate stability analysis and synthesis of the control systems. Therefore, it is a challenge for us to study this class of systems.
     Different from the design of the original reliable control, the paper mainly focuses on stability and feedback control of time-delay systems with actuator/controller failures by introducing a switching strategy and utilizing the framwork of switched system. Due to the interaction among the continuous dynamics, discrete dynamics and time delays, the behavior of such systems is very complicated. Mechanism of system evolution is not clear and many problems of analysis and syntheses need to be studied. Here, some problems of stability and controller design of the resulting closed-loop systems caused by actuator/controllelr failures are considered by constructing the piecewise Lyapunov-Krasovskii functional and by applying methods such as the average dwell time technique, multiple Lyapunov function method, the integral inequality, free weighting matrices, a combination of descriptor model transformation approach and Moon's integral inequality and so on. The main contributions of this dissertation are as follows.
     The issue of robustly exponential stability for a class of multi-delay systems with structure uncertainties or/and nonlinear perturbations and controller failures, is considered. Multi-delay system with actuator failures is modelled as a special switched delay system including both stable and unstable subsystems. Based on the average dwell time concept and using the integral inequality and the piecewise Lyapunov-Krasovskii functional, it is proved theoretically that the given switched system is robustly exponentially stable with a desired stability margin by dividing the total activation time into the time with stable subsystems and the time with unstable subsystems, in the context that the average dwell time and the ratio of the activation time with stable subsystems to the activation time with unstable subsystems are not less than a specified constant. And the resullts are extended to the case with nonlinear perturbations.
     The sovable problem of state feedback controller for the delay systems with both structure uncertainties and nonlinear perturbations is considered. Utilizing the established robustly exponentially sufficient condition and using matrix transformation, the sovable condition is obtained by introducing new matrix varables. Similarly, by using Lyapunov-Krasovskii functional, the delay-range-dependent stability condition is given in terms of LMIs and the sovable condition of the uncertain system with interval time-varying delay is also obtained.
     The stability property for uncertain switched delay systems caused by actuator failures, which are composed of stable subsystems and unstable ones, is addressed. By using the average dwell time idea and the total activation time ratio between stable subsystems and unstable ones, it is shown theoretically that the resulting closed-loop system is robustly exponentially stable for an allowable upper bound of delays if its corresponding system with zero delay is exponentially stable. Particularly, the maximal allowable upper bound of delays can be obtained by solving some feasible linear matrix inequalities. Then, the design problem of hybrid dynamical output feedback controller for robustly exponential stabilization of a class of uncertain systems with time-varying delays and controller failures is investigated. By representing the time-delay system in the descriptor form and using the average dwell time technique, a new delay-dependent stabilization criterion for the existence of output feedback controllers is obtained in terms of matrix inequalities. A cone complementary linearization algorithm is utilized such that the resulting closed-loop switched systems are stable for the normal and/or faulty cases.
     The issue of exponential stabilization for a class of special time-varying delay switched systems resulting from actuator faults is considered. The time-varying delay is assumed to belong to an interval and can be slow or fast time-varying function. Based on the average dwell time method incorporating with free weighting matrices, a hybrid state feedback strategy is redesigned to guarantee the stability of the system. New delay-range-dependent stabilization conditions using state feedback controllers are formulated in terms of linear matrix inequalities by choosing appropriate Lyapunov-Krasovskii functional without neglecting some useful knowledge on system states. The obtained results are less conserva tive. Numerical examples are given to demonstrate the feasiblity and the effectiveness of the proposed method.
     The problems of delay-dependent robustly exponential stability and stabilization of a class of special neutral systems with interval time-varying delays and actuator failures, are investigated. For the special switched neutral system resulting from actuator failures, based on the switching strategy of average dwell time method and the integral inequality approach, the delay-dependent sufficient conditions for exponential stability and stabilization of the special switched neutral systems are established in terms of linear matrix inequalities by choosing appropriate piecewise Lyapunov-Krasovskii functional. Also, the stabilizing hybrid state-feedback controllers are designed to guarantee that the closed-loop system is robustly exponentially stable. Particularly, the stabilization of the switched delay systems are obtained.
     This paper concerns the observer-based adaptive control problem of uncertain time-delay systems with stuck actuator faults. The system model is expressed as a switched system. Under the case that the original controller cannot stabilize the faulty system, multiple adaptive controllers are designed and suitable switching logic is incorporated to ensure the closed-loop system stable and state tracking. New delay-independent sufficient conditions for asymptotic stability are obtained based on piecewise Lyapunov stability theory.
引文
[1] Mori T, Kokame H. Stability of x(t) = Ax{t) + Bx(t-r). IEEE Transaction on Automatic Control, 1989, 34(4):460-462.
    [2] Brierley S D, Chiasson J N, Lee E B et al. On stability independent of delay. IEEE Transanctions on Automatic Control, 1982,27(1):252-254.
    [3] Boyd S, Ghaoui L E, Feron E et al. Linear matrix inequality in system and control theory. SIAM Studies in Applied Mathematics, Philadelphia: SIAM, 1994.
    [4] Gahinet P, Nemirovskii A, Laub A et al. LMI control toolbox, Math Works. Naticvk: Massachusetts, 1995.
    [5] Hui G D. Simple criteria for stability of neutral systems with multiple delays. International Journal of Systems Science, 1997,28(12):1325-1328.
    
    [6] Mahmoud M S. Robust control of linear neutral systems. Automatica, 2000,36(5):757-764.
    [7] Fridman E, Shaked U. Delay-dependent stability and control: constant and time-varying delays. International Journal of Control, 2003,76(1):48-60.
    [8] Park A. A delay-dependent stability sriterion for systems with uncertain time-invariant delays. IEEE Transaction on Automatic Control, 1999,44(4):876-877.
    [9] Moon Y S, Park P, Kwon W H et al. Delay-dependent robust stabilization of uncertain state-delayed systems. International Journal of Control, 2001,74(14):1447-1455.
    [10] Gu K, Niculescu S I. Further remarks on additional dynamics in various model transformations of linear delay systems. IEEE Transanctions on Automatic Control, 2001,46(3):497-500.
    
    [11] Fridman E. New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems & Control Letters, 2001,43(4):309-319.
    
    [12] Fridman E, Shaked U. New bounded real lemma representations for time-delay systems and their applications. IEEE Transanctions on Automatic Control, 2001,46(12): 1973-1979.
    [13] Fridman E, Shaked U. An improved delay-dependent H_∞ filtering of linear neutral systems. IEEE Transanctions on Signal Processing, 2004, 52(3):668-673.
    
    [14] Fridman E, Shaked U. An improved stabilization method for linear time-delay systems. IEEE Transanctions on Automatic Control, 2002, 47(11): 1931-1937.
    [15] Fridman E, Shaked U. A descriptor system approach to Hoo control of linear time-delay systems. IEEE Transanctions on Automatic Control, 2002,47(2):253-270.
    [16] Fridman E, Shaked U. Parameter dependent stability and stabilization of uncertain time-delay systems. IEEE Transanctions on Automatic Control, 2003,48(5):861-866.
    [17] Fridman E, Shaked U, Xie L. Robust Hoo filtering of linear systems with time-varying delay. IEEE Transanctions on Automatic Control, 2003, 48(1): 159-165.
    [18] Gao H, Wang L. Comments and further results on "A descriptor system approach to H_∞ control of linear time-delay systems". IEEE Transanctions on Automatic Control, 2003, 48(3):520-525.
    [19] Lee Y S, Moon Y S, Kwon W H et al. Delay-dependent robust Hoo control for uncertain systems with a state-delay. Automatica, 2004,40(1):65-70.
    [20] Lin C, Wang Q G, Lee T H. A less conservative robust stability test for linear uncertain time-delay systems.IEEE Transanctions on Automatic Control,2006,51(1):87-91.
    [21]Han Q L.A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays.Automatica,2004,40(10):1791-1796.
    [22]Wu M,He Y,She J H.New delay-dependent stability criteria and stabilizing method for neutral systems.IEEE Transanctions on Automatic Control,2004,49(12):2266-2271.
    [23]Wu M,He Y,She J H et al.Delay-dependent criteria for robust stability of time-varying delay systems.Automatica,2004,40(8):1435-1439.
    [24]Han Q L.A new delay-dependent stability criterion for linear neutral systems with norm-bounded uncertainties in all systems matrices.International Journal of Systems Science,2005,36:469-475.
    [25]Niederlinski A.A heuristic approach to the design of linear multivariable interacting control systems.Automatica,1971,7(6):691-701.
    [26]Saljak D D.Reliable control using multiple control systems.International Journal of Control,1980,31(2):303-329.
    [27]Patton R J.Robustness issues in fault tolerant control.In:Proceedings of International Conference on Fault Diagnosis,Toulouse,France,1993,1081-1117.
    [28]叶银忠,潘日芳,蒋慰孙.多变量稳定容错控制器的设计问题.第一届过程控制科学论文集,1987:203-209.
    [29]叶银忠,潘日芳,蒋慰孙.控制系统容错控制器的地回顾与展望.第二届过程控制科学论文集,1988:49-61.
    [30]葛建华,孙优贤,容错控制系统的分析与综合.杭州:浙江大学出版社,1994.
    [31]周东华,叶银忠.现代故障诊断与容错控制.清华大学出版杜,2000.
    [32]Zhao Q.Fault tolerant control system design.Ph.D.Dissertation,the University Western Ontario,Canada,1999.
    [33]周东华.容错控制理论及其应用.自动化学报,2000,26(6):788-797.
    [34]Blanke M,Staroswiecki M,Wu N E.Concepts and methods in fault-tolerant control.In:Proceedings of the American Control Conference,Arlington,AV,2001:2606-2620.
    [35]Wu N E.Reliability of fault tolerant control systems:Part Ⅰ.In:Proceedings of 40th Conference on Decision & Control.Orlando,USA,2001:1460-1465.
    [36]Wu N E.Reliability of fault tolerant control systems:Part Ⅱ.In:Proceedings of 40th Conference on Decision & Control.Orlando,USA,2001:1466-1471.
    [37]Chen Z,Chang T.Modeling and fault tolerant control of large urban traffic network.In:Proc.of American Control Conference,1997,4:2469-2472.
    [38]Bonivento C,Paoli A,Marconi L.Fault-tolerant control of the ship propulsion system benchmark.Control Engineering Practice,2003,11:483-492.
    [39]Garcia E H.A reconfigurable hybrid system and its application to power plant control.IEEE Transaction on Control Systems Technology,1995,3(2):157-170.
    [40]Noura H,Sauter D,Hamelin F et al.Fault-tolerant control in dynamic system:application to a winding machine.IEEE Control System Magazine,2000,20(1):33-49.
    [41]A QFT fault-tolerant control for electrohydraulic positioning systems.IEEE Transaction on Control System Technology,2002,10(4):626-632.
    [42]Bonivento C,Isidori A,Marconi L et al.Implicit fault-tolerant control:application to induction motors.Automatica,2004,40(3):355-371.
    [43]葛建华,孙优贤,周春辉.故障系统容错能力判别的研究.信息与控制,1989,18(4):8-11.
    [44]Nwokah O D I,Yau C H,Perez R A.Robust integral stabilization and regulation of uncertain multi variable systems.In:Proceedings of 12th IFAC World Congress,1993,4:13-17.
    [45]Bao J,Zhang W Z,Lee P L.Decentralized fault-tolerant control system design for unstable processes.Chemical Engineering Science,2003,58(22):5045-5054.
    [46]Liu Y Q,Wang J L,Yang G H.Reliable control of uncertain nonlinear systems.Automatica,1998,34(7):875-879.
    [47]Yang G H,Lam J,Wang J L.Reliable control for affine nonlinear systems.IEEE Transanctions on Automatic Control,1998,43(8):1112-1117.
    [48]Liang Y W,Liaw D C,Lee T C.Reliable control of nonlinear systems.IEEE Transanctions on Automatic Control,2000,45(4):706-710.
    [49]Yu Li.An LMI approach to reliable guaranteed cost control of discrete-time systems with actuator failure.Applied Mathematics and Computation,2005,162(3):1325-1331.
    [50]Yang Y,Yang G H,Soh Y C.Reliable control of discrete-time systems with actuator failure.IEEE Proceedings:Control Theory and Applications,2000,47(4):428-432.
    [51]贾新春,郑南宁,张元林.线性不确定时滞系统的可靠保性能鲁棒控制.自动化学报,2003,29(6):971-975.
    [52]Yue D,Lam J,Ho D W C.Reliablecontrol of uncertain descriptor systems with multiple time delays.IEEE Proceedings:Control Theory and Applications,2003,150(6):557-564.
    [53]Yang G H,Yee J S,Wang J L.An iterative LMI method to discrete-time reliable state feedback controller design with mixed/performance.European Journal of Control,2002,8(2):126-135.
    [54]Shor M H,Perkins W R,Medanic J V.Design of reliable decentralized controllers:a unified continuous/discrete formulations.International Journal of Control,1992,56(4):943-956.
    [55]黄苏南,邵惠鹤.分散控制的完整性设计.自动化学报,1994,20(5):594-598.
    [56]Wang L F,Huang B,Tan K C.Fault-tolearnt vibration control in a networked and embedded rocket fairing system.IEEE Transaction on Automatic Control,2004,51(6):1127-1141.
    [57]Veillette R J,Medanic J V,Perkins W R.Design of reliable control systems.IEEE Transaction on Automatic Control,1992,37(3):290-304.
    [58]Demetriou M A.Adaptive reorganization of switched systems with faulty actuators.In:40th IEEE Conference on Decision and Control,2001:1879-1884.
    [59]Edwards C,Tan C P.Fault tolerant control using sliding mode observers.In:43th IEEE Conference on Decision and Control,Atlantis,Paradise Island,Bahamas,2004:5254-5259.
    [60]Gani A P,Mhaskar P,Christofides P D.Fault-tolerant control of a polyethylene reactor.Journal of Process Control,2007,17:439-451.
    [61]Liberzon D,Morse A S.Basic problems in stability and design of switched systems.IEEE Control System Magazine,1999,19(5):59-70.
    [62]Fu M,Barmish R.Adaptive stabilization of linear systems via switching control.IEEE Transanctions on Automatic Control,1986,31(12):1097-1103.
    [63]Zefran M,Burdick J W.Design of switching controllers for systems with changing dynamics.In: Proceedings of 37th IEEE Conference on Decision and Control,1998:2113-2118.
    [64]Skafindas E,Evans R J,Savkin A V et al.Stability results for switched controller systems.Automatica,1999,35(4):553-564.
    [65]Morse A S.Supervisory control of families of linear set-point controllers-part 1:exact matching.IEEE Transanctions on Automatic Control,1996,41(10):1413-1431.
    [66]Morse A S.Supervisory control of families of linear set-point controllers-part 2:robustness.IEEE Transanctions on Automatic Control,1997,42(11):1500-1515.
    [67]Li Z G,Wen C Y,Yoh Y C.Switched controllers and their application in bilinear systems.Automatica,2001,37(3):477-481.
    [68]Koutsoukos X D,Antsaklis P J.Hybrid systems:review and resent progress.Software-Enabled Control:Information Technologies for Dynamical Systems,Wiley-IEEE Press,2003.
    [69]Peleties P A.Modeling and design of interacting continuous-time/discrete event systems.West Lafayette:Purdue Univ.,1992.
    [70]Li Z G,Wen C Y,Sob Y C.Observer-based stabilization of switching linear systems.Automatica,2003,39(3):517-524.
    [71]Liberzon D.Switching in systems and control.Birkhauser,Boston,2003.
    [72]Sun Z D,Ge S S.Switched linear systems-control and design.Springer,Berlin Heidelberg,New York,2004.
    [73]Cheng D Z,Guo L,Lin Y D et al.Stabilization of switched linear systems.IEEE Transanctions on Automatic Control,2005,50(5):661-666.
    [74]Branicky M S.Multiple Lyapunov functions and other analysis tools for switched and hybrid systems.IEEE Transanctions on Automatic Control,1998,43(4):475-482.
    [75]谢广明,郑大钟.线性切换系统基于范数的系统镇定条件及算法.自动化学报,2001,27(1):115-119.
    [76]Zhao J,Nie H.Sufficient conditions for input-to-state stability of switched systems.ACTA Automatica Sinica,2003,29(2):252-257.
    [77]Zhao J,Dimirovski G M.Quadratic stability of a class of switched nonlinear systems.IEEE Transanctions on Automatic Control,2004,49(4):574-578.
    [78]Daafouz J,Riedinger,Iung C.Stability analysis and control synthesis for switched systems:a switched Lyapunov function approach.IEEE Transanctions on Automatic Control,2002,47(11):1883-1887.
    [79]Wei F,Zhang J F.Stability analysis and stabilization control of multi-variable switched stochastic systems.Automatica,2006,42(1):169-176.
    [80]Sun Z D.Combined stabilizing strategies for switched linear systems.IEEE Transanctions on Automatic Control,2006,51(4):666-674.
    [81]Branicky M S,Mitter S K.Algorithms for optimal hybrid control.In:Proceedings of the 34th Conference on Decosion & Control,New Orleans,LA:Omnipress,1995:2661-2666.
    [82]Hespanha J P,Morse A S.Towards the high performance control of uncertain processes via supervision.In:Proceedings of the 30th annual Conference on information science & systems,1996:405-410.
    [83]Narendra K S,Balakrishnan J.A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Transanctions on Automatic Control, 1994,39(12):2469-2471.
    [84] Liberzon D, Hespanha J P, Morse A. Stability of switched systems: a Lie-algebraic condition. Systems & Control letters 1999,37(3): 117-122.
    [85] Dayawansa W P, Martin C F. A converse Lyapunov theorem for a class of dynamical ststems which undergo switching. IEEE Transanctions on Automatic Control, 1999,44(4):751-760.
    [86] Paxman J. Switched Controllers: Realization, Initialization and Stability. Phd Thesis, University of Cambridge, London, UK, 2003.
    [87] Hespanha J P, Morse A S. Stability of switched systems with average dwell-time. In: Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona: Omnipress, 1999:2655-2660.
    [88] Zhai G S, Hu B, Yasuda K et al. Stability of analysis of switched systems with stable and unstable subsystems: An average dwell time approach. In: Proceedings of the American Control Conference, Chicago, 2000:200-204.
    [89] Zhai G S, Hu B, Yasuda K et al. Disturbance attenuation properties of time-controlled switched systems. Journal of the Franklin Institute, 2001,338(7):765-779.
    [90] Shi J, Wu T J, Du S X. Delay-dependent robust stability and H_∞ control for a class of uncertain switched systems with time delay. Journal of Zhe jiang University: Science, 2004,5(7):841-850.
    [91] Kim D K, Park P G, Ko J W. Output-feedback Hoo control of systems over communication networks using a deterministic switching system approach. Automatica, 2004,40(7):1205-1212.
    [92] Meyer C, Schroder S, De Doncker R W. Solid-state circuit breakers and current limiters for medium-voltage systems having distributed power systems. IEEE Trans Power Eleectron, 2004, 19(5):1333-1340.
    [93] Sun X M, Zhao J, Hill D J. Stability and H2-gain analysis for switched delay systems: A delay-dependent method. Automatica, 2006,42(10): 1769-1774.
    [94] M de la Sen. Quadratic stability and stabilization of switched dynamic systems with uncommensurate internal point delays. Applied Mathematics and Computation, 2007,185(1):508-526.
    [95] Gao F Y, Zhong S M, Ga X Z. Delay-dependent stability of a type of linear switching systems with discrete and distributed time delays. Applied Mathematics and Computation, 2008,196(1):24-39.
    [96] Sun X M, Liu G P, Rees D et al. Delay-dependent stability for discrete systems with large delay sequence based on switching techniques. Automatica, 2008,44(11):2902-2908.
    [97] Song Y., Fan J, Fei M. R., Yang T.C. Robust Hoo control of discrete switched system with time delay. Applied Mathematics and Computation, 2008,205(1): 159-169.
    [98] Sun Y G, Wang L, Xie G M. Delay-dependent robust stability and stabilization for discrete-time switched systems with mode-dependent time-varying delays. Applied Mathematics and Computation, 2006,180(2):428-435.
    [99] Magdi S Mahmoud. Generalized control of switched discrete-time systems with unknown delays. Applied Mathematics and Computation, 2009, 211(1):33-44.
    [100] Salim Ibrir. Stability and robust stabilization of discrete-time switched systems with time-delays: LMI approach. Applied Mathematics and Computation, 2008, 206(2):570-578.
    [101] Li P, Zhong S M. BIBO stabilization of piecewise switched linear systems with delays and nonlinear perturbations. Applied Mathematics and Computation, 2009, 213(2): 405-410.
    [102] Hien L V, Ha Q P, Phat V N. Stability and stabilization of switched linear dynamic systems with time delay and uncertainties. Applied Mathematics and Computation, 2009,210(1):223-231.
    [103] Sun Y G, Wang L, Xie G M. Stabilization of Switched Linear Systems with Multiple Time-Varying Delays. In: proceedings of the 45th IEEE Conference on Decision and Control, USA, 2006:4069-4074.
    [104] Li P, Zhong S M, Cui J Z. Stability analysis of linear switching systems with time delays. Chaos Solitons & Fractals, 2009,40(1):474-480.
    [105] Sun Y G, Wang L, Xie G M. Delay-dependent robust stability and H_∞ control for uncertain discrete-time switched systems with mode-dependent time delays. Applied Mathematics and Computation, 2007,187(2): 1228-1237.
    [106] Li Q K, Zhao J, Georgi M Dimirovski. Tracking control for switched time-varying delays systems with stabilizable and unstabilizable subsystems. Nonlinear Analysis: Hybrid Systems, 2009, 3(2):133-142.
    [107] Dong J X, Yang G H.Dynamic output feedback Hoo control synthesis for discrete-time T-S fuzzy systems via switching fuzzy controllers. Fuzzy Sets and Systems, 2009,160(4):482-499.
    [108] Ma S P, Zhang C H, Wu Z. Delay-dependent stability and H_∞ control for uncertain discrete switched singular systems with time-delay. Applied Mathematics and Computation, 2008, 206(1):413-424.
    [109] Wu C Z, Teo K L, Li R et al. Optimal control of switched systems with time delay. Applied Mathematics Letters, 2006,19(10):1062-1067.
    [110] Liu D Y, Liu X Z, Zhong S M. Delay-dependent robust stability and control synthesis for uncertain switched neutral systems with mixed delays. Applied Mathematics and Computation, 2008, 202(2):Pages 828-839.
    [111] Zhang Y P, Liu X Z, Zhu H et al. Stability analysis and control synthesis for a class of switched neutral systems. Applied Mathematics and Computation, 2007,190(2): 1258-1266.
    [112] Lien C H, Yu K W, Chung Y J et al.Exponential stability analysis for uncertain switched neutral systems with interval-time-varying state delay. Nonlinear Analysis: Hybrid Systems, 2009,3(3): 334-342.
    [113] Gani A P, Mhaskar P, Christofides P D. Fault-tolerant control of a polyethylene reactor. In: Proc. of the 2006 American control conference, Minneapolis, USA, 2006:6026-6032.
    [114] Wang R, Zhao J. Robust fault-tolerant control for a class of switched nonlinear systems in lower triangular form. Asian Journal of Control, 2006,9(1):68-72.
    [115] Wang R, Liu M, Zhao J. Reliable Hoo control for a class of switched nonlinear systems with actuator failures. Nonlinear Analysis: Hybrid Systems, 2007,1(3): 317-325.
    [116] Wang R, Dimirovski G M, Zhao J. Output feedback control for uncertain linear systems with faulty actuators: an average dwell-time method. In: Proc. of the 2006 American control conference, Minneapolis, USA, 2006:5487-5492.
    [117] Wang R, Zhao J. Guaranteed Cost Control for a Class of Uncertain Delay Systems with Actuator Failures Based on Switching Method. International Journal of Control, Automation and Systems, 2007, 5(5):492-500.
    [118] Wang R, Dimirovski G M, Zhao J. Switching-based robust exponential stabilization of linear delay systems with faulty actuators. European J. of Control, 2009,15(1):45-55.
    [119] Yang S, Zheng R X, Qing W C et al. Robust reliable control of switched uncertain systems with time-varying delay. International Journal of Systems Science, 2006,37(15): 1077-1087.
    [120] Wang R, Dimirovski G M, Zhao J. Switching-based robust exponential stabilization of linear delay systems with faulty actuators. In: Proceedings of the 9-th European Control Conference Island of Kos, Greece, The EUCA and Institute of Communication & Computer Systems of the National Technical University, Athens, GR, 2009:673-679 (ISBN 978-960-89028-5-5).
    [121] Wang R, Zhao J. Robust adaptive control for a class of uncertain switched delay systems with actuator failures. Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Applications and Algorithms, 2008,15:635-645.
    [122] Xiang Z R, Wang R H. Robust Loo reliable control for uncertain nonlinear switched systems with time delay. Applied Mathematics and Computation, 2009,210(1):202-210.
    [123] Du X, Yang G. An adaptive approach to state feedback tracking control of systems with actuator failures. In: Proceedings of the 2007 American control conference, New York City, USA, IEEE, 2007:3997-4002.
    [124] Tao G, Joshi S M, Ma X. Adaptive state feedback and tracking control of systems with actuator failures. IEEE Transactions on Automatic Control, 2001,46(1):78-95.
    [125] Zhai G S, Takai S, Yasuda K. Controller failure time analysis for linear time-invariant systems. Transactions of the Society of Instrument and Control Engineers, 2000,36:1050-1052.
    [126] Zhai G S, Chen X K, Shigemasa T et al. Stability and H_∞ disturbance attenuation analysis for LTI control systems with controller failures. Asian J. Control, 2004,6:104-111.
    [127] Zhai G S, Lin H. Controller failure time analysis for symmetric Hoo control systems. International Journal of Control, 2004, 77:598-605.
    [128] Zhai G S, Chen X K, Takai S et al. Controller failure time analysis for Hoo control systems. In: Proceedings of the 40th IEEE Conference on Decision and Control, 2001:1029-1030.
    [129] Sun X M, Zhao J, Wang R. State feedback control for discrete delay systems with controller failures based on average dwell-time method. IET Control Theory and Application, 2008,2(2):126-132.
    
    [130] Sun X M, Liu G P, Rees D et al. Stability of systems with controller failure and time-varying delay. IEEE Transactions on Automatic Control, 2008,53(10):2391-2396.
    [131] Shimemura E , Fujita M. Control systems possessing integrity. J. Soc. Instrum. Control Eng., 1987, 26:400-405.
    [132] Gundes A N. Reliable decentralized stabilization of linear systems. IEEE Transanctions on Automatic Control, 1998, 43(12):1733-1739.
    [133] Kwon O, Park J H. Matrix inequality approach to a novel stability criterion for time-delay systems with nonlinear uncertainties. J. Optimization Theory and Applications, 2005,126(3):643-656.
    [134] Park J H, Kwon O. Novel stability criterion of time delay systems with nonlinear uncertainties. Appl. Math. Lett., 2005,18(6):683-688.
    [135] Han Q L. Robust stability for a class of linear systems with time-varying delay and nonlinear perturbations. Compu. Math. Appli., 2004,47(8-9): 1201-1209.
    [136] Chen Y, Xue A K, Lu R Q et al. On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations. Nonlinear Analysis, 2008, 68(8):2464-2470.
    [137] Jiang X, Han Q L. Delay-dependent robust stability for uncertain linear systems with interval time varying delay. Automatica, 2006,42(6):1059-1065.
    [138] Xie N, Tang G. Delay-dependent nonfragile guaranteed cost control for nonlinear time-delay systems. Nonlinear Analysis, 2006,64(9):2084-2097.
    [139] Parlakci M N A. Improved robust stability and stabilizability criteria for time-delay systems with nonlinear perturbations. In: Proc. 16th IFAC World Congress, 2005.
    [140] Liu J, Liu X Z, Xie W C. Delay-dependent robust control for uncertain switched systems with time-delay. Nonlinear Analysis: Hybrid Systems, 2008,2:81-95.
    [141] Kim S, Campbell S A, Liu X Z. Delay independent stability of linear switching systems with time delay. J. Math. Anal. Appl., 2008,339(2):785-801.
    [142] Zhai G S, Hu B, Yasuda K et al. Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach. International Journal of Systems Science, 2001, 32:1055-1061.
    [143] Gu, K. Discretization schemes for Lyapunov-Krasovskii functions in time-delay systems, Kybemetica, 2001,37(4): 479-504.
    [144] Gu K, Han Q L, Luo A C J et al. Discretized Lyapunov functional for systems with distributed delay and piecewise constant cofficient. International Journal of Control, 2007,74(7):737-744.
    [145] Han Q L. On stability of linear neutral systems with mixed time-delays: A discretized Lyapunov functional approach. Automatica, 2005,41(7): 1209-1218.
    [146] Tian Y C, Yu Z G, Fidge C. Multifractal nature of network induced time delay in networked control systems. Physics Utters A, 2007,361(1-2): 103-107.
    [147] Yue D, Han Q L, Lam J. Network-based robust H_∞ control of systems with uncertainty. Automatica, 2005,41(6):999-1007.
    [148] Zhang B Y, Xu S Y, Zou Y. Improved stability criterion and its applications in delayed controller design for discrete-time systems. Automatica, 2008,44(11): 2963-2967.
    [149] Chen W H, Guan Z H, Lu X M. Delay-dependent output feedback guaranteed cost control for uncertain time-delay systems. Automatica, 2004,40(7):1263-1268.
    [150] Chen Q X, Yu L, Zhang W A. Delay-dependent output feedback guaranteed cost control for uncertain discrete-time systems with multiple time-varying delays. Control Theory Appl., 2007, 1:97-103.
    [151] Wang Z D, Huang B, Unbehauen H. Robust reliable control for a class of uncertain nonlinear state-delayed systems. Automatica, 1999,35(5):955-963.
    [152] Maki M, Jiang J, Hagino K. A stability guaranteed active fault-tolerant control system against actuator failures. In: Proc. of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, 2001:1893-1898.
    [153] Ghaoui L E, Oustry F, AitRami M. A cone complementarity linearization algorithm for static out-feedback and related problems. IEEE Transactions on Automatic Control, 1997, 42(8):1171-1176.
    [154] Zhang Y, Jiang J. Fault tolerant control system design with explicit consideration of performance degradation. IEEE Trans. Aerosp. Electron. Syst., 2003,39(3):838-848.
    [155] He Y, Wang Q G, Lin C et al. Delay-range-dependent stability for systems with time-varying delay. Automatica, 2007,43(3):371-376.
    [156] Jiang X, Han Q L. New stability criteria for linear systems with interval time-varying delay. Automatica, 2008,44(10):2680-2685.
    [157] Xu S, Lam J, Zou Y. New results on delay-dependent robust H_∞ control for systems with time-varying delays. Automatica, 2006,42(2):343-348.
    [158] Xu S, Lam J, Zou Y. Further results on delay-dependent robust stability conditions of uncertain neutral systems. International Journal of Robust Nonlinear Control, 2005,15:233-246.
    [159] Liu X G, Wu M, Martin R et al. Delay-dependent stability analysis for uncertain neutral systems with time-varying delays. Mathematics and Computers in Simulation, 2007,75(1-2):15-27.
    [160] Chen W H , Zheng W X. Delay-dependent robust stabilization for uncertain neutral systems with distributed delays. Automatica, 2007,43(1):95-104.
    [161] Yu K W, Lien C H. Stability criteria for uncertain neutral systems with interval time-varying delays. Chaos, Solitons and Fractals, 2008,38(3):650-657.
    [162] Kwon O M, Park J H, Lee S M. On delay-dependent robust stability of uncertain neutral systems with interval time-varying delays. Applied Mathematics and Computation, 2008,203(2):843-853.
    [163] Michiels W, Assche V V, Niculescu S I. Stabilization of time-delay systems with a controlled time-varying delay and applications. IEEE Transactions on Automatic Control, 2005,50(4):493-504.
    [164] Fridman E. Discussion on: "stabilization of networked control systems with data packet dropout and transmission delays: continuous-time case". European Journal of Control, 2005,11:53-55.
    [165] Zhang Y, Jiang J. Fault tolerant control system design with explicit consideration of performance degradation. IEEE Aerospace and Electronic Systems, 2003,39(3):838-848.
    [166] Petersen I R. A stabilization algorithm for a class of uncertain systems. System Control Lett., 1987, 8:181-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700