基于LMI技术的线性系统模型降阶与静态输出反馈控制器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代社会信息化、系统化的发展,人类面临的各种控制系统的规模越来越大,由此导致系统模型以及控制器的阶数也越来越高,相应的对系统分析计算和综合实现的复杂度也越来越大。为此,模型降阶和降阶控制器的设计一直都是控制理论中的热门研究领域,并在过去的几十年里取得了长足的发展和广泛的应用。然而,其中的一些问题通过现有的方法中仍不能得到很好的解决,如在模型降阶的研究中,针对系统工作频率范围已知的情况,现有的如基于加权矩阵的平衡截断等方法会带来一定的不准确性和不可靠性,而且无法给出降阶模型和高阶模型在已知频率范围内的逼近性能。此外现有的一些基于线性矩阵不等式的模型降阶和降阶控制器(如静态输出反馈控制器)的设计条件存在着一定的保守性,如何给出保守性更少的设计条件也是一个非常重要的问题。
     本论文在前人工作的基础上,给出了新的基于线性矩阵不等式(LMI)技术的模型降阶和静态输出反馈控制器设计方法。针对已知输入信号频率范围情况下的模型降阶问题,通过结合广义KYP引理给出了可以准确刻画有限频逼近误差的设计条件,解决了现有方法如频率加权法等带来的不准确性问题。对全频范围考虑的模型降阶问题以及离散时间系统的静态输出反馈问题,均给出了相对于现有结果保守性更少的设计条件。另外,针对实际系统中存在不确定性和时滞的情况,研究了系统中含有多胞不确定性和时不变状态时滞情况下的静态输出反馈控制问题。本文的一些结果用到了对RLC电路系统的模型降阶中,数值算例与仿真验证了本文提出方法的优越性和有效性。
     第一、二章系统地分析和总结了模型降阶与静态输出反馈控制这两个控制理论中的热门研究领域的发展现状及研究方法,并给出了与本文相关的一些预备知识。
     第三、四章分别就连续线性系统和离散线性系统的H_∞、H_2模型降阶问题给出了新的基于线性矩阵不等式的设计条件。在考虑H_∞模型降阶时,通过结合新提出的广义KYP引理,根据输入信号不同的频率范围分别给出在低频,中频,高频和全频时的H_∞模型降阶结果,这样就避免了过去方法处理有限频模型降阶时的不确定性和不可靠性。此外埘全频H_∞模型降阶问题,本章的方法也比现有文献中的一些同类方法具有更少的保守性。数值算例和仿真进一步说明了本章提出方法的有效性和优越性。
     第五章研究了离散时间系统的静态输出反馈控制问题。基于LMI技术,分别给出了一组针对镇定控制,H_∞控制,以及正实控制的静态输出反馈控制设计条件。和现有文献中的同类方法相比,本章的设计方法结合了鲁棒控制领域中的参数依赖Lyapunov函数方法,引入了更多的辅助变量,进而具有更少的保守性。此外,本章中的设计条件都借助于Finsler引理在一个统一的框架得出,可以清楚的说明现有结果之间以及本章结果与现有结果之间的区别与联系。数值算例进一步说明了本章方法的有效性与优越性。
     第六章考虑了具有多胞不确定性的离散线性系统的静态输出反馈控制问题。首先给出了基于参数依赖Lyapunov函数方法的鲁棒正实性分析结果,并从理论上证明了这些结果与现有文献中的同类结果之间的关系。然后根据第五章中的设计方法,并结合不确定系统中的一些放缩技巧,分别就H_∞控制,正实控制问题给出了一组不确定系统的鲁棒静态输出反馈控制器设计方法。数值例子说明了方法的有效性。
     第七章研究了带有时不变状态时滞的线性离散时间系统的静念输出反馈控制问题。根据第五章中的设计方法,并结合处理时滞项的Jensen不等式方法,给出了时滞依赖的H_∞静念输出反馈控制器设计方法。最后通过数值例子进一步表明本章方法的有效性。
     最后对全文所做的工作进行了总结,并指出了下一步研究的方向。
Due to the increasing development of informationization,systematization of the modern society,the dimensions of various control systems are becoming larger and larger, and the resulting complexity for system analysis and synthesis are also increased because the increasing order of the system model and the corresponding controller.Therefore, the reduction theory(i.e,model reduction and reduced-order controller design) is always a burgeoning research area.Great developments and wide applications have been made during the last several decades.However,there are still some problems that cannot be properly solved via the existing methods.For example,to some extent there exists inaccuracy and unreliability while using the existing method to cope with the known operating frequency information of the system,and there exists no approximation performance information over the known fiequency interval.Besides,how to reduce the conservatism of the existing LMI-based design methods for model reduction and static output feedback control is also an important problem.
     This thesis,based on previous works of others,presents new methods for model reduction and static output feedback control problems via LMI-based approach.For the model reduction problem that with known fiequency information about the input signal, the design conditions are developed with the aid of the generalized KYP lemma,which can deal with the approximation error over finite frequency directly.Therefore,the inaccuracy resulted by the existing methods such as frequency-weighted method can be avoided.For model reduction problems over entire frequency interval and static output feedback control problems for discrete-time systems,design methods with less conserv-ativeness compared with the counterpart ones in the literatures are developed.Besides, static output feedback controller design methods for systems with polytopic uncertainties and time-invariant delay are also presented respectively.Parts of the developed methods are applied to the model reduction of RLC circuit systems.Numerical examples and simulations illustrate the advantages and effectiveness of our approaches.
     Chapters 1-2 summarize the development and main research methods in the burgeoning research areas:model reduction and static output feedback control.Preliminaries about the considered problems are also given.
     Chapters 3-4 present new LMI-based design methods for H_∞and H_2 model reduction problems for linear continuous-time systems and discrete-time systems,respectively. Based on the recently developed generalized KYP lemma,design methods of H_∞model reduction are developed under low-frequency,middle frequency,high frequency,and entire frequency interval considerations according to the frequency information about input signal.Consequently,the uncertainty and unreliability of the existing methods for finite frequency model reduction problems are avoided.For the entire frequency H_∞model reduction problems,it is also pointed out that the conservativeness of the proposed methods in this chapter is less than the existing ones.Numerical examples and simulations illustrate the effectiveness and advantages of the proposed approach.
     Chapter 5 investigates the static output feedback control problem for linear discretetime systems.Stabilization,H_∞and positive real static output feedback control design methods are presented based on LMI technique respectively.By utilizing the parameter-dependent Lyapunov function method which originated in the research area of robust control and introducing more auxiliary variables,the conservativeness of the proposed methods is further reduced compared with the existing ones.Besides,the differences and relationships between the proposed methods and the existing methods can be clearly demonstrated due to those methods are presented in a unified framework in terms of the Finsler lemma.Numerical examples illustrate the effectiveness and advantages of the proposed approach.
     Chapter 6 focuses on the static output feedback control problem for linear discretetime systems with polytopic uncertainties.Firstly,robust positive realness analysis results are given based on the parameter-dependent Lyapunov function method and the relationship between the proposed result and the existing one is clarified theoretically.Combining some relaxation techniques,H_∞and positive realness static output feedback controller design methods are presented.Numerical examples illustrate the effectiveness and advantages of the proposed approach.
     Chapter 7 investigates the static output feedback control problem for linear discretetime systems with time-invariant state delay.Combining the Jensen inequality approach that dealing with the delay items,H_∞static output feedback controller design methods are presented.Numerical examples illustrate the effectiveness and advantages of the proposed approach.
     Finally,the results of the dissertation are summarized and further research topics are pointed out.
引文
1.Zhou K,Doyle J C,Glover K.Robust and Optimal Control.Upper Saddle River,NJ:Prentice-Hall,1996.
    2.Obinata G,Anderson B D O.Model Reduction for Control System Design,London,UK:Springer-Verlag,2001.
    3.Jamshidi M.Large-Scale Systems:Modellingand Control,North-Holland,Amsterdam,1983.
    4.Tan S,He L.Advanced Model Order Reduction Techniques in VLSI Design[M],Cambridge University Press,2007.
    5.Benner P,Mehrmann V,Sorensen D C.Dimension Reduction of Large-Scale Systems [M],Springer,2003 Lecture Notes in Computational Science and Engineering.
    6.Schilders W H A,van der Vorst H A,Rommes J.Model order reduction:theory research aspects and applications,Mathematics in Industry Series vol.13,Springer-Verlag,Berlin,2008.
    7.Nestrov Y,Nemirovsky A.Interior point polynomial methods in convex programming [M].Philadelphia,PA:SIAM,1994.
    8.Boyd S,Ghaoui L,Feron E,Balakrishnan V.Linear Matrix Inequalities in System and Control Theory.Philadephia,PA:SIAM,1994.
    9.Gahinet P,Nemirovski A,Laub A J,Chilali M,LMI Control Toolbox,Natick,MA:The Mathworks,1995.
    10.郑大钟.线性系统理论(第二版)[M],北京:清华大学出版社,2003.
    11.俞立.鲁棒控制-线性矩阵不等式处理方法[M],北京:清华大学出版社,2002.
    12.郭雷,忻欣,冯纯伯.基于LMI的一种统一的降阶控制器设计方法[J],中国科学(E辑),1997,27(4):353-361.
    13.王欣,史忠科.模型降阶H_∞方法在阵风干扰着陆控制中的应用[J],飞行力学,2000,12(4):35-37.
    14.曾建平,程鹏.降阶正实控制器设计[J],控制理论与应用,2002,19(1):117-120.
    15.胡寿松,林道垣,谢义成.经典模型降阶方法述评[J],南京航空航天大学学报,1989-04-016
    16.张启人.大系统模型降阶理论.信息与控制,1980-04-001
    17.张勇.基于模型降阶放的线性相位IIR滤波器设计,北京交通大学学报,1993-S1-014
    18.张青斌,秦子增.大型空间柔性结构基于H_2范数的模型降阶,振动与冲击,2002,01-01.
    19.王佩,刘永强.无刷双馈风力发电机模型降阶研究:第Ⅰ部分-无刷双馈风力发电机多时间尺度模型[J].控制理论与应用,2008,25(1):135-138.
    20.刘永强,徐鹏.一类多时间尺度机电耦合系统的模型降阶[J],控制理论与应用,2008,25(1):139-140.
    21.刘宝,章卫国,李广文,宁东方.弹性飞机的建模与模型降阶方法研究[J],计算机仿真,2008-05-010
    22.Petzold L,Zhu W.Model reduction for chemical kinetics:An optimization approach [J],AIChE Journal.2004,45(4):869-886.
    23.Chaniotis D,Pai M A.Model reduction in power systems using Krylov subspace methods[J],IEEE Transactions on Power Systems,2005,20(2):888-894.
    24.Freitas F D,Rommes J,Martins N.Gramian-Based Reduction Method Applied to Large Sparse Power System Descriptor Models[J],IEEE Transactions on Power Systems,2008,23(3):1258-1270.
    25.Kale I,Gryka J,Cain G D.FIR filter order reduction:balanced model truncation and Hankel-norm optimal approximation[J],IEE Proceedings Image and Signal Processing,1994,141(3):168-174.
    26.Li L,Xie L,Yan W Y,Soh Y C.Design of low-order linear-phase IIR filters via orthogonal projection[J],IEEE Transactions on Signal Processing,1999,47(2):448-457.
    27. Mohamad A A. Linear Phase Low-Pass IIR Digital Differentiators[J], , IEEE Transactions on Signal Processing, 2007, 55(3): 697-706.
    28. Wong N, Lei C U. IIR Approximation of FIR Filters Via Discrete-Time Vector Fitting[J], IEEE Transactions on Signal Processing, 2008, 56(3): 1296-1302.
    29. Dehkordi V R, Aghdam A G. A Model Reduction Technique for IIR Filters using Balanced Realization[C], Proceeding of American Control Conference, New York, USA, 2007, 2899-2904.
    30. Moore B. Principal component analysis in linear systems: Controllability, observability, and model reduction[J], IEEE Transactions on Automatic Control, 1981, 26(1): 17-32.
    31. Glover K. All optimal Hankel-norm approximations of linear multi-variable systems and their l_∞ error bounds[J], International Journal of Control, 1984, 39(6): 1115-1195.
    32. Jaimoukha I M, Kasenally E M. Krylov Subspace Methods for Solving Large Lyapunov Equations[J], SIAM Journal on Numerical Analysis, 1994, 31(1): 227-251.
    33. Gugercin S, Willcox K. Krylov projection framework for Fourier model reduction[J], Automatica, 2008, 44(1): 209-215.
    34. Beattie C, Gugercin S. Interpolatory projection methods for structure-preserving model reduction[J], Systems & Control Letters, 2009, 58(3): 225-232.
    35. Bai Z. Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems[J], Applied Numerical Mathematics, 2002, 43(1-2): 9-44.
    36. Freund R W. Krylov-subspace methods for reduced-order modeling in circuit sim-ulation[J], Journal of Computational and Applied Mathematics, 2002, 123(1-2), 395-421.
    37. Beattie C A, Gugercin S. Krylov-based minimization for optimal H_2 model reduc-tion[C], Proceeding of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007, 4385-4390.
    38. Gugercin S, Antoulas A C. A survey of model reduction by balanced truncation and some new results[J], International Journal of Control, 2004, 77(8): 748 - 766.
    39. Unneland K, Van Dooren P, Egeland O. A Novel Scheme for Positive Real Balanced Truncation[C], Proceeding of American Control Conference, New York, USA, 2007, 947-952.
    40. Fanizza G, Karlsson J, Lindquist A, Nagamune R. A Global Analysis Approach to Passivity Preserving Model Reduction[C], Proceeding of the 45th IEEE Conference on Decision and Control, San Diego, CA, USA, 2006, 3399-3404.
    41. Chen X, Wen J T. Positive realness preserving model reduction with H_∞ norm error bounds[J], IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1995,42(1): 23-29.
    42. Fanizza G, Karlsson J, Lindquist A, Nagamune R. Passivity-preserving model reduction by analytic interpolation[J], Linear Algebra and its Applications, 2007, 425(2-3): 608-633.
    43. Sorensen D C. Passivity preserving model reduction via interpolation of spectral zeros[J], Systems & Control Letters, 2005, 54(4): 347-360.
    44. Antoulas A C. A new result on passivity preserving model reduction[J], Systems & Control Letters, 2005, 54(4): 361-374.
    45. Beattie C A, Gugercin S. Interpolation theory for structure-preserving model re-duction[C], Proceeding of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, 2008, 4204-4208.
    46. Bai Y Q, Grigoriadis K M. H_∞ Model Reduction of Symmetric Systems Using LMIs[C], Proceeding of the 45th IEEE Conference on Decision and Control, San Diego, CA, 2006, 3412-3417.
    47. Lee K H, Huang B. H_∞ structured model reduction algorithms for linear discrete systems via LMI-based optimisation[J], International Journal of Systems Science, 2009,40(7): 685-693.
    48. Liu W Q, Sreeram V, Teo K L. Model reduction for state-space symmetric systems[J], Systems & Control Letters, 1998, 34(4): 209-215.
    49. Goncalves E N, Palhares R M, Takahashi R H C, Chasin A N V. Robust model reduction of uncertain systems maintaining uncertainty structure[J], International Journal of Control, 2009, 82(11): 2158- 2168.
    50. Dooren P V. Gallivan K A, Absil P A. H_2-optimal model reduction of MIMO systems[J], Applied Mathematics Letters, 2008, 21(12): 1267-1273.
    51. Zhang L, Huang B, Chen T. Model reduction of uncertain systems with multiplicative noise based on balancing[J], SIAM Journal on Control and Optimization, 2006, 45(5): 1541-1560.
    52. Sootla A, Rantzer A, Kotsalis G. Multivariable Optimization-Based Model Reduction[J], IEEE Transactions on Automatic Control. 2009, 54(10): 2477 - 2480.
    53. Phillips J R, Daniel L, Silveira L M. Guaranteed passive balancing transfonnations for model order reduction[J], IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2003, 22(8): 1027- 1041.
    54. Enns D F. Model reduction with balanced realizations: An error bound and a frequency weighted generalization[C], Proceeding of 23rd Conference on Decision and Control, Las Vegas, NV, USA, 1984, 127-132.
    55. Hung Y S, Glover K. Optimal Hankel-norm approximation of stable systems with first-order stable weighting functions[J], Systems & Control Letters, 1986, 7(3): 165-172.
    56. Zhou K. Frequency-weighted model reduction with l_∞ error bounds[J], Systems & Control Letters, 1993,21(2): 115-125.
    57. Al-saggaf U F, Franklin G F. Model reduction via balanced realization: An extension and freqeuency weighted techniques[J], IEEE Transactions on Automatic Control, 1998, 33(7): 687-692.
    58. Wang G, Sreeram V, Liu W Q. A new frequency-weighted balanced truncation method and an error bound[J], IEEE Transactions on Automatic Control, 1999, 44(9): 1734-1737.
    59. Anderson B D O. Weighted Hankel-norm approximation: Calculation of bounds[J], Systems & Control Letters, 1986, 7(4): 247-255.
    60. Zhou K. Frequency-weighted L_∞ norm and optimal Hankel norm model reduction[J], IEEE Transactions on Automatic Control, 1995,40(10): 1687-1699.
    61. Scorletti G, Rossignol L, Fromion V. Frequency dependent model phase reduction using convex optimization[C], Proceeding of IEEE Conference on Decision and Control, Atlantis, Bahamas, USA, 2004, 3090-3095.
    62. Ghafoor A, Sreeram V. A Survey/Review of Frequency-Weighted Balanced Model Reduction Techniques [J], ASME Transactions on Journal of Dynamic Systems, Measurement, and Control, 2008, 130(6): 0610041-061004-16.
    63. Zhou P, Chai T, Liu Q, Wang H, Su C Y. Frequency-Domain Weighted RLS Model Reduction for Complex SISO Linear System[C], Proceeding of American Control Conference, St. Louis, Missouri, USA , 2009, 5719-5724.
    64. Ghafoor A, Sreeram V. Frequency Weighted Balanced Model Reduction: A Sur-vey[C], Proceeding of the 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 2006, 1-6.
    65. Houlis P, Sreeram V. A Parametrized Controller Reduction Technique via a New Frequency Weighted Model Reduction Formulation[J], IEEE Transactions on Automatic Control, 2009, 54(5): 1087-1093.
    66. Oh D C, Kim J H. A simple frequency weighted model reduction using structurally balanced truncation: existence of solutions[J], International Journal of Control, 2002,75(15): 1190- 1195.
    67. Diab M, Sreeram V, Liu W Q. Frequency weighted identification and model reduction via extended impulse response Gramian[J], International Journal of Control, 1998,70(1): 103- 122.
    68. Gawronski W, Juang J N. Model reduction in limited time and frequency intervals[J], International Journal of Systems Science, 1990, 21(2): 349-376.
    69. Sandberg H, Murray R M. Frequency-Weighted Model Reduction with Applications to Structured Models[C], Proceeding of American Control Conference, New York, USA, 2007, 941-946.
    70. Sreeram V, Agathoklis P. Model reduction using balanced realizations with improved low frequency behaviour[J], Systems & Control Letters, 1989, 12(1): 33-38.
    71. Sreeram V, Ghafoor A. Frequency weighted model reduction technique with error bounds[C], Proceeding of American Control Conference, Portland, OR, USA, 2005,2584-2589.
    72. Oh D, Kim J. A simple frequency weighted model reduction using structurally balanced truuncation: existence of solution[J], International Journal of Control, 2002,75(15): 1190-1195.
    73. Sandberg H, Lanzon A, Anderson B D O. Model approximation using magnitude and phase criteria: Implication for model reduction and system identification[J], International Journal of Robust and Nonlinear Control, 2007, 17(5-6): 435-461.
    74. Gawronski W, Juang J N. Model reduction in limited time and frequency intervals[J], International Journal of Systems Science, 1990, 21(2): 349 - 376.
    75. Wang D, Zilouchian A. Model reduction of discrete linear systems via frequency-domain balanced structure[J], IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications 2000, 47(6): 830-837.
    76. Aghaee P K, Zilouchian A, Nike-Ravesh S, Zadegan A H. Principle of frequency-domain balanced structure in linear systems and model reduction[J], Computers & Electrical Engineering, 2003, 29(3): 463-477.
    77. Zadegan A H, Zilouchian A. Model reduction of large-scale discrete plants with specified frequency domain balanced structure[J], ASME Journal of Dynamic Systems, Measurement, and Control, 2005, 127(3): 486-798.
    78. Ghafoor A, Sreeram V. Model reduction via limited frequency interval Gramians[J], IEEE Transactions on Circuits and Systems I, 2008, 55(9): 2806-2812.
    
    79. Aldhaheri R W. Frequency-domain model reduction approach to design IIR digital filters using orthonormal bases[J], International Journal of Electronics and Communications, 2006, 60(6):413-420.
    80. Zhou K. Relative/multiplicative model reduction for unstable and non-minimum-phase systems[J], Automatica, 1995,31(8): 1087-1098.
    81. Beck C L, Doyle J, Glover K. Model reduction of multidimensional and uncertain systems[J], IEEE Transactions on Automatic Control, 1996,41(10): 1466-1477.
    82. Beck C L, Doyle J. A necessary and sufficient minimality condition for uncertain systems[J], IEEE Transactions on Automatic Control, 1999,44(10): 1802-1813.
    83. Perev K, Shafai B. Balanced realization and model reduction of singular systems[J], International Journal of System Science, 1994, 25(6): 1039-1052.
    84. Liu W Q, Sreeram V. Model reduction of singular systems[J], International Journal of System Science, 2001, 32(10): 1205-1215.
    85. Stykel T. Gramian-based model reduction for descriptor systems[J], Mathematics of Control, Signals, and Systems, 2004, 16(4): 297-319.
    86. Zhang L, Lam J, Huang B, Yang G H. On gramians and balanced truncation of discrete-time bilinear systems[J], 2003, International Journal of Control, 76(4): 414-427.
    87. Lam J, Yang G H. Balanced model reduction of symmetric composite systems[J], International Journal of Control, 1996,65(6): 1031 - 1043.
    88. Farhood M, Dullerud G E. Model Reduction of Nonstationary LPV Systems[J], IEEE Transactions on Automatic Control, 2007, 52(2): 181-196.
    89. Li L. Model Reduction for Linear Parameter-Dependent Systems[C], Proceedings of the 17th IFAC World Congress, Seoul, Korea, 2008,4048-4053.
    90. Sandberg H. Balanced truncation of linear time-varying systems[J], IEEE Transactions on Automatic Control, 2004, 49(2): 217-229.
    91. Sandberg H. A case study in model reduction of linear time-varying systems[J], Automatica, 2006,42(3): 467-472.
    92. Farhood M, Dullerud G E. On the balanced truncation of LTV systems[J], IEEE Transactions on Automatic Control, 2006, 51(2): 315-320.
    93. Farhood M, Beck C L, Dullerud G E. Model reduction of periodic systems: a lifting approach[J], Automatica, 2005,41(6): 1085-1090.
    94. Liu H, Ho D W C, Sun F. A Constructive Approach to Approximate Linear Periodic Systems[J], IEEE Transactions on Automatic Control, 2007, 52(3): 541-546.
    95. White L B, Mahony R, Brushe G D. Lumpable hidden Markov models-model reduction and reduced complexity filtering[J], IEEE Transactions on Automatic Control, 2000,45(12): 2297-2306.
    96. Dey S, Mareels I. Reduced-complexity estimation for large-scale hidden Markov models[J], IEEE Transactions on Signal Processing, 2004, 52(5), 1242-1249.
    97. Kotsalis G, Megretski A, Dahleh M A. Balanced Truncation for a Class of Stochastic Jump Linear Systems and Model Reduction for Hidden Markov Models[J], IEEE Transactions on Automatic Control, 2008, 53(11): 2543-2557.
    98. Dorneanu B, Bildea C S, Grievink J. On the application of model reduction to plantwide control[J], Computers & Chemical Engineering, 2009, 33(3): 699-711.
    99. Safonov M G, Chiang R Y, Limebeer D J N. Optimal Hankel model reduction for nonminimal systems[J], IEEE Transactions on Automatic Control, 1990, 35(4): 496-502.
    100. Varga A, Anderson B D O. Accuracy-enhancing methods for balancing-related frequency-weighted model and controller reduction[J], Automatica, 2003, 39(5): 919-927.
    101. Diab M, Liu W Q, Sreeram V. A new approach for frequency weighted L_2 model reduction of discrete-time systems[J], Optimal Control Applications and Methods, 1998, 19(3): 147-167.
    102. Iwasaki T, Hara S, Yamauchi H. Dynamical system design from a control perspective: finite frequency positive-realness approach[J], IEEE Transactions on Automatic Control, 2003, 48(8): 1337- 1354.
    103. Iwasaki T, Hara S. Generalized KYP lemma: unified frequency domain inequalities with design applications[J], IEEE Transactions on Automatic Control, 2005, 50(1): 41-59.
    104. Iwasaki T, Hara S, Fradkov A L. Time domain interpretations of frequency domain inequalities on (semi)finite ranges[J], Systems & Control Letters, 2005,54(7): 681-691.
    105. Iwasaki T, Hara S. Robust control synthesis with general frequency domain specifications: static gain feedback case[C], Proceeding of American Control Conference, Boston, Massachusetts, USA, 2004,4613-4618.
    106. Iwasaki T, Hara S. Feedback control synthesis of multiple frequency domain specifications via generalized KYP lemma[J], International Journal of Robust and Nonlinear Control, 2007, 17(5-6): 415-434.
    107. Gahinet P, Apkarian P. A linear matrix inequality approach to H_∞ control[J], International Journal of Robust and Nonlinear Control, 1994, 4(4): 421-448.
    108. Wang H, Yang G H. A finite frequency approach to filter design for uncertain discrete-time systems[J], International Journal of Adaptive Control and Signal Processing, 2008, 22(6): 533-550.
    109. Luus R. Optimization in model reduction[J], International Journal of Control, 1980,32(5): 741-747.
    110. Yan W Y, Lam J. An approximate approach to H_2 optimal model reduction[J], IEEE Transactions on Automatic Control[J], 1999,44(7): 1341-1358.
    111. Assuncao E, Marchesi H F, Teixeira P C M, Peres P L D. Global optimization for the H_∞-norm model reduction problem[J], International Journal of Systems Science, 2007, 38(2): 125 - 138.
    112. Herjolfsson G, Evarsson B, Hauksdottir A S, Siguresson S. Closed form L_2/H_2-optimising of zeros for model reduction of linear continuous time systems[J], International Journal of Control, 2009, 82(3): 555 - 570.
    113. Grigoriadis K M. Optimal H_∞ model reduction via linear matrix inequalities: continuous- and discrete-time cases[J], Systems & Control Letters, 1995, 26(5): 321-333.
    114. Grigoriadis K M. L_2 and L_2 - L_∞ model reduction via linear matrix inequalities[J], International Journal of Control, 1997, 68(3): 485-498.
    115. Xu S, Lam J, Huang S, Yang C. H_∞ model reduction for linear time-delay systems: continuous-time case[J], International Journal of Control[J], 2001, 74(1): 1062 - 1074.
    116. Xu S, Lam J. H_∞ model reduction for discrete-time singular systems[J], Systems and Control Letters, 2003, 48(2): 121-133. SIAM
    117. Xu S, Chen T. H_∞ Model Reduction in the Stochastic Framework [J], SIAM Journal on Control and Optimization, 2003,42(4): 1293-1309.
    118. Zhang L, Huang B, Lam J. H_∞ model reduction of Markovian jump linear sys-tems[J], Systems & Control Letters, 2003, 50(2): 103-118.
    119. Gao H, Lam J, Wang C, Xu S. H_∞ model reduction for discrete time-delay systems: delay-independent and dependent approaches[J], International Journal of Control, 2004, 77(4): 321-335.
    120. Gao H, Lam J, Wang C, Wang Q. Hankel norm approximation of linear systems with time-varying delay: continuous and discrete cases[J], International Journal of Control, 2004, 77(17): 1503-1520.
    121. Zhang L, Huang B, Chen T. Model Reduction of Uncertain Systems with Multiplicative Noise Based on Balancing[J], SIAM Journal on Control and Optimization, 2006, 45(5): 1541-1560.
    122. Wu L, Zheng W X. Weighted H_∞ model reduction for linear switched systems with time-varying delay[J], Automatica, 2009, 45(1): 186-193.
    123. Ebihara Y, Hirai Y, Hagiwara T. On model reduction for discrete-time linear time-invariant systems using linear matrix inequalities[J], Asian Journal of Control, 2008, 10(3): 291-300.
    124. Ebihara Y, Hagiwara T. On H_∞ model reduction using LMls[J], IEEE Transactions on Automatic Control, 2004, 49(7): 1187- 1191.
    125. Geromel J C, Egas R G, Kawaoka F R R. H_∞ model reduction with application to flexible systems[J], IEEE Transactions on Automatic Control, 2005, 50(3): 402-406.
    126. Geromel J C, Kawaoka F R R, Egas R G. Model reduction of discrete time systems through linear matrix inequalities[J], International Journal of Control, 2004, 77(10): 978-984.
    127. Gao H, Lam J, Wang C. Model simplification for switched hybrid systems[J], Systems & Control Letters, 2006, 55(12): 1015-1021.
    128. Zhang L, Shi P, Boukas E K, Wang C. H_∞ model reduction for uncertain switched linear discrete-time systems[J], Automatica, 2008,44(11): 2944-2949.
    129. Zhang L, Boukas E K, Shi P. H_∞ model reduction for discrete-time Markov jump linear systems with partially known transition probabilities[J], International Journal of Control, 2009, 82(2): 343-351.
    130. Lee K H, Huang B. H_∞ structured model reduction algorithms for linear discrete systems via LMI-based optimisation[J], International Journal of Systems Science, 2009,40(7): 1464-5319.
    131. Sandberg H. Model reduction of linear systems using extended balanced trunca-tion[C], Proceeding of American Control Conference, Seattle, Washington, USA, 2008, 4654-4659.
    132. Schuler S, Allgower F. l_∞-gain model reduction for discrete-time systems via LMIs[C], Proceeding of American Control Conference, St. Louis, Missouri, USA, 2009,5701-5706.
    133. Lall S, Krysl P, Marsden J E. Structure-preserving model reduction for mechanical systems[J], Physica D: Nonlinear Phenomena, 2003, 84(1-4): 304-318.
    134. Tjarnstrom F, Ljung L, L_2 Model reduction and variance reduction[J], Automatica, 2002, 38(9): 2002.
    135. Li L, Paganini F. Structured coprime factor model reduction based on LMIs[J], Automatica, 2005,41(1): 145-151.
    136. Yang G H, Lum K Y. Comparisons among robust stability criteria for linear systems with affine parameter uncertainties[J], Automatica, 2007, 43(3): 491-498.
    137. Oliveira M C de, Bernussou J, Geromel J C. A new discrete-time robust stability condition[J], Systems & Control Letters, 1999, 37(4): 261-265.
    138. Peaucelle D, Arzelier D, Bachelier O, Bernussou J. A new robust D-stability condition for real convex polytopic uncertainty[J], Systems & Control Letters, 2000, 40(1): 21-30.
    139. Ebihara Y, Hagiwara T. A dilated LMI approach to robust performance analysis of linear time-invariant uncertain systems[J], Automatica, 2005, 41(11): 1933-1941.
    140. Oliveira Ricardo C L F, Peres P L D. LMI conditions for robust stability analysis based on polynomially parameter-dependent Lyapunov functions[J], Systems & Control Letters, 2006, 55(1): 52-61.
    141. Geromel J C, Korogui R H, Analysis and synthesis of robust control systems using linear parameter dependent lyapunov functions[J], IEEE Transactions on Automatic Control, 2006, 51(12): 1984-1989.
    142. Apkarian P, Tuan H D, Bernussou J. Continuous-time analysis, eigenstruc-ture assignment, and H_2 synthesis with enhanced linear matrix inequalities (LMI)characterizations[J], IEEE Transactions on Automatic Control, 2001,46(12): 1941-1946.
    143. Mahmoud M S, Xie L. Positive real analysis and synthesis of uncertain discrete time systems[J], IEEE Transactions on Circuits and Systems I, 2000, 47(3): 403-406.
    144. Duan Z, Huang L, Wang L. Multiplier design for extended strict positive realness and its applications[J], International Journal of Control, 2004, 77(17): 1493-1502.
    145. Xie L, Lu L, Zhang D, Zhang H. Improved robust H_2 and H_∞ filtering for uncertain discrete-time systems[J], Automatica, 2004,40(5): 873-880.
    146. Duan Z, Zhang J, Zhang C, Mosca E. Robust H_2 and H_∞ filtering for uncertain linear systems[J], Automatica, 2006, 42(11): 1919-1926.
    147. Zhou S, Lam J, Feng G. New characterization of positive realness and control of a class of uncertain polytopic discrete-time systems[J], Systems & Control Letters, 2005, 54(5): 417-427.
    148. Duan Z, Wang J, Huang L. Parameter-dependent Lyapunov function method for a class of uncertain nonlinear systems with multiple equilibria[J], Circuits, Systems, and Signal Processing, 2007, 26(2): 147-164.
    149. Mehdi D, Boukas E K, Bachelier O. Static output feedback design for uncertain linear discrete time systems[J], IMA Journal of Mathematical Control and Information, 2004, 21(1): 1-13.
    150. Syrmos V L, Abdallah C T, Grigoriadis K. "Static output feedback-a survey[J], Automatica, 2007, 33(2): 125-137. 1997.
    151. Brunner U A. New method for the design of a reduced-order controller[J], International Journal of Control, 1990,52(5): 1366-5820.
    152. Zeng J, Lin D, Cheng P.Reduced-order controller design for the general H_∞ control problem[J], International Journal of Systems Science, 2006, 37(5): 1464-5319.
    153. Papageorgiou C, Smith M C. Positive real synthesis using matrix inequalities for mechanical networks: application to vehicle suspension[J], IEEE Transactions on Control Systems Technology, 2006, 14(3): 423-435.
    154. Blanchini F, Sznaier M. A convex optimization approach to fixed-order controller design for disturbance rejection in SISO systems[J], IEEE Transactions on Automatic Control, 2000,45(4): 784-789.
    155. Byrns Jr E V, Sweriduk G D, Calise A J.Optimal H_2 and H_∞ fixed-order dynamic compensation using canonical forms[J], International Journal of Robust and Nonlinear Control, 1992, 2(4): 243-260.
    156. Scherer C, Gahinet P, Chilali M. Multiobjective output-feedback control via LMI optimization[J], IEEE Transactions on Automatic Control, 1997,42(7): 896-911.
    
    157. Blondel V, Tsitsiklis J N. NP-hardness of some linear control design problems[J], SIAM Journal of Control and Optimization, 2000, 35(6): 1237-1248.
    
    158. Ang K H, Chong G, Li Y. PID control system analysis, design, and technology[J], IEEE Transactions on Control Systems Technology, 2005, 13(4): 559-576.
    
    159. Visioli A. Practical PID Control, Springer, London, UK, 2006.
    160. Feng Z, Allen R. Reduced order H_∞ control of an autonomous underwater vehicle[J], Control Engineering Practice, 2004, 12(12): 1511-1520.
    161. Yung C F. Reduced-order H_∞ controller design—an algebraic Riccati equation approach[J], Automatica, 2000, 36(6): 923-926.
    162. Gadewadikar J, Lewis Frank L, Xie L, Kucera V, Abu-Khalaf M. Parameterization of all stabilizing H_∞ static state-feedback gains: Application to output-feedback design[J], Automatica, 2007,43(9): 1597-1604.
    163. Lee K H, Lee J H, Kwon W H. A global BMI algorithm based on multiobjective and stuctured controls for discrete-time systems[J], International Journal of Robust Nonlinear Control, 2004, 14(16): 1327-1343.
    164. Kanev S, Scherer C, Verhaegen M, De Schutter B. Robust output-feedback controller design via local BMI optimization[J], Automatica, 2004, 40(7): 1115-1127.
    165. Henrion D, Sebek M, Kucera V. Positive polynomials and robust stabilization with fixed-order controllers[J], IEEE Transactions on Automatic Control, 2003, 48(7): 1178-1186.
    166. Henrion D, Lasserre J B. Convergent relaxations of polynomial matrix inequalities and static output feedback[J], IEEE Transactions on Automatic Control, 2006, 51(2): 192-202.
    167. Apkarian P. Noll D, Tuan H D. Fixed-order H_∞ control design via a partially augmented Lagrangian method[J], International Journal of Robust and Nonlinear Con-trol, 2003, 13(12): 1137-1148.
    168. Apkarian P, Noll D. Nonsmooth H_∞ synthesis[J], IEEE Transactions on Automatic Control, 2006, 51(1): 71-86.
    169. Gumussoy S, Overton M L. Fixed-order H_∞ controller design via HIFOO, a specialized nonsmooth optimization package[J], Proceeding of 2008 American Control Conference, 2008, 2750-2754.
    170. Fujisaki Y, Oishi Y, Tempo R. Mixed Deterministic/Randomized Methods for Fixed Order Controller Design[J], IEEE Transactions on Automatic Control, 2008, 53(9): 2033-2047.
    171. Kim S J, Moon Y H, Kwon S. Solving Rank-Constrained LMI Problems With Application to Reduced-Order Output Feedback Stabilization[J], IEEE Transactions on Automatic Control, 2007, 52(9): 1737-1741.
    172. Grigoriadis K M, Skelton R E. Low order control design for LMI problems using alternating projection methods[J], Automatica, 1996, 32(8): 111.7-1125.
    173. Iwasaki T, Skelton R E. The XF-centering algorithm for the dual LMI problems: A new approach to fixed order control design[J], International Journal of Control, 1995,62(6): 1257-1272.
    174. El Ghaoui L, Oustry F, AitRami M. A cone complementarity linearization algorithm for static output-feedback and related problems [J], IEEE Transactions on Automatic Control, 1997,42(8): 1171 - 1176.
    175. Orsi R, Helmke U, Moore J B. A Newton-like method for solving rank constrained linear matrix inequalities[J], Automatica, 2006, 42(11): 1875-1882.
    176. He Y, Wang Q G. An Improved ILMI Method for Static Output Feedback Control With Application to Multivariable PID Control[J], IEEE Transactions on Automatic Control, 2006, 51(10): 1678-1683.
    177. Cao Y Y, Lam J, Sun Y X. Static output feedback stabilization: An ILMI approach[J], Automatica, 1998,34(6): 1641 - 1645.
    
    178. Leibfritz F. An LMI-based algorithm for designing suboptimal static H_2/H_∞ output feedback controllers[J], SIAM Journal of Control and Optimization, 2001, 39(6): 1711-1735.
    179. Shaked U. An LPD approach to robust H_2 and H_∞ static output-feedback design[J], IEEE Transactions on Automatic Control, 2003, 48(5): 866-872.
    
    180. Suplin V, Shaked U. Robust H_∞ output-feedback control of linear discrete-time systems[J], Systems & Control Letter, 2005, 54(8): 799-808.
    181. Mattei M. Sufficient conditions for the synthesis of H_∞ fixed-order co'ntrollers[J]. International Journal of Robust Nonlinear Control, 2000, 10(15): 1237-1248.
    182. Lo J C, Lin M L. Robust H_∞ nonlinear control via fuzzy static output feedback[J], IEEE Transactions on circuits systems I: Fundamental Theory and Applications, 2003,50(11): 1494-1502.
    183. Ho D W C, Lu G P. Robust stabilization for a class of discrete-time non-linear systems via ouput feedback: the unified LMI approach[J], International Journal of Control, 2003, 76(2): 105-115.
    184. Cesar A.R. Crusius, and Trofino A. Sufficient LMI conditions for output feedback control problems[J], IEEE Transactions on Automatic Control, 1999, 44(5): 1053-1057.
    185. Da Souza C E, Trofino A, An LMI approach to stabilization of linear discrete-time periodic systems[J], International Journal of Control, 2000, 73(8): 696-703.
    186. Prempain E, Postlethwaite I. Static ouput feeback stabilization with H_∞ performance for a class of plants[J], System & Control Letter, 2001, 43(3): 159-1665.
    187. Bara G I, Boutayeb M. Static output feedback stabilization with H_∞ performance for linear discrete-time systems[J], IEEE Transactions on Automatic Control, 2005, 50(2): 250-254.
    188. De Oliveira M C, Geromel J C, Bernussou J. Extended H_2 and H_∞ norm characterizations and controller parametrizations for discrete-time systems[J], International Journal of Control, 2002, 75(9): 666 - 679.
    189. Lee K H, Lee J H, Kwon W H. Sufficient LMI conditions for H_∞ output feedback stabilization of linear discrete-time systems[J], IEEE Transactions on Automatic Control, 2006, 51(4): 675-680.
    190. Dong J, Yang G H. Static output feedback control synthesis for linear systems with time-invariant parametric uncertainties[J], IEEE Transactions on Automatic Control, 2007, 52(10): 1930-1936.
    191. Dong J, Yang G H. Robust static output feedback control for linear discrete-time systems with time-varying uncertainties[J], Systems & Control Letters, 2008, 57(2): 123-131.
    192. Niculescu S 1. Delay Effects on Stability[M]. Berlin: Springer-Verlag, 2001.
    193.Richard J P.Time-delay systems:an overview of some recent advances and open problems[J],Automatica,2003,39(10),1667-1694.
    194.朱训林。基于LMI技术的时滞系统稳定性分析与综合[D].沈阳,东北大学,2008.
    195.Gao H,Chen T W.New results on stability of discrete-time systems with timevarying state delay[J],IEEE Transactions on Autmatic Control,2007,52(2):896-911.
    196.Song S H,Kim J K,Yim C H,Kim H C.H_∞ control of discrete-time linear systems with time-varying delays in state[J],Automatica,1999,35(9):1587-1591.
    197.Esfahani S H,Petersen I R.An LMI approach to output-feedback-guaranteed cost control for uncertain time-delay systems[J],International Journal of Robust and Nonlinear Control,2000,10(3):157-174.
    198.Xu S,Chen T W.Robust H_∞ control for uncertain discrete-time systems with timevarying delays via exponential output feedback controllers[J],Systems & Control Letters,2004,51(3-4):171-183.
    199.Gao H,Lam J,Wang C,Wang Y.Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay[J],IEE Proceedings-Control Theory and Applications,2004,151(6):691-698.
    200.He Y,Wu M,Liu G,She J.Output Feedback Stabilization for Discrete-time Systems with A Time-varying Delay[C],Proceeding of Chinese Control Conference,Zhangjiajie,2007,64-70.
    201.Zhang X M,Han Q L.A new finite sum inequality approach to delay-dependent H_∞ control of discrete-time systems with time-varying delay[J],International Journal of Robust and Nonlinear Control,2008,18(6):630-647.
    202.Leite V J S.Robust state feedback control of discrete-time systems with state delay:an LMI approach[J],IMA Journal of Mathematical Control and Information,2009,Published online,doi:10.1093/imamci/dnp018
    203.Hong J L.An H_∞ Output Feedback Control for Discrete-Time State-Delayed Systems [J],Circuits,Systems,and Signal Processing,2004,23(4):255-272.
    204.Montestruque L A,Antsaklis P.Stability of model-based networked control systems with time-varying transmission times[J],IEEE Transactions on Automatic Control,2004,49(9):1562-1572.
    205.Wang Y L,Yang G H.H_∞ control of networked control systems with time delay and packet disordering[J],IET Control Theory and Applications,2007,1(5):1344-1354.
    206.Fridman E,Shaked U.Delay-dependent stability and H_∞ control:constant and time-varying delays[J],International Journal of Control,2003,76(1):48-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700