N_2保护超音速电弧喷涂金属间化合物纳米复合涂层的组织结构及高温冲蚀性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对国内外火力发电厂燃煤锅炉管道(水冷壁、过热器、再热器、省煤器管)存在着的严重高温冲蚀磨损现象以及由此造成的重大经济损失的现实问题,本博士课题从研究方法的可行性和研究成果的应用价值出发,采用最切合实际的超音速电弧喷涂技术作为基础,全方位、创新性地对喷涂用材料的制造设备、电弧喷涂设备、电弧喷涂工艺、电弧喷涂材料以及涂层性能的试验研究设备进行全面的深入研究,发扬了电弧喷涂技术的优点,弥补了电弧喷涂技术的不足,将电弧喷涂技术、设备、工艺、材料及涂层性能提高到一个崭新的水平,具有很大的实际应用价值和重要的学术意义,经现场使用已产生很好的使用效果和经济效益。
     首次研究、设计、制造电弧喷涂粉芯丝材的专用设备:轧拔式叠口包丝机(CWCM05)和张力式直线拉丝机(CWDM05)。该专用设备的成功研制为本博士课题的顺利进行提供了基本保障,不仅可用于研究涂层的成分、喷涂工艺、组织结构与性能之间的关系,而且可用来研究开发更多新型的喷涂材料和新的电弧喷涂层。用CWCM05和CWDM05制成的成品丝材表观质量好,表面光洁度、光滑度、圆整度较高,叠口搭接情况良好,包粉密实,经电弧喷涂检验,走丝流畅,行弧平衡,无爆枪现象发生。该专用设备年生产能力近500吨/年。已获得发明专利(发明专利权号:ZL200410017882.9)。
     首次提出用N_2保护的方法控制喷涂材料的氧化问题,并研究制造适合于超音速电弧喷涂的N_2保护装置。在电弧喷涂技术中引入N_2保护将对涂层性能的提高、应用价值的提升和电弧喷涂技术的发展产生重要的影响。另外,对电弧喷枪进行改造,在枪管(喷管)上安装Laval腔体使气流被加速到超音速,从而提高喷涂熔滴的速度,为后续的涂层组织结构和性能研究提供必要的设备保证。当雾化气压为1MPa时,喷涂熔滴的速度可达515m/s超高音速。发明新型复合式导电嘴,它具有良好的导电性和耐磨性,行弧平衡,无爆枪现象,工作效率大为提高。使用寿命从2~4小时提高到近3000小时,维修时间减少90%以上,生产率提高40%左右,经济效益将非常显著。已获得发明专利和实用新型专利(发明专利权号:ZL200410017883.3,实用新型专利权号:ZL200420022150.4)。
     首次研制出模拟燃煤锅炉管道工况条件的专用高温冲蚀磨损试验设备:增压式分段加热高温冲蚀试验机(HTEA-04)。HTEA-04高温冲蚀试验机具有以下特点:冲蚀气流(冲蚀磨粒)速度稳定、可调;冲蚀气流温度控制准确,可在300~1100℃范围随意设定;增压式加料器加料速度、均匀性、流畅性好,可用于各种类型、粒度、比重的磨粒;试样的温度可在200~600℃范围任意设定;利用分段加热方式,可以大大简化复杂的试样冷却系统;试样装卸方便,试验周期较短,显著提高试验效率,降低试验成本;该试验机结构简单,制造成本较低,维护方便。已申报专利。
     系统地利用自行研究、设计、制造的粉芯丝材制造设备(CWCM05、CWDM05),改进的超音速电弧喷涂设备(CAS-400),研制的高温冲蚀试验设备(HTEA-04)进行无N_2保护和有N_2保护的工艺参数研究。首次以(56%Cr_3C_2+30%Cr+6%V-Fe+4%Nb-Fe+4%Mn)芯粉材料的粉芯丝材CW-T为涂层材料,通过改变喷涂速度对涂层的组织结构、孔隙率、结合面互扩散、硬度、结合强度、内聚强度、抗氧化性和高温冲蚀性能进行研究,并通过试验对比,研究N_2保护的作用。选取切实可行的最佳工艺参数(雾化气压0.8MPa,喷涂熔滴速度393m/s)用于后续的材料研究。已申报专利。
     利用粉芯丝材的特点,首次对Ti-Al金属间化合物复合材料超音速电弧喷涂层组织结构及高温冲蚀性能进行研究。所开发的粉芯丝材抗高温磨蚀的性能由强到弱依次为ACW1、ACW4、ACW2、ACW3。经过喷涂工艺优化,Ti-Al系列金属间化合物复合材料可望作为优秀的抗高温冲蚀涂层材料。电弧喷涂层的结构表现为“叠层”特征,“凝片”间存在由于喷涂过程中芯粉材料和表皮材料氧化导致的氧化物。本试验中,4类喷涂层在0.15~0.18mm Al_2O_3磨粒的高温冲蚀试验条件下,表现出来的高温冲蚀磨损机理主要有脆断、疲劳剥落、切削和犁耕。
     研究了Ti-Al及Cr系金属间化合物电弧喷涂层超临界冲蚀规律。发现BCW1、BCW2涂层具有固溶体相和氧化物相相互间隔的叠层结构特点。氧化物以Fe_3O_4形式存在。800℃、150小时氧化增重试验结果表明,BCW1和BCW2涂层的抗氧化性能分别是20钢的10倍和15倍。20钢的最大冲蚀率在15°附近,而BCW1和BCW2涂层的最大冲蚀率在45°附近。不论是高冲击角还是低冲击角,BCW1、BCW2涂层的耐冲蚀性能都明显优于20钢。冲击角为45°时,BCW1和BCW2涂层的耐冲蚀性分别是20钢的3.1和3.0倍。
     研究了N_2保护对TiAl_3和Cr_3C_2复合材料超音速电弧喷涂层组织结构及高温冲蚀性能的影响。研究发现,在N_2保护下的电弧喷涂层比无保护时的涂层更为致密和均匀,氧化夹杂物明显减少,硬度显著提高。本实验条件下,凝片与凝片的分离,以及凝片的断裂、掀起和剥落是产生冲蚀磨损的主要原因。而氧化夹杂物明显降低凝片与凝片间的结合力,从而降低涂层抗高温冲蚀性能。氮气保护的CCW1、CCW2、CCW3电弧喷涂层的平均体积冲蚀率比无氮气保护的分别降低3.3倍、2.3倍和1.0倍。
     研究了时效对含纳米复合材料超音速电弧喷涂层组织结构及高温冲蚀性能的影响。采用含纳米粉复合粉芯丝材进行电弧喷涂时,丝材的表皮材料和芯粉材料能相互熔解和融合形成较均匀的固溶体。研究发现:时效处理使涂层中各组成相晶格缺陷减少,应力消除,结晶度提高,同时亚稳相分解,孔洞等缺陷减少,从而显著提高涂层硬度,并使涂层中硬度分布更均匀。时效处理未明显提高DCW3涂层的抗高温冲蚀性能,但显著提高含纳米组分的DCW1、DCW2涂层的耐高温冲蚀性能,提高幅度分别为20%和29%。
     首次研究了N_2保护对含纳米复合材料超音速电弧喷涂层组织结构及高温冲蚀性能的影响。N_2保护提高涂层的致密性和均匀性,组织的连续性得到明显改善,涂层中氧化物显著减少。N_2保护使更多的合金元素熔入Fe中形成Fe基固溶体。透射电镜分析表明,纳米陶瓷相在基体相中呈较均匀的弥散分布状态。涂层中的氧化物是影响冲蚀抗力的主要因素之一。N_2保护的涂层受磨粒冲蚀时,不会出现明显的层状形式流失,所以冲蚀率显著降低。ECW1、ECW2、ECW3的氮气保护下涂层平均体积冲蚀率比无氮气保护的分别降低3.4、6.4和6.5倍。氮气保护显著减少纳米组分的烧损,改善纳米陶瓷相与基体相的结合,更充分发挥纳米组分对涂层的弥散强化作用。已获得发明专利(发明专利号:ZL200410017882.9)。
Supersonic arc spray technology was used as the most practicable method and manufacturing equipment of spraying material, arc spray machine, spraying technique, arc spray materials and testing apparatus for the coatings were investigated comprehensively, thoroughly and innovatively in this paper proceed form feasibility of investigation method and application value of investigation achievement, according to actual problem that there were serious high temperature erosion phenomenon and enormous economical losses caused on the boiler tubes of coal-fired power plants at home and abroad. The advantages of arc spray technology were developed and its' defects were overcome in the investigation. The arc spray technology, equipment, technique, spraying materials and coatings' properties were developed to a completely new level after the research, and then there are very good actual use value and important scientific significance. Quite good applied effect and economic benefit are proved after on-the-spot application.
    The special equipments for manufacturing arc spray cored wire: drawing-rolling style overlapping cored wire covering machine (CWCM05) and tension style cored wire drawing machine CWDM05) were investigated, designed and manufactured for the first time. Successful manufacture of the equipments provided basic guarantee for the doctor project. They can be used not only for investigation of coatings' composition, spray technology, structure and properties, but also for development of much new kinds of spraying materials and new arc spray coatings. The cored wires manufactured by CWCM05 and CWDM05 have good apparent mass, fineness, smooth, roundness, overlapping and powder cored consistency. Test by arc spraying performed that the cored wire went smoothly, arc sprayed stably and there was no detonation phenomenon. The special equipments can manufacture cored wires 500 tons per year approximately. We have gained invention patent right (Invention patent number: ZL200410017882.9).
    N_2 protective atmosphere was put forward for controlling oxidation of arc-sprayed materials, and then N_2 protective device used for supersonic arc spray was
    on microstructure, porosity, inter-diffusion of interface, hardness, bond strength, cohesive force, oxidation resistance and high temperature erosion resistance was investigated by using the cored wire containing composite cored powder (56%Cr_3C_2+30%Cr+6%V-Fe+4%Nb-Fe+4%Mn) as the coating material. Effect of N_2 protection was also investigated by testing comparison. At last, the best technological parameters of arc spray that was feasible for application was selected for following investigations of spraying materials. We have also applied for patent.
    Microstructures and high temperature erosion of arc spray coatings of Ti-Al intermetallics composite materials were investigated by using the feature of cored wire for the first time. High temperature erosion resistance of the coatings of developed cored wires decreased in the order of ACW1>ACW4≥ACW2>ACW3. By optimization of spraying process factors, Ti-Al intermetallics composite materials will be able to use as excellent coating material of anti-high temperature erosion. The arc spraying coatings exhibited typical "lamination" microstructure. The oxides located between "splat" were caused by oxidation of both the cored powders and the iron sheaths. Erosion mechanisms of the spraying coatings under the present testing conditions included brittle breaking, fatigue spalling, cutting and ploughing.
    Supercritical erosion regularity of arc spraying coatings of Ti-Al and Cr intermetallics composite materials was investigated. The "lamination" microstructure feature that solid solutions were laminated by oxides in the coatings of BCW1 and BCW2 was discovered. Oxide existed in the form of Fe_3O_4. The result of 800℃ 、 150h oxidation testing shows that oxidation resistances of BCW1and BCW2 coatings were 10 and 15 times of that of 20 carbon steel respectively. The highest erosive rate of 20 carbon steel occurred near 15 degree, but that of BCW1 and BCW2 coatings appeared near 45 degree. Whether or not impinging angle was high (or low), erosion resistance of BCW1 and BCW2 coatings was obviously higher than that of 20 carbon steel. Erosion resistances of BCW1 and BCW2 coatings were 3.1 and 3.0 times of that of 20 carbon steel respectively.
    Influence of N_2 protective atmosphere on microstructures and high temperature erosion of TiAl_3 and Cr_3C_2 composite material coatings by supersonic arc spray was
    investigated. It was discovered that the coating arc-sprayed under N_2 protective atmosphere had denser and more homogeneous structure, fewer oxide inclusion and higher hardness than under air atmosphere. In this testing condition, separation between splats and fracture, surging and spalling of splat was the main reason of erosion wear. Oxide inclusions reduced obviously cohesive force between splats, therefore decreased high temperature erosion resistance of the coating. The volume erosive rates of CCW1、 CCW2 and CCW3 coatings arc-sprayed under N_2 protective atmosphere decreased by 3.3, 2.3 and 1.0 times as that under air atmosphere.
    Influence of age on microstructures and high temperature erosion of composite material coatings containing nanosized ceramics by supersonic arc spray was investigated. The cored powders and the iron sheaths could form homogeneous solid solution by fusing and mixing in the process of arc spraying composite materials containing nanosized ceramics. It was discovered that age reduced defects of crystal lattice, removed concentrated stress, increased crystallization content, decreased hole and cavity, resolved instable phase, thus raised fairly hardness of the coating and made hardness distribute more homogeneously. Age did not increase high temperature erosion resistance of DCW3 coating, but increased that of DCW1 and DCW2 coatings by 20% and 29% respectively.
    Influence of N_2 protective atmosphere on microstructures and high temperature erosion of composite material coatings containing nanosized ceramics by supersonic arc spray was investigated for the first time. N_2 protective atmosphere could raise density and homogeny of coatings, improve continuity and reduce oxides of coatings very much. N_2 protective atmosphere also made more alloy elements fuse and mix into iron to form iron-based solid solution. Analysis by TEM (transmission electron microscope) shows that nanosized ceramics phase was distributed in the based solution in a form of dispersion. Oxides in the coatings were one of main facts that affected erosion resistance. The coatings sprayed nuder N_2 protective atmosphere did not occur obviously in the form of lamination of material loss when eroded by erosive abrasives, so the erosive rates were quite low. The volume erosive rates of ECW1、 ECW2 and ECW3 coatings arc-sprayed under N_2 protective atmosphere decreased by
    3.4, 6.4 and 6.5 times as that under air atmosphere. N_2 protective atmosphere reduced burning loss of nanosized ceramics very much, improved bonding of nanosized ceramics phase and base phase, and gave full play of nanosized ceramics to disperse hardening effect. We have gained invention patent right (Invention patent number: ZL200410017882.9).
引文
[1] G. Sundararajan, Manish Roy. Solid particle erosion behaviour of metallic materials at room and elevated temperatures. Tribology International, 1997, 30(5): 339-359.
    [2] B. F. Levin, J. N. Dupont. Solid particle erosion resistance of ductile wrought superalloys and their weld overlay coatings. Journal Of Materials Science, 1998, 33: 2153~2163.
    [3] J. Stringer. Practical experience with wastage at elevated temeratures in coal combustion systems. Wear, 1995, 11-27: 186-187.
    [4] M. Suckling, C. Allen. Critical variables in high temperature erosive wear. Wear, 1997, 203-204: 528-536.
    [5] P. J. Hoop, C. Allen. The high temperature erosion of commercial thermally sprayed metallic and cermet coatings by solid particles. Wear, 1999, 233-235: 334-341.
    [6] M. B. Suckling, P. J. Hoop, M. Sharma, C. Allen. Process variables in boiler tube and boiler tube coating erosion. Conf. Proc., Pretoria: South African Institute of Tribology, 1998, 3: 26-28.
    [7] 锅炉爆管原因查证与改进措施手册.美国电力研究院对防止电厂炉管失效的技术指南,1995.
    [8] V. Higuera Hidalgo, F.J. Belzunce Varela, et al. A comparative study of hightemperature erosion wear of plasmasprayed NiCrBSiFe and WC-NiCrBSiFe coatings under simulated coal-fired boiler conditions. Tribology International, 2001, 34:161-169.
    [9] N.K.Mukhopadhyay, S. Ghosh Chowdhury, et al. Remaining life estimation of a service exposed economiser tube. Engineering Failure Analysis, 1999, 6:233-243.
    [10] Raask E. Erosion by Liquid and Solid Impact. 6th Intl. Conf. Cambridge, UK: 1983.
    [11] Reid W T. External corrosion and deposits boiler and gas turbines. New York: American Elsevier, 1971.
    [12] Meringolo V. Stop tube corrosion and wear in coal -fired power boilers. In Power. McGraw-Hill, New York, 1981.
    [13] Culer A.J.et al. Fire-side corrosion in power station boilers. CEGB Research, 1978.
    [14] Chandler P.E, Quigely M.B.C. The application of plasma-sprayed coatings for the protection of boiler tubing. Proc.11~(th) Int.Thermal Spraying Conf. Montreal, Canada, 1986,8-12(9):28-35.
    [15] M.A. Uusitalo, P.M.J. Vuoristo, et al. Elevated temperature erosion-corrosion of thermal sprayed coatings in chlorine containing environments. Wear, 2002, 252: 586-594.
    [16] S. Chinnadurai, S. Bahadur. High-temperature erosion of Haynes and Waspaloy: effect of temperature and erosion mechanisms. Wear, 1995, 186-187: 299-305.
    [17] S. C. Srivastava, K. M. Godiwalla. Review Fuel ash corrosion of boiler and superheater tubes. Journal Of Materials Science, 1997,32: 835-849.
    [18] J. Striger, J.P. Mustonen. Current information on metal wastage in fluidized bed combustors. 9th Int. Conf. on Fluidized Bed Combustion, ASME, New York, 1987,685-696.
    [19] A.J. Ninham, I.M. Huthings, et al. A laboratory-scale fluidized bed rig for high-temperature tube wastage studies. 10th Int. Conf. on Fluidized Bed Combustion, ASME, New York, 1989,583-590.
    [20] M.M. Stack, F.H. Stott, et al. Erosion-corrosion of preoxidized Incoloy 800 H in fluidized bed environments: effects of temperature, velocity and exposure time, Mater. Sci. Technl., 1991,7:1128-1137.
    [21] A.J. Ninham, I.M. Huthings, et al. Erosion/oxidation of Austenitic and Ferritic alloys. Corrosion, 1990,46:296-301.
    [22] B.Q. Wang, G.Q. Geng, A.V. Levy. Erosion-corrosion of 1018 steel eroded at low velocity by CFBC bed material. Wear,1992,155:137-147.
    [23] G.J. Holtzer, P.L.F. Rademakers, et al. Studies on 90 MW AKZO and 4 MW TNO FBC show excellent erosion-corrosion results. 11~(th) Int. Conf. on Fluidized Bed Combustion, ASME, New York, 1991,743-753.
    [24] Nobuo Otsuka. Effects of fuel impurities on the fireside corrosion of boiler tubes in advanced power generatings systems-a thermodynamic calculation of deposit chemistry.Corrsion Science, 2002,44:265-283.
    [25] M.C. Mayoral, M.T. Izquierdo, et al. Mechanism of interaction pyrite with hematite as simulation of slagging and fireside tube wastage in coal combustion. Thermochimica Acta, 2002, 390: 103-111.
    [26] I.G. Wright. ASM Metals Handbook. ASM International(Corrosion), Materials Park, OH, 1992, 13.
    [27] P.M.Rogers,T.E.Hows,el.at.Wastge of low alloy steels in a fluidized bed environment.Wear, 1995,186-187: 306-315.
    [28] N.J.Simms. Personal Communication. CRE,Stoke Orchard,Cheltenham,UK.
    [29] P.L.F.Rademakers, D.M.Lloyd, V.Regis, et al. AFBCs: Bubbing, Circulating and Shallow Beds. High Temerature Materials for power Engineering, Kluwer, Dordrecht, 1990, 43-65.
    
    [30] Bu-Qian Wang. Erosion-corrosion of coatings by biomass-fired boiler fly ash. Wear, 1995, 188:40-48.
    [31] S. Collins. Biomass-fired plants face down near-term challenges. Power, 1993, 1: 51-53.
    [32] L.G. Wright, D.N. Williams, A.K. Mehta. Fireside corrosion and flyash erosion in coal-fired boilers. Boiler Tube Failures in Fossil Power Plan& EPRI, 1987,11:157-177.
    
    [33] R.B. Dooley. Fly ash erosion of boiler tubes.EPRI J., 1989,1/2: 54-56.
    [34] S.C. Stultz, J.B. Kitto. Steam, its Generation and Use, Babcock and Wilcox, Barberton, OH, 1992, 28:1-9.
    [35] L.G. Wright, V. Nagarajan And H.H. Krause. Mechanisms of fireside corrosion by chlorine and sulfur in refuse-firing. Corrosion '93. NACE,Houston, TX, 1993, 201.
    [36] L.D. Paul And P.L. Daniel. Corrosion mechanisms in oxidizing reducing and alternating combustion gases in refuse-fired boiler environments. Corrosion '93, NACE, Houston, TX, 1993, 216.
    [37] D.R. Holmes. Dewpoint Corrosion. Ellis-Horwood, Chichester, UK. 1985.
    [38] M.A. Uusitalo, P.M.J. Vuoristo, et al. High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits. Corrosion Science, 2004, 46: 1311-1331.
    [39] M.A. Uusitalo, P.M.J. Vuoristo, et al. Chlorine corrosion of hermally sprayed coatings at elevated temperatures. International Thermal Spray Confere nce, Essen, Germany, 2002, 4-6(3): 429-434.
    [40] H. J. Grabke, E. Reese, M. Spiegel. Corrosion Science, 1995, 37: 1023.
    [41] H. P. Nielsen, K. Dam-Johansen, L.L. Baxter. Progress in Energy and Combustion Science, 2000, 26: 283.
    [42] K. Salmenoja. Field and Laboratory Studies on Chlorine-induced Corrosion in Boilers Fired with Biofuels. Academic dissertation, Abo Academi, Turku, Finland, 2000.
    [43] H. M. Ten Brink, J. Enkhoom, G. Hamburg. Fuel, 1996, 78: 945.
    [44] 徐滨士,马世宁等.电弧喷涂技术及其在电厂中的应用研究.湖南电力,1999,19(6):1-3.
    [45] 徐滨士,等.电站锅炉水冷壁管道热腐蚀及高速电弧喷涂防护新技术.中国电力,2000,3:13-16.
    [46] 2006年中国火力发电行业分析及投资咨询报告.中国投资咨询网,2006,3.
    [47] D.B.Meadowcroft, E.D.Mountrone, J.E.Oakey, J.Scorrt. Experiences of combating tube bank wastage at Grimethorpe PFBC, FBC Technology and the Environment Challenge. 5th Int. Fluidized Combustors Conf. London, 1991, 105-114.
    [48] G. J. Holtzer, P. L. F. Rademakers. Studies on 90 MWth AKZO and 4 MWth TNO FBC show excellent erosion-corrosion results. 11th Int.Conf. Fluidized Bed Combustion, ASME, New York, 1991, 743-753.
    [49] J. Stringer, J. W. Stallings, J.M.Wheeldon. Wastage in bubbling fludized-bed combustors. 10th Int. Conf. on Fludized Bed Combustors, ASME, NewYork, 1989, 57-862.
    [50] Anders Hjornhede, Anders Nylund. Adhesion testing of thermally sprayed and laser deposited coatings. Surface and Coatings Technology, 2004,184:208-218.
    [51] S . J . MATTHEWS, P . CROOK, L. H. FLASCHE, J . W.TACKETT. Welding J. 1991,12:331.
    [52] L. D. Redden, R. D. Groves, D. C. Seidel. Report of Investigation United States, Bureau of Mines, 1988, 35.
    
    [53] T. Zhang, D. Y. Li. Material Science & Engineering, 2000 , 277 (18).
    [54] Tiancheng Zhang, D. Y. Li. Improvement in the corrosion-erosion resistance of 304 stainless steel with alloyed yttrium. Journal Of Materials Science 2001, 36: 3479 - 3486.
    [55] N. Gat, W. Tabakoff. Some effects of temperature on the erosion of metals. Wear, 1978,50:85-94.
    [56] A. Levy, Y.F. Man. Surface degradation of ductile metals in elevated temperature gas-particle streams. Wear, 1986, 211: 173-186.
    [57] J. Zhou and S. Bahadur. Further investigations on the elevated temperature erosion-corrosion of stainless steels. Proc. Conf on Corrosion-Erosion Wear of Materials at Elevated Temperatures. NACE, Houston, 1990, 13.1-13.32.
    [58] G. Sundararajan. An analysis of the erosion-oxidation interaction mechanisms. Wear, 1991,145:251-282.
    [59] B.Q. Wang, G.Q. Geng. Erosion-corrosion of 1018 steel eroded at low velocities by CFBC bed material. Wear, 1992,155: 137-147.
    [60] A.V. Levy, P. Crook. The erosion properties of alloys for the chemical processing industries. Wear, 1991, 151: 337-350.
    [61] N. Gat, W. Tabakoff. Effects of temperature on the behavior of metals under erosion by Particulate matter. J. Test. Evaluation, 1980, 8: 177-186.
    [62] F.J. Perez, U. F. Pedraza, M.P. Hierro, P.Y. Hou . Adhesion properties aluminide coatings deposited via CVD in fluidized bed reactors CVD-FBR on AISI 304 stainless steel. Surface and Coatings Technology, 2000, 133-134: 338-343.
    [63] L.M. Wyatt. Materials of construction for advanced power plant. Applied Surface Science Publishers, London, 1976, 271.
    [64] J. Stringer. Material Science & Engineering, 1987, 87, 1.
    [65] H.J. Scussel. Friction and Wear of Cemented Carbides, in Friction, Lubrication and Wear Technology. ASM Handbook, OH, 1992, 18: 795.
    [66] G. Welsch. Oxidation and corrosion of intermetallic alloys. Metals Information and Analysis Center, Purdue University, Indiana, 1996.
    [67] J.A. Hawk, D.E. Alman, Material Science & Engineering, 1997, A239-240: 899.
    [68] R. H. Richman, A. S. Rao, D. Kung. Ibid, 1995, 181-183: 80.
    [69] J. JIN, H. WANG. Acta Metal. Sinica, 1988, 24: A66.
    [70] R. Liu, D. Y. Li. Material Science and Engineering, 2000, A 277: 169.
    [71] S. M. Tan, S. Miyazaki. Material Science and Engineering, 1997, A 237: 79.
    [72] P. CLAYTON. Wear, 1993, 202: 162-164.
    [73] H. Z. Ye, R. Liu, D. Y. Li, R. Eadie. Script Material, 1999, 41: 1039.
    [74] Y. C. LUO, D. Y. LI. New wear-resistant material: Nano-TiN/TiC/TiNi composite. Journal Of Materials Science, 2001, 36: 4695-4702.
    [75] Noriyuki Hayashi, Kazuhiro Hasezaki, et al. High-temperature erosion rates of Fe-Cr-C alloys produced by mechanical alloying and sintering process. Wear, 2000, 242: 54-59.
    [76] C. G. Mckamey, J. H. Devan, P. F. Tortotell, V. K. Sikka. J. Material Res., 1991, 6: 1779.
    [77] X. Q. Yu, M. Fan, Y. S. Sun. The erosion-corrosion behavior of some Fe3Albased alloys at high temperatures. Wear, 2002, 253: 604-609.
    [78] V. O. Lavrenko, S. O. Firstov, et al. Corrosion of titanium-aluminum intermetallides/high-temperature oxidation of γ-TiAl, TIAl3, and α2-Ti3Al. Powder Metallurgy and Metal Ceramics, 2003, 42: 3-4.
    [79] 曲敬信,汪泓宏.表面表面工程手册.北京:化学工业出版社,1998.
    [80] 徐滨士等.表面工程与维修.北京:机械工业出版社,1996.
    [81] H. Herman, S. Sampath. Metallurgical and Ceramic Protective Coatings. Chapman & Hall, 1996, 261.
    [82] V. Higuera, F. J. Belzunce, et al. Influence of the thermal-spray procedure on the properties of a nickel-chromium coating. Journal Of Materials Science, 2002, 37: 649- 654.
    [83] S . GRAINGER, J . BLUNT. Engineering Coatings, Abington Publishings, 1998, 119.
    [84] J. Clare, D. Crowmer. Thermal spray coatings. ASM Handbook - Friction, Lubrication and Wear Technology, ASM International, 1992, 18: 361-374.
    [85] R. Tucker. Thermal spray coating. ASM Handbook-Surface Engineering, ASM International, 1994, 5: 497-509.
    [86] R. Vilar. Solid free form fabrication: laser cladding. Int. J. Powder Metall, 2001, 37(2): 31-48.
    [87] G. Qi, A. Barhorst, J. Hashemi, G. Kamala. Discrete wavelet decomposition of acoustic emission signals from carbon fiber-reinforced composites. Compos. Sci. Technol. 1997, 57: 389-403.
    [88] X.Q. Ma, S. Cho, M. Takemoto. Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend test. Surf. Coat. Technol. 2001,139:55-62.
    [89] D. S. Arensburger, S. M. Zimakov,et al. Coatings deposited by the high-velocity flame spraying method. Powder Metallurgy and Metal Ceramics, 2001,40: 3-4.
    [90] P. GU, B. ARSENAULT, et al. Polarization resistance of stainless steel-coated rebars. Cement & Concrete Research, 1998, 28(3): 321-327.
    [91] Bu-Qian Wang, Andrew Verstak. Elevated temperature erosion of HVOF Cr3C2/TiC-NiCrMo cermet coating. Wear, 1999, 233-235: 342-351
    [92] D.W. Parker, G.L. Kutner. HVOF-spray technology poised for growth. Advanced Materials and Processes, 1991, 139(4): 68-74.
    [93] A. Verstak, B. Q. Wang, V. Baranovski, A. Beliaev. Composite coatings for elevated temperature erosion-corrosion protection in fossil-fueled boilers. Corrosion '98, NACE, Houston,TX, 1998, 193.
    [94] Y. Fukuda, M. Kumon. Application of high velocity flame sprayings for the heat exchanger tubes in coal fired boilers. Thermal Spraying-Current Status and Future Trends, Proc. Of ITSC '95, Osaka, Japan, 1995, 107-110.
    [95] B.Q. Wang, K. Luer. The erosion-oxidation behavior of HVOF Cr3C2-NiCr cermet coating. Wear, 1994, 174: 177-185.
    [96] B.Q. Wang. The Elevated Temperature Erosion Behavior of HVOF Tungsten Carbide Cermet Coatings. Proc. of 8th NTSC, ASM Int. Materials Park, OH, 1995, 711-715.
    [97] Bu Qian Wang. Chromium-titanium carbide cermet coating for elevated temperature erosion protection in fluidized bed combustion boilers. Wear, 1999, 225-229: 502-509.
    [98] Buqian Wang, Seong W. Lee. Erosion-corrosion behaviour of HVOF NiAl- Al2O3 intermetallic-ceramic coating. Wear, 2000, 239: 83-90.
    [99] Bu Qian Wang, Zheng Rong Shui. Hot erosion behavior of carbide-metal composite coatings. Journal of Materials Processing Technology, 2003, 143—144: 87-92.
    [100] Bu Qian Wang, Zheng Rong Shui. The hot erosion behavior of HVOF chromium carbide-metal cermet coatings sprayed with different powders. Wear, 2002, 253: 550-557.
    
    [101] R. C. TUCKER. Surface Engineering, ASM Handbook, 1994, 5: 497.
    [102] P.M.Rogers, I.M.Hutchings, et al. Coatings and surface treatmens for protection against low-velocity erosion-corrosion in fluidized beds. Wear, 1995, 186-187: 238-246.
    [103] Goward G. W. Protective coatings— purpose, role and design. Mater. Sci. Technol, 1986, 2: 194-200.
    [104] Grainger S., Blunt J.. Engineering coatings: design and application. Abington Publishing, 1998.
    [105] Wang H., Xia W., Jin Y.. A study on abrasive resistance of Ni-based coatings with a WC hard phase. Wear, 1996, 195: 47-52.
    [106] Bjordal M., Bardal E., Rogne T., Eggen T. G.. Combined erosion and corrosion of thermal sprayed WC and CrC coatings. Surface Coatings Technol 1995, 70: 215-20.
    [107] Berger L., Vuoristo P., Mantyla T., Gruner W.. A study of oxidation behaviour of WC-Co, Cr3C2-NiCr and TiC-Ni-based materials in thermal spray processes. Proc. 15th Int. Thermal Spray Conference, Nice (France), 1998, 75-82.
    [108] Wang B.. The erosion-corrosion behaviour of thermal-sprayed coatings in fluidized bed combustor systems. Surface modification technologies. The Institute of Metals, 1997,265-279.
    [109] V. Higuera Hidalgo, F.J.Belzune Varela, E.Fernandez Rico. Erosion wear and mechanical properties of plasma-sprayed nickel-and iron-based coatings subjected to service condions in boilers. Tribology International, 1997, 30: 641-649.
    [110] Buta Singh Sidhu, S. Prakash. Evaluation of the corrosion behaviour of plasma- sprayed Ni3Al coatings on steel in oxidation and molten salt environments at 900 ℃. Surface and Coatings Technology, 2003, 166: 89-100.
    [111] I. FAGOAGA, G. BARYKIN, J . DE JUAN, T. SOROA, C. VAQUERO. Proceedings of the United Thermal Spray Conference. Germany, DVS-Verlag, 1999, 282.
    [112] K. Yamada, Y. Tomono, et al. Hot corrosion behavior of boiler tube materials in refuse incineration environment. Vacuum, 2002, 65: 533 - 540.
    [113] Stoltenhoff T., Kreye H., Richter H.J., Assadi H.. Proceedings of the International Thermal Spray Conference, ASM, 2001,499.
    [114] Uematsu K., Funami K.. J. Soc. Material Science Japan, 2000,49(6): 655.
    [115] Junji Morimoto, Tetuya Onoda, et al. Improvement of solid cold sprayed TiO2 - Zn coating with direct diode laser. Vacuum, 2004, 73: 527 - 532.
    [116] S. Sampath, X.Y. Jiang, J. Matejicek, et al. Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni-5 wt.%Al bond coats. Materials Science and Engineering , 2004, A364: 216-231.
    [117] D.E. Alman , J.H. Tylczak, et al. An assessment of the erosion resistance of iron-aluminide cermets at room and elevated temperatures. Materials Science and Engineering, 2002, A329-331: 602-609.
    
    [118] T.N. Rhys-Jones. Surface Stability. The Institute of Metals, London, 1989, 6: 2.
    [119] J. Stringer. Surface and Coatings Technology, 1998, 1: 108-109.
    [120] P.A. Choquet, M.A. Harper, R.A. Rapp. J. Physics, 1989, 50: 681.
    [121] R. G. I. Leferink, W. M. M. Huijbregts. Corrosion Science, 1993, 35: 5-8.
    [122] H. M. Tawancy, N. M. Abbas, T. N. Rhys-Jones. Surface and Coatings Technology, 1992, 1:54-55.
    [123] C. T. Liu, J. O. Stiegler, F. H. Froes. Metals Handbook (10~(th)), ASM, Ohio, 1990, 913.
    [124] A. Pokhmurska, R. Ciach. Microstructure and properties of laser treated arc sprayed and plasma sprayed coatings. Surface and Coatings Technology, 2002, 125:415-418.
    [125] L. Pawlowski. The Science and Engineering of Thermal Spray Coatings. Wiley, New York, 1995.
    [126] A. P. Newbery, B. Cantor, R. M. Jordan, A. R. E. Singer, J. Mater. Synth. Process, 1996,4(1): 1.
    
    [127] P.S. Grant, I. Palmer, I. C. Stone. Material World, 1999, 7 (6): 331.
    [128] P. D. Prichard, R. P. Dalai, et al. Superalloys 1992, The Minerals, Metals and Materials Society, 1992, 205.
    [129] M. Thorpe. Spray Time, 2000, 7 (2): 22-25.
    [130] S. Matthews, M. Hyland, J. de Reuck. Spray Time, 2001, 8 (1): 6-7.
    [131] L. Pawlowski. The Science and Engineering of Thermal Spray Coatings, Wiley, London, 1994.
    
    [132] B. Cantor, K. H. Baik, P. S. Grant. Progress of Material Science, 1997, 42: 373.
    [133] A. P. Newbery, T. Rayment, P. S. Grant. A particle image velocimetry investigation of in-flight and deposition behaviour of steel droplets during electric arc sprayforming. Materials Science and Engineering, 2004, in press.
    [134] D. L. Hale, W. D. Swank, D. C. Haggard. Journal of Thermal Spray Technology , 1998, 1 (7): 58-63.
    [135] N. Hussary, J. Schein, J. Heberlein. Control of jet convergence in wire arc spray systems. Proceedings of Tagunsband Conference, Dusseldorf, Germany, 1999, 17-19(3): 335-339.
    [136] X. Wang, D. Zhuang, et al. Effect of atomizing gas pressure on coating properties in wire arc spray. Proceedings of 7th National Thermal Spray Conf., Boston, Massachusetts, 1994, 20-24(6): 587-592.
    [137] J. Sheard, J. Heberlein, et al. Diagnostic development for control of wire-arc spraying. Thermal Spray: A United Forum for Scientific and Technological Advances, ASM International, OH, 1997, 613-618.
    [138] N.A. Hussary, J. Heberlein. Investigation of arc behavior and particle formation in wire arc spray process using high speed photography. Thermal Spray: Surface Engineering via Applied Research, ASM International, OH, 2000, 737-742.
    [139] A. P. Newbery, P. S. Grant. Journal of Thermal Spray Technology, 2000, 2 (9): 250-258.
    [140] M. Kelkar, N. Hussary, et al. Optical diagnostics and modelling of gas and droplet flow in wire arc spraying. Thermal Spray: Meeting the Challenges of the 21st Century, ASM International, OH, 1998, 329-334.
    [141] T. Watanabe, X. Wang, et al. Voltage and current fluctuations in wire arc spraying as indications for coating properties. Thermal Spray: Practical Solutions for Engineering Problems, ASM International, OH, 1996, 577-583.
    [142] H. D. Steffens, K. Nassenstein, J. Therm. Spray Technology, 1999, 8 (3): 454-460.
    
    [143] M. L. Thorpe. Advanced Materials Process, 1993, 143 (5): 50-60.
    [144] M. P. Planche, et al. Relationships between in-flight particle characteristics and coating microstructure with a twin wire arc spray process and different working conditions. Surface and Coatings Technology , 2004, 182: 215-226.
    [145] Matthew K. Hedges, et al. Characterisation of electric arc spray formed Ni superalloy IN718. Materials Science and Engineering, 2002, A326: 79-91.
    [146] Nobuaki Sakoda, Moritaka Hida, et al. Influence of atomization gas on coating properties under Ti arc spraying. Materials Science and Engineering, 2003, A342: 264-269.
    [147] Bu Qian Wang. Hot erosion behavior of two new iron-based coatings sprayed by HVCC process. Wear, 2003, 255: 102-109.
    [148] N. G. Solomon. Corrosion'97, NACE, Houston, TX, 1997, 135.
    [149] A. Verstak, B. Q. Wang, V. Baranovski. Corrosion'98, NACE, Houston, TX, 1998, 193.
    
    [150] B. Q. Wang, K. Luer. Wear, 1994, 174: 177-185.
    [151] F. Easterly, A. Verstak, S. Baranovski, V. Belashchenko, T. Shmyreva, Corrosion'97, NACE, Houston, TX, 1997, 141.
    [152] C. K. Stapelberg, M. W. Seitz. Proceedings of ITSC'95, High Temperature Society of Japan, Osaka, Japan, 1995, 633-638.
    [153] B. Q. Wang, M. W. Seitz. Comparison in erosion behavior of iron-base coatings sprayed by three different arc-spray processes. Wear, 2001, 250: 755-761.
    [154] Giumin Liu, K. Rozniatowsk, et al. Quantitative characteristics of FeCrAl films deposited by arc and high-velocity arc spraying. Materials Characterization, 2001, 46: 99- 104.
    
    [155] T. Sato, A. Nezu, T. Watanabe, Trans. Mater. Res. Soc. Jpn.25 (2000) 301.
    [156] Takayuki Watanabe, Tadayuki Sato,et al.Electrode phenomena investigation of wire arc spraying for preparation of Ti-Al intermetallicc ompounds. Thin Solid Films, 2002 (407): 98-103.
    [157] S. W. BANOVIC, J. N. DUPONT, et al. The use of ternary phase diagrams in the study of high temperature corrosion products formed on fe ± 5 wt% al alloys in reducing and oxidizing environments. Acta mater. 48 (2000) 2815 ±2822.
    [158] A.P. Newbery, B. Cantor, R.M. Jordan, S.E. Singer, J. Mater.Synth. Processing 4(1996)1.
    [159] D.J. Varacalle, D.P. Zeek, V. Zanchuck, E. Sampson, K.W.Couch, D. Benson, G.S. Cox, J. Thermal Spray Technol. 7(1998) 513.
    [160] A.P.Newbery,R.M.Jordan,et al.Electric Arc Spray Forming Of An Ni3Al Based Alloy.Scripta Materialia,Vol.35,No.l,pp.47-51,1996
    [161] S. Sampath, B. Katz, H. Herman, Memoires Et Etudes Scientifiques De La Revue De Metallurgie 88 (5) (1991) 289.
    
    [162] T.W. Clyne, S.C. Gill, J. Thermal Spray Technol. 5 (4) (1996) 401.
    [163] S. Kuroda, Y. Tashiro, H. Yumoto, S. Taira, H. Fukanuma, in: Proceedings of Fifteenth International Thermal Spray Conference, 1998, 569-574.
    [164] J. Matejicek, S. Sampath, P.C. Brand, H.J. Prask, Acta Materialia 47 (2) (1999), 607.
    [165] J. Matejicek, Materials science and engineering, Ph.D. thesis, State University of New York, Stony Brook, 1999.
    [166] Thomas Keller, Nikolaus Margadant, et al. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction. Materials Science and Engineering A 373 (2004) 33-44.
    
    [167] S. Kuroda, T.W. Clyne, Thin Solid Films , 200 (1991): 49.
    [168] O.C. Brandt, J. Therm. Spray Technol. 4 (1995) : 147.
    [169] M. Escribano, R. Gadow, M. Buchmann, in: B.R. Marple, C. Moreau (Eds.), Proceedings of the International Thermal Spray Conference, ASM International, Materials Park, OH, USA, 2003, 1297.
    [170] Thomas Keller , Nikolaus Margadant, et al. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction. Materials Science and Engineering A 373 (2004): 33-44.
    [171] R.G. Wellman, J.R. Nicholls. High temperature erosion-oxidation mechanisms, maps and models. Wear 256 (2004): 907-917.
    [172] I. Finnie, Wear, 3 (1960): 87.
    [173] G.P. Tilly, Wear, 23 (1973): 87.
    [174] A.V. Levy, Wear, 108 (1986): 1.
    [175] Erosion of metals and alloys. In: Surface effects in crystal plasticity,Latanison R.M., Fourie J.T. (Eds.) Noordhof, Leydon 1977. Conf.Sept 1975, Germany.
    [176] B. Lawn, R. Wilshaw, J. Mater. Sci. 10 (1975): 1049.
    [177] C.M. Perrott, Wear, 45 (1977): 293.
    [178] I.M. Hutchings, Erosion Ceram. Mater. 71 (1992): 75.
    [179] S.M. Wiederhorn, B.J. Hockey, J. Mater. Sci. Technol. 18 (1983): 766.
    [180] W. Tabakoff, Surf. Coat. Technol. 120-121 (1999): 542.
    [181] P.M. Rogers, I.M. Hutchings, J.A. Little, Wear 186-187 (1995): 238.
    [182] V.K. Sethi, R.G. Corey, in: Proceedings of the Seventh International Conference on Erosion by Liquid and Solid Impact, 1987.
    [183] S. Chinnadurai, S. Bahadur, Wear, 186-187 (1995): 299.
    [184] A. Levy, J. Yan, J. Paterson, Wear, 108 (1986): 43.
    [185] M. Suckling, C. Allen, Wear, 203-204 (1997): 528.
    [186] M.M. Stack, D. Pena, Surf. Coat. Technol. 113 (1999): 5.
    [187] A.L. Ham, J.A. Yeomans, J.F. Watts, Wear, 233-235 (1999): 237.
    [188] K. Anand, H. Conrad, in: K.C. Ludema (Ed.), Wear of Materials, ASME, New York, 1989, p. 135.
    [189] A.J. Ninham, A.V. Levy, in: K.C. Ludema (Ed.), Wear of Materials—1987, ASME, NewYork, 1987, p. 825.
    [190] S.F. Wayne, J.B. Baldoni, S.-T. Buljan, Trib. Trans. 33 (1990) 611.
    [191] D. AQUARO and E. FONTANI. Erosion of Ductile and Brittle Materials. Meccanica , 2001, 36: 651-661.
    [192] Hutchings I.M. Proc. Co@ on Corrosion/Erosion of Coal Conversion System Materials (Ed. Levy A. V.) NACE, Houston. 1979, 393
    
    [193] Manish Roy, Vishwanathan B. and Sundararajan G. Wear, 1994, 111- 149
    [194] Goodwin J.E., Sage W. and Tilly G.P. Proc. Inst. of Mech. Engg. 1969-70, 184: 279.
    [195] Ives L.K. .I. Eng. Mater. Tech. Trans. ASME 1977, 99: 126.
    [196] Reddy A.V. and Sundararajan G. Wear 1986, 111,313 Montgomery J.E. and Clarke J.M. SAE Summer Meetings, New York. 1962, 538A
    [197] A.J. Ninham, I.M. Hutchings and J.A. Little, Proc. Conf: Corrosion '89, NACE, Houston, TX, 1989, 554.
    [198] F.H. Stott, M.M. Stack and G.C. Wood, Proc. ConjI Corrosion-Erosion-Wear of Materials at Elevated Temperatures, NACE, Houston, TX, 1990, 12, 1-16.
    [199] M.M. Stack, L. Bray. Interpretation of wastage mechanisms of materials exposed to elevated temperature erosion-corrosion using erosion-+orrosion maps and computer graphics. Wear, 18, 187(1995): 273-283.
    [200] D.J. Stephenson, J.R. Nicholls. Modelling the influence of surface oxidation on high temperature erosion. Wear, 186-187 (1995): 284-290.
    [201]P. M. ROGERS, I. M. HUTCHINGS, et al. Microstructural characterization of surface layers formed on a low alloy steel during erosion- oxidation in a fluidized bed. Journal Of Materials Science, 32 (1997): 4575 - 4583.
    [202] T.A. Van Niekerk, Progress report on research and development into boiler erosion, Report No. TRRrS93r214, ESKOM_TRI., Cleveland, Johannesburg, 1993.
    [203] M. Olsen, P. Hedenqvist, B. Stridh, S. Soderberg, Solid particle erosion of hard chemically vapour deposited coatings, Surface Coatings and Technologies, 30, 1995,1018-1024.
    [204] M.B. Suckling, C. Allen. Ash erosivity differences between coal fired power generating units, Conf. Proc., 'Tribology in Power Generation', South African Institute of Tribology, Pretoria, September, 1994, 27-29.
    [205] G. Sundararajan, The depth of plastic deformation beneath eroded surfaces: the influence of impact angle and velocity, particle shape and material properties, Wear, 149,1991,111-127.
    [207] S. Chinnadurai, S. Bahadur. High-temperature erosion of Haynes and Waspaloy: effect of temperature and erosion mechanisms. Wear, 186-187 (1995): 299-305.
    [208] A.J.Ninham, M. J. Entwisle, I. M.Hutchings and J.A.Little,in A.M.Manaker (ed.), A laboratory-scale fluidized bed rig for high-temperature tube wastage studies, Proc. 10th Int.Conf. on Fluidized Bed Combustion, ASME,New York, 1989, 583-590.
    [1] 刘继元,陈邦固等.药芯焊丝生产线的研制.焊接,2000(2):22-25
    [2] 谢铁兵,刘宪军.电弧喷涂管状丝材新发展及应用.表面技术.1999,28(3):30-32
    [3] LIU Shao-guang, WU Jin-Ming, Zhang Sheng-Cai, et al. High temperature erosion properties of arc-sprayed coatings using various cored wires containing Ti-Al intermetallics [J]. Wear, 2006, in press.
    [4] 史晋,我国拉丝机现状及发展趋势.昆重学术报告会论文集.1994,1-4
    [1] 吴子健,吴朝军,曾克里,王全胜.热喷涂技术与应用[M].北京:机械工业出版社,2006.
    [2] 徐滨士等.表面工程与维修.北京:机械工业出版社,1996.
    [3] A. P. Newbery, T. Rayment, P. S. Grant. A particle image velocimetry investigation of in-flight and deposition behaviour of steel droplets during electric arc sprayforming. Materials Science and Engineering, 2004, in press.
    [4] Bu Qian Wang. Hot erosion behavior of two new iron-based coatings sprayed by HVCC process. Wear, 2003, 255:102-109.
    [5] F. Easterly, A. Verstak, S. Baranovski, V. Belashchenko, T. Shmyreva, Corrosion' 97, NACE, Houston, TX, 1997, 14l.
    [6] C. K. Stapelberg, M. W. Seitz. Proceedings of ITSC'95, High Temperature Society of Japan, Osaka, Japan, 1995, 633-638.
    [7] B. Q. Wang, M. W. Seitz. Comparison in erosion behavior of iron-base coatings sprayed by three different arc-spray processes. Wear, 2001,250:755-761.
    [8] 梁秀兵,徐滨士,马世宁.高速电弧喷枪的设计.现代制造工业,2002,8:58~59.
    [9] M. P. Planche, et al. Relationships between in-flight particle characteristics and coating microstructure with a twin wire arc spray process and different working conditions. Surface and Coatings Technology, 2004, 182:215-226.
    [10] Nobuaki Sakoda, Moritaka Hida, et al. Influence of atomization gas on coating properties under Ti arc spraying. Materials Science and Engineering, A342, (2003): 264-269.
    [1] V. Higuera Hidalgo, F.J. Belzunce Varela,et al. A comparative study of hightemperature erosion wear of plasmasprayed NiCrBSiFe and WC-NiCrBSiFe coatings under simulated coal-fired boiler conditions. Tribology International, 2001,34:161-169.
    [2] Meadowcroft D. B. High temperature corrosion alloys and coatings in oil-and coal-fired boilers. Materials Science and Engineering, 1987, 88: 313-320.
    [3] M. Suckling, C. Allen. Critical variables in high temperature erosive wear. Wear, 1997, 203-204:528-536.
    [4] P. H. Shipway. Erosion wear of brittle materials and its laboratory simulation. Ph. D. Thesis, St John's College Cambridge, 1992.
    [5] A. W. Ruff, L. K. Ives. Measurement of solid particle velocity in erosive wear. Wear, 1975, 35: 195-199.
    [6] D. Stans(Eskom). Boiler performance indicators. Tutuka Power Station Unit 1, Schedule C23, 1982, 1(2).
    [7] D. Gibson. Boiler erosion. ESkom Technology Research and Investigation, Cleveland, 1992, 12.
    [8] J.Stringer. Practical experience with wastage at elevated temeratures in coal combustion systems. Wear, 1995, 186-187: 11-27.
    [9] M.A. Uusitalo, P.M.J. Vuoristo,et al. Elevated temperature erosion-corrosion of thermal sprayed coatings in chlorine containing environments. Wear, 2002,252: 586-594.
    [10] T. E. Howes, P. M. Rogers, J. A. Liitle, I. M. Hutchings. Erosion-corrosion of mild steel in a temperature gradient. Wear, 1995, 186-187: 316-324.
    [11] Noriyuki Hayashi, Kazuhiro Hasezaki, et al. High-temperature erosion rates of Fe-Cr-C alloys produced by mechanical alloying and sintering process. Wear, 2000, 242: 54-59.
    [12] S. Soderberg, S. Hogmark, U. Engman, H. Swahn. Erosion classification of materials using a centrifugal erosion tester. Tribol. Int., 1981, 333-343.
    [13] Liu Shaoguang, et al. An accelerated simulation test apparatus for evaluating elevated temperature erosion-corrosion behaviour of iron and steel in gas-solid flows. Tribotest Journal, 1995, 2-2, (2): 113-120.
    [1] M. P. Planche, H. Liao, C. Coddetl. Relationships between in-flight particle characteristics and coating microstructure with a twin wire arc spray process and different working conditions. Surface and Coatings Technology 182 (2004) 215-226
    [2] Bu Qian Wang. Hot erosion behavior of two new iron-based coatings sprayed by HVCC process. Wear 255 (2003) 102-109.
    [3] L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, Wiley, London, 1994.
    [4] H.-D. Steffens, Br. Weld. J. 13 (10) (1994) 597-605.
    [5] T. Watanabe, X. Wang, S. Heberlein, E. Pfender, W. Herwig, Voltage and current fluctuations in wire arc spraying as indications for coating properties, Thermal Spray: Practical Solutions for Engineering Problems, ASM International, Materials Park, OH, 1996, 577-583.
    [6] Wang, D. Zhuang, E. Pfender, J. Heberlein, W. Gerberich, Effect of atomizing gas pressure on coating properties in wire arc spraying. Proceedings of the Seventh International Thermal Spray Conference, Boston, MA, ASM International, Materials Park, OH, 1994, 587-592.
    [7] A.P. Newbery, T. Rayment, P. S. Grant. A particle image velocimetry investigation of in-flight and deposition behaviour of steel droplets during electric arc spray forming. Materials Science and Engineering, (2004), in press.
    [8] D.L. Hale, W.D. Swank, D.C. Haggard, Journal of Thermal Spray Technology, 1998 , 1 (7): 58-63.
    [9] N. Hussary, J. Schein, J. Heberlein. Control of jet convergence in wire arc spray systems. Proceedings of Tagunsband Conference, 17-19 March, 1999, Dusseldorf, Germany, 335-339.
    [10] X. Wang, D. Zhuang, E. Pfender, J. Heberlein, W. Gerberich. Effect of atomizing gas pressure on coating properties in wire arc spray. Proceedings of Seventh National Thermal Spray Conference, 20-24 June, 1994, Boston, Massachusetts, 587-592.
    [11] J. Sheard, J. Heberlein, K. Stelson, E. Pfender. Diagnostic development for control of wire-arc spraying. Thermal Spray: A United Forum for Scientific and Technological Advances, ASM International, Materials Park,OH, USA, 1997, 613-618.
    [12] N.A. Hussary, J. Heberlein. Investigation of arc behavior and particle formation in wire arc spray process using high speed photography. Thermal Spray: Surface Engineering via Applied Research, ASM International, Materials Park, OH, USA, 2000,737-742.
    [13] A.P. Newbery, P.S. Grant. Journal of Thermal Spray Technology, 2000, 2 (9): 250-258.
    [14] M. Kelkar, N. Hussary, J. Schein, J. Heberlein.Optical diagnostics and modelling of gas and droplet flow in wire arc spraying. Thermal Spray: Meeting the Challenges of the 21st Century, ASM International, Materials Park, OH, 1998, 329-334
    [15] A.W.Ruff, L.K. Ives. Measurement of solid particle velocity in erosion wear. Wear, 1975, 35: 195-197.
    [1] B. Cantor, K-H. Baik, P.S. Grant, Prog. Material Science, 1997, 42: 373.
    [2] X. Wang, D. Zhuang, E. Pfender, J. Heberlein, W. Gerberich. Effect of atomizing gas pressure on coating properties in wire arc spraying. Proceedings of the Seventh International Thermal Spray Conference, Boston, MA, ASM International, Materials Park, OH, 1994, 587-592.
    [3] A. P. Newbery, T. Rayment, P.S. Grant. A particle image velocimetry investigation of in-flight and deposition behaviour of steel droplets during electric arc spray forming. Materials Science and Engineering, (2004), in press
    [1] Bu-Qian Wang. Erosion-corrosion of coatings by biomass-fired boiler fly ash. Wear, 1995, 188: 40-48.
    [2] V. Higuera Hidalgo, F.J. Belzunce Varela, et al. A comparative study of hightemperature erosion wear of plasmasprayed NiCrBSiFe and WC-NiCrBSiFe coatings under simulated coal-fired boiler conditions. Tribology International, 2001, 34:161-169.
    [3] Bu Qian Wang, Zheng Rong Shui. The hot erosion behavior of HVOF chromium carbide-metal cermet coatings sprayed with different powders. Wear, 2002, 253: 550-557.
    [4] P.M.Rogers, I.M.Hutchings, et al. Coatings and surface treatmens for protection against low-velocity erosion-corrosion in fluidized beds. Wear, 1995, 186-187: 238-246.
    [5] Bu-Qian Wang, Andrew Verstak. Elevated temperature erosion of HVOF Cr3C2/TiC-NiCrMo cermet coating. Wear, 1999, 233-235:342-351.
    [6] A. Pokhmurska, R. Ciach. Microstructure and properties of laser treated arc sprayed and plasma sprayed coatings. Surface and Coatings Technology, 2002, 125: 415-418.
    [7] Bu Qian Wang, Zheng Rong Shui. Hot erosion behavior of carbide-metal composite coatings. Journal of Materials Processing Technology, 2003, 143-144: 87-92.
    [8] Giumin Liu, K. Rozniatowsk, et al. Quantitative characteristics of FeCrAl films deposited by arc and high-velocity arc spraying. Materials Characterization, 2001, 46: 99-104.
    [9] B.Q. Wang, M. W. Seitz. Comparison in erosion behavior of iron-base coatings sprayed by three different arc-spray processes. Wear, 2001,250:755-761.
    [10] WU J M, WU N Q, WANG G X, LI Z Z. In-situ observation of single-point wear of the PM alloy Al-10Ti [J], Trans Nonferrous Metals Soc China, 1997, 7(3), 69-74.
    [11] WU J M, LI Z Z. Contributions of the particulate reinforcement to dry sliding wear resistance of rapidly solidified Al-Ti alloys [J], Wear, 2000, 244 (1-2), 147-153.
    [12] WU J M, ZHENG S L, YUAN J, LI Z Z, ZENG Y W, JI Z G. Mechanical properties of rapidly solidified Al-Ti alloys after thermal exposure [J], Trans Nonferrous Metals Soc China, 2000, 10(4), 435-440.
    [13] WU J M, ZHENG S L, ZENG, Y W, LI Z Z. Dry sliding wear of MA/PM Al-10Ti [J], Trans Nonferrous Metals Soc China, 2001, 11 (2), 270-274.
    [14] L. Pawlowski. The Science and Engineering of Thermal Spray Coatings, Wiley, London, 1994.
    [15] B. Cantor, K. H. Baik, P. S. Grant. Progress of Material Science, 1997, 42: 373.
    [16] M. L. Thorpe. Advanced Materials Process, 1993, 143 (5): 50-60.
    [17] V. O. Lavrenko, S. O. Firstov, et al. Corrosion of titanium-aluminum intermetallides/high-temperature oxidation of γ-TiAl, TIAl3, and α2-Ti3Al. Powder Metallurgy and Metal Ceramics, 2003, 42: 3-4.
    [18] Levy A. Solid particle erosion and erosion-corrosion of materials [M]. ASM International, Materials Park, OH, 1995.
    [19] Alman D E, Tylczak J H, Hawk J A, Schneibel J H. An assessment of the erosion resistance of iron-aluminide cermets at room and elevated temperatures [J]. Mater Sci Eng A, 2002, 329-331,602-609.
    [20] Rogers P M, Hutchings I M, Little J A. Coatings and surface treatments for protection against low-velocity erosion-corrosion in fluidized beds [J]. Wear, 1995, 186-187 (1), 238-246.
    [1] Bu Qian Wang, Zheng R S. The hot erosion behavior of HVOF chromium carbide-metal cermet coatings sprayed with different powders [J], Wear, 253 (2002) 550-557.
    [2] Liu Shaoguang, etc. An Accelerated Stimulation Test Apparatus for Evaluating Elevated Temperature Erosion-Corrosion Behaviour of Iron and Steel in Gas-Solid Flows [J]. Tribotest J. 2-2, (1995) 113-120.
    [3] P M Rogers, T E Howes, I M Hutchings, etc. Wastage of low alloy steels in a fluidized bed environment [J]. Wear, 186-187 (1995) 306-315.
    [4] 景永伟,刘少光.流化床锅炉水冷壁管冲蚀磨损特性及防磨措施[J].动力工程,2005,No.5,(2005)747-751.
    [5] H Pokhmurska, V Doohunyk, etc. Tribological properties of arc sprayed coatings obtained from FeCrB and FeCr-based powder wires [J]. Surf Coat Techn, 151-152 (2002) 490-494.
    [6] P J Hoop, C Allen. The high temperature erosion of commercial thermally sprayed metallic and cermet coatings by solid particles [J]. Wear, 233-235 (1999) 334-341.
    [7] X Q Yu, M Fan, Y S Sun. The erosion-corrosion behavior of some Fe3Al-based alloys at high temperature [J]. Wear, 253 (2002) 604-609.
    [8] WU J M, ZHENG S L, LI Z Z. Thermal stability and its effects on mechanical properties of rapidly solidified Al-Ti alloys [J]. Mater Sci Eng A, 289(1-2) (2000) 246-254.
    [9] 吴进明,郑史烈,李志章,曾跃武.第二相颗粒对快速凝固Al-Ti合金滑动磨损性能的影响[J].摩擦学学报,18(4)(1998)289-294.
    [10] 吴进明,郑史烈,李志章,曾跃武.冷变形对低滑动速率下Al-10Ti合金磨损的影响[J].摩擦学学报,19(4)(1999)342-347.
    [11] Watanabe T, Sato T, Nezu A. Electrode phenomena investigation of wire arc spraying for preparation of Ti-Al intermetallic compounds [J]. Thin Solid Films, 407 (1-2) (2002) 98-103.
    [12] Liu S G, Wu J M, Zhang S C, etc. High temperature erosion properties of arc-sprayed coatings using various cored wires containing Ti-Al intermetallics [J]. Wear, 2006, in press.
    [13] Sampath S, Jiang X Y, Matejicek J, Prchlik L, Kulkarni A, Vaidya A. Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni-5 wt. %Al bond coats [J]. Mater Sci Eng A, 364 (1-2) (2004) 216-231.
    [14] Levy A. Solid particle erosion and erosion-corrosion of materials [M]. ASM International, Materials Park, OH, 1995.
    [15] B F Levin, J N Dupont, A R Marder. Solid particles erosion resistance of ductile wrought superalloy and their weld overlay coating [J]. J. Mater Sci, 33 (1998) 2153-2163.
    [16] G Sundararajan, Manish Roy. Solid particle erosion behavior of metallic at room and elevated temperatures [M]. Trib Inter, 30 (1997) 339-359.
    [1] Liu S G, Wu J M, Zhang S C, etc. High temperature erosion properties of arc-sprayed coatings using various cored wires containing Ti-Al intermetallics [J]. Wear, 2006, in press.
    [2] WU J M, ZHENG S L, LI Z Z. Thermal stability and its effects on mechanical properties of rapidly solidified Al-Ti alloys [J], Mater Sci Eng A, 2000, 289(1-2), 246-254.
    [3] 景永伟,刘少光.流化床锅炉水冷壁管冲蚀磨损特性及防磨措施[J].动力工程,Vol.25,No.5,747-751.
    [4] 吴进明,郑史烈,李志章,曾跃武,第二相颗粒对快速凝固Al-Ti合金滑动磨损性能的影响[J],摩擦学学报,1998,18(4),289-294.
    [5] 刘少光,吴进明,张升才,荣淑杰,胡小海,李志章.退火处理对含纳米陶瓷粉电弧喷涂层组织结构与高温冲蚀性能的影响[J].功能材料,2006,37,231(12).
    [6] Wang B Q. Chromium-titanium carbide cermet coating for elevated temperature erosion protection in fluidized bed combustion boilers [J]. Wear, 1999, 225-229 (1), 502-509.
    [7] Stringer J. Practical experience with wastage at elevated temperature in coal combustion systems [J], Wear, 1995, 186-187, 11-27.
    [8] Hidalgo V H, Varela F J B, Menendez A C, Martinez S P. A comparative study of high-temperature erosion wear of plasma sprayed NiCrBSiFe and WC-NiCrBSiFe coatings under simulated coal-fired boiler conditions [J]. Tribol Int, 2001, 34 (3), 161-169.
    [9] WANG B Q, Seitz M W. Comparison in erosion behavior of iron-base coatings sprayed by three different arc-spray processes [J]. Wear, 2001, 250 (1-12), 755-761.
    [10] Sampath S, Jiang X Y, Matejicek J, Prchlik L, Kulkarni A, Vaidya A. Role of thermal spray processing method on the microstructure, residual stress and properties of coatings: an integrated study for Ni-5 wt. %Al bond coats [J]. Mater Sci Eng A, 2004, 364 (1-2), 216-231.
    [11] Levy A. Solid particle erosion and erosion-corrosion of materials [M]. ASM International, Materials Park, OH, 1995.
    [12] Alman D E, Tylczak J H, Hawk J A, Schneibel J H. An assessment of the erosion resistance of iron-aluminide cermets at room and elevated temperatures [J]. Mater Sci Eng A, 2002, 329-331, 602-609.
    [13] Rogers P M, Hutchings I M, Little J A. Coatings and surface treatments for protection against low-velocity erosion-corrosion in fluidized beds [J]. Wear, 1995, 186-187(1), 238-246.
    [1] WU J M, WU N Q, WANG G X, LI Z Z. In-situ observation of single-point wear of the PM alloy Al-10Ti [J], Trans Nonferrous Metals Soc China, 1997, 7(3), 69-74.
    [2] WU J M, LI Z Z. Contributions of the particulate reinforcement to dry sliding wear resistance of rapidly solidified Al-Ti alloys [J], Wear, 2000, 244 (1-2), 147-153.
    [3] WU J M, ZHENG S L, YUAN J, LI Z Z, ZENG Y W, JI Z G. Mechanical properties of rapidly solidified Al-Ti alloys after thermal exposure [J], Trans Nonferrous Metals Soc China, 2000, 10(4), 435-440.
    [4] WU J M, ZHENG S L, ZENG, Y W, LI Z Z. Dry sliding wear of MA/PM Al-10Ti [J], Trans Nonferrous Metals Soc China, 2001, 11 (2), 270-274.
    [5] Liu S G, Wu J M, Zhang S C, et al. [J]. High temperature erosion properties of arc-sprayed coatings using various cored wires containing Ti-Al intermetallics. Wear, 2006, in press.
    [6] 刘少光,吴进明,张升才,胡小海,荣淑杰,李志章.超临界锅炉管道耐磨涂层组织结构及冲蚀规律研究[J].动力工程,2006,26,156(6).
    [7] 刘少光,吴进明,张升才,胡小海,荣淑杰,李志章.氮气保护对纳米复合涂层组织结构与高温冲蚀性能的影响[J].浙江大学学报(工学版),2006,(12)
    [8] Levy A. Solid particle erosion and erosion-corrosion of materials [M]. ASM International, Materials Park, OH, 1995.
    [1] 刘少光,吴进明,张升才,荣淑杰,胡小海,李志章.退火处理对含纳米陶瓷粉电弧喷涂层组织结构与高温冲蚀性能的影响[J].功能材料,2006,37,231(12).
    [2] L. Pawlowski. The Science and Engineering of Thermal Spray Coatings, Wiley, London, 1994.
    [3] B. Cantor, K. H. Baik, P. S. Grant. Progress of Material Science, 1997, 42: 373.
    [4] X. Wang, D. Zhuang, et al. Effect of atomizing gas pressure on coating properties in wire arc spray. Proceedings of 7th National Thermal Spray Conf., Boston, Massachusetts, 1994, 20-24(6): 587-592.
    [5] M. L. Thorpe. Advanced Materials Process, 1993, 143 (5): 50-60.
    [6] M. P. Planche, et al. Relationships between in-flight particle characteristics and coating microstructure with a twin wire arc spray process and different working conditions. Surface and Coatings Technology, 2004, 182: 215-226.
    [7] Matthew K. Hedges, et al. Characterisation of electric arc spray formed Ni superalloy IN718. Materials Science and Engineering, 2002, A326: 79-91.
    [8] LIU Shao-guang, WU Jin-Ming, Zhang Sheng-Cai, et al. High temperature erosion properties of arc-sprayed coatings using various cored wires containing Ti-Al intermetallics [J]. Wear, 2006, in press.
    [9] 刘少光,吴进明,张升才,胡小海,荣淑杰,李志章.氮气保护对纳米复合涂层组织结构与高温冲蚀性能的影响[J].浙江大学学报(工学版),2006,(12).
    [10] 刘少光,吴进明,张升才,胡小海,荣淑杰,李志章.超临界锅炉管道耐磨涂层组织结构及冲蚀规律研究[J].动力工程,2006,26,156(6).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700