GluK2-PSD-95信号模块通过Fas信号通路介导缺血性神经元损伤及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和研究目的
     缺血再灌注过程中,谷氨酸过度释放造成的神经兴奋毒作用是缺血性脑损伤的重要机制。谷氨酸受体GluK2亚基被过度激活后,通过脚手架蛋白PSD-95与酪氨酸蛋白激酶MLK3结合,形成GluK2-PSD-95-MLK3信号模块。在此模块中,MLK3通过交叉磷酸化而将自身激活,并作用于其下游底物,通过MAPK信号级联,最后激活转录因子c-Jun,引起FasL表达增加。这就是所说的MAPK信号通路介导凋亡的核通路。Fas是重要的死亡受体,FasL表达的增加提示FasL-Fas信号通路在GluK2-PSD-95信号模块介导的缺血性脑损伤中发挥终极作用。然而Fas信号通路是否真的在GluK2-PSD-95信号模块介导的缺血性脑损伤中发挥重要作用,以及Fas介导缺血性脑损伤的具体机制目前并不很清楚。
     Fas凋亡信号通路广泛存在于各种组织细胞。Fas被配体FasL激活后,其胞内区与FADD结合,并通过FADD募集凋亡蛋白caspase8,组装成DISC复合体。在此复合体中,caspase8自身裂解活化,继而启动caspase信号级联或刺激线粒体释放Cyt c而激活凋亡执行蛋白caspase3,引起DNA水解和细胞凋亡。Fas凋亡信号通路中的信号分子受到多种机制的调节。Fas的巯基亚硝基化修饰能够促进其由胞浆向胞膜转位,并在胞膜上聚集成高分子量的聚合体CD95hi,同时向胞浆内化。CD95hi能够与FADD和caspase8组装成hiDISC,hiDISC是Fas介导凋亡的更主要形式。
     本研究分两个部分,分别利用PSD95的PDZ1抑制性环肽和Fas shRNA,采用生物化学和组织染色的方法,证明GluK2-PSD-95信号模块通过Fas信号通路介导缺血性神经元损伤;利用生物化学的方法,研究NO供体GSNO保护缺血再灌神经元的机制,从而反映Fas信号通路介导缺血性脑损伤的机制。
     第一部分GluK2-PSD-95信号模块通过Fas信号通路介导缺血性神经元损伤
     方法
     1.用TUNEL法,检测PDZ1环肽阻断GluK2-PSD-95结合后,再灌注5d大鼠海马CA1区锥体神经元凋亡情况的变化。
     2.用免疫荧光方法,检测PDZ1环肽对缺血再灌过程中Fas和FasL表达的影响;用免疫印迹和免疫沉淀的方法,检测PDZ1对缺血再灌过程中DISC组装和下游信号蛋白活化的影响。
     3.用DAPI染色法检测Fas shRNA对OGD后原代大鼠海马神经元凋亡的影响。
     结果
     1.TUNEL检测显示,缺血前给予PDZ1环肽显著减少了大鼠海马CA1区神经元的凋亡。
     2.缺血前给予PDZ1环肽显著抑制了再灌6h FasL表达的增加、DISC的组装和下游凋亡蛋白的激活,但是对Fas表达没有明显影响。
     3.OGD前给予Fas shRNA显著减少了复糖复氧过程中原代海马神经元的凋亡。
     第二部分GSNO通过抑制Fas巯基亚硝基化和Fas信号转导在缺血性脑损伤中发挥神经元保护作用
     方法
     1.用焦油紫染色方法,检测大鼠全脑缺血前给予GSNO对海马CA1区神经元死亡的影响。
     2.用免疫印迹的方法,检测GSNO对缺血再灌注过程中凋亡相关蛋白活化的影响。
     3.用生物素转化法,检测缺血再灌注过程中Fas巯基亚硝基化的变化,及缺血前给予GSNO对Fas巯基亚硝基化的影响。
     4.用生物素转化法,检测缺血前给予GSNO对nNOS巯基亚硝基化的影响;NOS活性检测试剂盒和NO检测试剂盒检测GSNO对nNOS活性和NO生成的影响。
     5.缺血前给予nNOS抑制剂7-NI,生物素转化法检测Fas巯基亚硝基化的变化。
     6.用免疫印迹方法,分别检测缺血再灌过程中Fas和CD95hi在胞膜和胞浆中的表达变化,及GSNO对其影响。
     7.用免疫沉淀方法,检测GSNO对缺血再灌过程中DISC和hiDISC组装的影响。
     结果
     1.大鼠全脑缺血前给予GSNO显著减少了再灌注5d海马CA1区神经元的死亡。
     2.缺血前给予GSNO显著抑制了再灌注6h凋亡相关蛋白的活化。
     3.大鼠全脑缺血再灌注过程中Fas巯基亚硝基化增强,再灌注6h达高峰;缺血前给予GSNO显著抑制了再灌注6h Fas的巯基亚硝基化。GSNO对照组中Fas巯基亚硝基化也有较明显增强,但是远远低于缺血再灌注组。
     4.缺血再灌6h nNOS巯基亚硝基化降低,其活性及NO生成量显著增加;缺血前给予GSNO则显著增强nNOS的巯基亚硝基化,但是抑制了其活性和NO生成。
     5.缺血前给予7-NI,再灌6h Fas巯基亚硝基化显著降低。
     6.缺血再灌过程中,Fas的胞膜表达量明显增加,再灌6h达高峰;Fas的胞浆表达量相应地显著减少,以再灌6h为低谷;CD95hi的胞膜表达量也有显著增加,且再灌6h为高峰;而且CD95hi的胞浆表达量呈同样的增加趋势。缺血前给予GSNO阻止了再灌6hFas和CD95hi在胞膜和胞浆中表达的变化。
     7.缺血前给予GSNO显著抑制了再灌6h DISC和hiDISC组装的增强。
     结论
     鉴于以上实验结果,我们得出以下结论:
     1.缺血再灌过程中,GluK2-PSD-95信号模块通过Fas信号通路介导神经元损伤。
     2. NO供体GSNO通过使nNOS巯基亚硝基化而抑制其活性,减少NO生成,从而使Fas的巯基亚硝基化降低,抑制其膜转位、聚集和内化,以及DISC组装和下游凋亡蛋白的活化,最终实现其保护缺血再灌神经元的功能。
Background and purpose
     One of the crucial mechanisms of ischemia-induced brain injury is that theexcessively released glutamate during reperfusion induces excitoxicity. Whenexcessively stimulated, GluK2, one subunit of glutamate receptors, recruits MLK3through the scaffold PSD-95and assemblies GluK2-PSD-95-MLK3module. Then,MLK3auto-activates via cross phosphorylation and activates its substrates throughMAPK cascade, resulting in activation of c-Jun and subsequent increased FasLexpression. This procedure has been named the nuclear pathway mediated by MAPKsignaling pathway. Since Fas is one of the important death receptors, the increase ofFasL expression after ischemia suggests that FasL-Fas pathway might act at theexecution phase. However, this postulation requires further investigations. Themechanisms of Fas-mediated ischemic brain injury also remain to be clarified.
     Fas-induced apoptosis pathway ubiquitously functions in various tissues and cells.When stimulated by its ligand FasL, the cytosolic DD of Fas interacts with FADD,which subsequently recruits caspase8and assemblies DISC. DISC formation facilitatesthe cluster and auto-activation of caspase8. Once activated, caspase8initiates caspasecascade or induces Cyt c release from mitochondria, which activate the excecutorcaspase, caspase3, and resulting in DNA cleavage and apoptosis. Multiple mechanismsregulate Fas apoptosis-inducing pathway. S-nitrosylation of Fas facilitates itstrans-localization to cell membrane, aggregation into CD95hiand internalization intoplasma. CD95hican form hiDISC with FADD and caspase8, which is the preferredmode that Fas mediate apoptosis.
     In this study, we investigated ischemic brain injury in two sections. We adoptedPDZ1domain inhibitor peptide and Fas shRNA to prove that GluK2-PSD-95modulemediates ischemic brain injury via Fas pathway. Then, we elucidated the mechanisms that GSNO protects neurons from ischemia injury to reflect the mechanisms that Fasmediate ischemic brain injury.
     Part Ⅰ GluK2-PSD-95mediates brain injury after ischemiavia Fas pathway
     Methods
     1. Use TUNEL method to test the effect of PDZ1peptide on cell apoptosis in rathippocampal CA1region at5d of reperfusion.
     2. Use immumofluence method to test the effect of PDZ1peptide on Fas andFasL expression during reperfusion; use immunoblot and immunopricipitation to testthe effect of PDZ1peptide on DISC assembly and the activation of downstreammolecules during reperfusion.
     3. Use DAPI staining to examine the effect of Fas shRNA on apoptosis ofprimary hippocampal neurons after OGD.
     Results
     1. TUNEL staining showed that pretreatment of PDZ1peptide significantlyattenuated neuronal apoptosis in rat hippocampal CA1region.
     2. Pretreatment of PDZ1peptide attenuated the increase of FasL expression,DISC assembly and the activation of downstream molecules at6h of reperfusion,without effect on Fas expression.
     3. Pretreatment of Fas shRNA significantly reduced primary hippocampal neuronapoptosis after OGD.
     Part Ⅱ Neuroprotection of S-nitrosoglutathione againstischemia injury by down-regulating Fas S-nitrosylation
     and downstream signaling
     Methods
     1. Use cresyl viollet staining to examine the effect of GSNO pretreatment onneurons death in rat hippocampal CA1region after ischemia.
     2. Use immunoblot to examine the effect of GSNO pretreatment on activation of
     3. Use Biotin-switch method to examine the S-nitrosylation of Fas duringreperfusion and the effect of GSNO pretreatment on Fas S-nitrosylation.
     4. Use Biotin-switch method to examine the effect of GSNO pretreatment on theS-nitrosylation of nNOS. Use NOS activity testing kit and NO testing kit to examine theeffect of GSNO pretreatment on NOS activity and NO creation.
     5. Use Biotin-switch method to examine the effect of7-NI pretreatment on theS-nitrosylation of Fas.
     6. Use immunoblot to test the expression of Fas and CD95hiat cell membrane andin plasma at vary reperfusion times and the effect of GSNO pretreatment on them.
     7. Use immunoprecipitation to examine the effect of GSNO pretreatment onDISC and hiDISC assembly.
     Results
     1. Pretreament of GSNO before ischemia significantly attenuated neurons deathin hippocampal CA1region.
     2. Pretreament of GSNO before ischemia significantly inhibited the activation ofapoptosis-associating proteins at6h of reperfusion.
     3. Fas S-nitrosylation was significantly enhanced during reperfusion and peakedat6h. Pretreament of GSNO before ischemia significantly inhibited Fas S-nitrosylationat6h of reperfusion. Although Fas S-nitrosylation was also increased in GSNO controlgroup, it was extremely lower than ischemia/reperfusion group.
     4. nNOS S-nitrosylation was significantly decreased at6h of reperfusion,however, its activity and NO creation was enhanced. Pretreament of GSNO beforeischemia significantly enhanced nNOS S-nitrosylation, but inhibited its activity and NOcreation.
     5. Pretreament of7-NI before ischemia significantly decreased FasS-nitrosylation at6h of reperfusion.
     6. Fas expression at cell membrane was significantly increased during reperfusion,and peaked at6h of reperfusion. Consistently, Fas expression in plasma decreased andreached the lowest level at6h. CD95hiexpression at cell membrane was alsosignificantly increased during reperfusion, and peaked at6h. However, CD95hiexpression in plasma showed the same increase. Pretreament of GSNO beforeischemia significantly blocked the variation of Fas and CD95hi.
     7. Pretreament of GSNO before ischemia significantly blocked the assembly ofDISC and hiDISC.
     Conclusions
     Based on the above results, we conclude as below:
     1. GluK2-PSD-95mediates ischemic brain injury via Fas pathway.
     2. GSNO inhibits nNOS activation and NO creation after brain ischemia throughS-nitrosylation on nNOS. GSNO-induced NO reduction during reperfusion causesdecrease of Fas S-nitrosylation, subsequent membrane translocation, aggregation andinternalization, which attenuates DISC assembly and activation of apoptosis proteins,thus protecting neurons from ischemic injury.
引文
1. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci.1994,17:31-108.
    2. Chittajallu R, Braithwaite SP, Clarke VR, Henley JM. Kainate receptors: subunits,synaptic localization and function. Trends Pharmacol Sci.1999,20(1):26-35.
    3. Frerking M, Nicoll RA. Synaptic kainate receptors. Curr Opin Neurobiol.2000,10(3):342-51.
    4. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH. Domain interaction betweenNMDA receptor subunits and the postsynaptic density protein PSD-95. Science.1995,269(5231):1737-40.
    5. Anis Contractor, Christophe Mulle, and Geoffrey T Swanson. Kainate receptorscoming of age: milestones of two decades of research. Trends Neurosci.2011,34(3):154–63.
    6. Kim E, Cho KO, Rothschild A, Sheng M. Heteromultimerization and NMDAreceptor-clustering activity of Chapsyn-110, a member of the PSD-95family ofproteins. Neuron.1996,17(1):103-13.
    7. Garcia EP, Mehta S, Blair LA, Wells DG, Shang J, Fukushima T, Fallon JR, GarnerCC, Marshall J. SAP90binds and clusters kainate receptors causing incompletedesensitization. Neuron.1998,21(4):727-39.
    8. Brenman JE, Chao DS, Gee SH, McGee AW, Craven SE, Santillano DR, Wu Z,Huang F, Xia H, Peters MF, Froehner SC, Bredt DS. Interaction of nitric oxidesynthase with the postsynaptic density protein PSD-95and alpha1-syntrophinmediated by PDZ domains. Cell.1996,84(5):757-67.
    9. Tezuka T, Umemori H, Akiyama T, Nakanishi S, Yamamoto T. PSD-95promotesFyn-mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptorsubunit NR2A. Proc Natl Acad Sci U S A.1999,96(2):435-40.
    10. Savinainen A, Garcia EP, Dorow D, Marshall J, Liu YF. Kainate receptor activationinduces mixed lineage kinase-mediated cellular signaling cascades viapost-synaptic density protein95. J Biol Chem.2001,276(14):11382-6.
    11. Pei DS, Sun YF, Guan QH, Hao ZB, Xu TL, Zhang GY. Postsynaptic densityprotein95antisense oligodeoxynucleotides inhibits the activation of MLK3andJNK3via the GluR6.PSD-95.MLK3signaling module after transient cerebralischemia in rat hippocampus. Neurosci Lett.2004,367(1):71-5.
    12. Tian H, Zhang QG, Zhu GX, Pei DS, Guan QH, Zhang GY. Activation of c-JunNH2-terminal kinase3is mediated by the GluR6.PSD-95.MLK3signaling modulefollowing cerebral ischemia in rat hippocampus. Brain Res.2005,1061(1):57-66.
    13. Pei DS, Wang XT, Liu Y, Sun YF, Guan QH, Wang W, Yan JZ, Zong YY, Xu TL,Zhang GY. Neuroprotection against ischaemic brain injury by a GluR6-9c peptidecontaining the TAT protein transduction sequence. Brain.2006,129(Pt2):465-79.
    14. Guan QH, Pei DS, Zhang QG, Hao ZB, Xu TL, Zhang GY. The neuroprotectiveaction of SP600125, a new inhibitor of JNK, on transient brainischemia/reperfusion-induced neuronal death in rat hippocampal CA1via nuclearand non-nuclear pathways. Brain Res.2005,1035(1):51-9.
    15. Zhang QX, Pei DS, Guan QH, Sun YF, Liu XM, Zhang GY. Blockade of thetranslocation and activation of mitogen-activated protein kinase kinase4(MKK4)signaling attenuates neuronal damage during later ischemia-reperfusion. JNeurochem.2006,98(1):170-9.
    16. Chen J, Li C, Pei DS, Han D, Liu XM, Jiang HX, Wang XT, Guan QH, Wen XR,Hou XY, Zhang GY. GluR6-containing KA receptor mediates the activation of p38MAP kinase in rat hippocampal CA1region during brain ischemia injury.Hippocampus.2009,19(1):79-89.
    17. Guan QH, Pei DS, Zong YY, Xu TL, Zhang GY. Neuroprotection against ischemicbrain injury by a small peptide inhibitor of c-Jun N-terminal kinase (JNK) vianuclear and non-nuclear pathways. Neuroscience.2006,139(2):609-27.
    18. Guan QH, Pei DS, Xu TL, Zhang GY. Brain ischemia/reperfusion-inducedexpression of DP5and its interaction with Bcl-2, thus freeing Bax from Bcl-2/Baxdimmers are mediated by c-Jun N-terminal kinase (JNK) pathway. Neurosci Lett.2006,393(2-3):226-30.
    19. Nagata S. Fas ligand-induced apoptosis. Annu Rev Genet.1999,33:29-55.
    20. Strasser A, Jost PJ, Nagata S. The many roles of FAS receptor signaling in theimmune system. Immunity.2009,30(2):180-92.
    21. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase8mediates themitochondrial damage in the Fas pathway of apoptosis. Cell.1998,94:491–501.
    22. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2interacting protein,mediates cytochrome c release from mitochondria in response to activation of cellsurface death receptors. Cell.1998,94:481–90.
    23. Christine Feig, Vladimir Tchikov, Stefan Schutze and Marcus E PeterPalmitoylation of CD95facilitates formation of SDS-stable receptor aggregatesthat initiate apoptosis signaling. The EMBO Journal.2007,26,221–31.
    1. Putkonen N, Kukkonen JP, Mudo G, Putula J, Belluardo N, Lindholm D,Korhonen L. Involvement of cyclin-dependent kinase-5in the kainic acid-mediateddegeneration of glutamatergic synapses in the rat hippocampus. Eur J Neurosci.2011,34(8):1212-21.
    2. Tsuchiya D, Hong S, Matsumori Y, Kayama T, Swanson RA, Dillman WH, LiuJ, Panter SS, Weinstein PR. Overexpression of rat heat shock protein70reducesneuronal injury after transient focal ischemia, transient global ischemia, or kainicacid-induced seizures. Neurosurgery,2003,53(5):1179-87.
    3. Lee MC, Rho JL, Kim MK, Woo YJ, Kim JH, Nam SC, Suh JJ, Chung WK,Moon JD, Kim HI. c-JUN expression and apoptotic cell death in kainate-inducedtemporal lobe epilepsy. J Korean Med Sci.2001,16(5):649-56.
    4. Hilton GD, Nunez JL, Bambrick L, Thompson SM, McCarthy MM.Glutamate-mediated excitotoxicity in neonatal hippocampal neurons is mediated bymGluR-induced release of Ca++from intracellular stores and is prevented by estradiol.Eur J Neurosci.2006,24(11):3008-16.
    5. Vincent P and Mulle C. Kainate receptors in epilepsy anexcitotoxicity.Neuroscience.2009,158(1):309-23.
    6. Yan XB, Meng FJ, Song B, Zhang GY. Brain ischemia induces serinephosphorylation of neuronal nitric oxide synthase by Ca(2+)/calmodulin-dependentprotein kinase II in rat hippocampus. Acta Pharmacol Sin.2004,25(5):617-22.
    7. Hao ZB, Pei DS, Guan QH, Zhang GY. Calcium/calmodulin-dependent proteinkinase II (CaMKII), through NMDA receptors and L-Voltage-gated channels,modulates the serine phosphorylation of GluR6during cerebral ischemia and earlyreperfusion period in rat hippocampus.Brain Res Mol Brain Res.2005,31;140(1-2):55-62.
    8. Tang LJ, Li C, Hu SQ, Wu YP, Zong YY, Sun CC, Zhang F, Zhang GY.S-nitrosylation of c-Src via NMDAR-nNOS module promotes c-Src activation andNR2A phosphorylation in cerebral ischemia/reperfusion. Mol Cell Biochem.2012,365(1-2):363-77.
    9. Leonardo CC, Agrawal M, Singh N, Moore JR, Biswal S, Doré S. Oraladministration of the flavanol (-)-epicatechin bolsters endogenous protection againstfocal ischemia through the Nrf2cytoprotective pathway. Eur J Neurosci.2013,38(11):3659-68.
    10. Navarro-Yepes J, Zavala-Flores L, Anandhan A, Wang F, Skotak M, ChandraN, Li M, Pappa A, Martinez-Fong D, Del Razo LM, Quintanilla-Vega B, Franco R.Antioxidant gene therapy against neuronal cell death. Pharmacol Ther.2014,142(2):206-30.
    11. Hong Duong TT, Chami B, McMahon AC, Fong GM, Dennis JM, FreedmanSB, Witting PK. Pre-Treatment With The Synthetic Antioxidant T-Butyl BisphenolProtects Cerebral Tissues From Experimental Ischemia Reperfusion Injury. JNeurochem.2014.[Epub ahead of publication]
    12. Wang J, Wang P, Li S, Wang S, Li Y, Liang N, Wang M. Mdivi-1PreventsApoptosis Induced by Ischemia-Reperfusion Injury in Primary Hippocampal Cells viaInhibition of Reactive Oxygen Species-Activated Mitochondrial Pathway. J StrokeCerebrovasc Dis.2014.[Epub ahead of publication]
    13. Lee JM1, Zipfel GJ, Choi DW. The changing landscape of ischaemic braininjury mechanisms. Nature.1999,399: A7-14.
    14. Ogita K, Okuda H, Yamamoto Y, Nishiyama N, Yoneda Y. In vivoneuroprotective role of NMDA receptors against kainate-induced excitotoxicity inmurine hippocampal pyramidal neurons. J Neurochem.2003,85(5):1336-46.
    15. Tian H, Zhang QG, Zhu GX, Pei DS, Guan QH, Zhang GY. Activation ofc-Jun NH2-terminal kinase3is mediated by the GluR6.PSD-95.MLK3signalingmodule following cerebral ischemia in rat hippocampus. Brain Res.2005,1061(1):57-66.
    16. Pei DS, Guan QH, Sun YF, Zhang QX, Xu TL, Zhang GY. Neuroprotectiveeffects of GluR6antisense oligodeoxynucleotides on transient brainischemia/reperfusion-induced neuronal death in rat hippocampal CA1region. JNeurosci Res.2005,82(5):642-9.
    17. Pei DS, Wang XT, Liu Y, Sun YF, Guan QH, Wang W, Yan JZ, Zong YY, XuTL, Zhang GY. Neuroprotection against ischaemic brain injury by a GluR6-9c peptidecontaining the TAT protein transduction sequence. Brain.2006,129(Pt2):465-79.
    18. Guan QH, Pei DS, Zong YY, Xu TL, Zhang GY. Neuroprotection againstischemic brain injury by a small peptide inhibitor of c-Jun N-terminal kinase (JNK) vianuclear and non-nuclear pathways. Neuroscience.2006,139(2):609-27.
    19. Guan QH, Pei DS, Liu XM, Wang XT, Xu TL, Zhang GY. Neuroprotectionagainst ischemic brain injury by SP600125via suppressing the extrinsic and intrinsicpathways of apoptosis. Brain Res.2005,1092(1):36-46.
    20. Zhang QX, Pei DS, Guan QH, Sun YF, Liu XM, Zhang GY. Blockade of thetranslocation and activation of mitogen-activated protein kinase kinase4(MKK4)signaling attenuates neuronal damage during later ischemia-reperfusion. J Neurochem.2006,98(1):170-9.
    21. Yu CZ, Li C, Pei DS, Zong YY, Shi Q, Wen XR, Guan QH, Hang D, Hou XY,Zhang GY. Neuroprotection against transient focal cerebral ischemia andoxygen-glucose deprivation by interference with GluR6-PSD95protein interaction.Neurochem Res.2009,34(11):2008-21.
    22. Chen J, Li C, Pei DS, Han D, Liu XM, Jiang HX, Wang XT, Guan QH, WenXR, Hou XY, Zhang GY. GluR6-containing KA receptor mediates the activation of p38MAP kinase in rat hippocampal CA1region during brain ischemia injury. Hippocampus.2009,19(1):79-89.
    23. Kuan CY, Whitmarsh AJ, Yang DD, Liao G, Schloemer AJ, Dong C, Bao J,Banasiak KJ, Haddad GG, Flavell RA, Davis RJ, Rakic P. A critical role ofneural-specific JNK3for ischemic apoptosis. Proc Natl Acad Sci U S A.2003,100(25):15184-9.
    24. Vogt M, Bauer MK, Ferrari D, Schulze-Osthoff K. Oxidative stress andhypoxia/reoxygenation trigger CD95(APO-1/Fas) ligand expression in microglial cells.FEBS Lett.1998,429(1):67-72.
    25. Zhang L, Dong LY, Li YJ, Hong Z, Wei WS. miR-21represses FasL inmicroglia and protects against microglia-mediated neuronal cell death followinghypoxia/ischemia. Glia.2012,60(12):1888-95.
    26.Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A, Chopp M,Zhang ZG. MicroRNA-21protects neurons from ischemic death. FEBS J.2010,277(20):4299-307.
    27. Jia Jia, Dening Guana, Wenjing Zhua, Nabil J. Alkayedc, Michael M. Wangd,Zichun Huab, and Yun Xua. Estrogen inhibits Fas-mediated apoptosis in experimentalstroke. Exp Neurol.2009,215(1):48–52.
    28. Arno Reich, Christopher Spering, Karen Gertz, Christoph Harms, EllenGerhardt, Golo Kronenberg, Klaus A. Nave, Markus Schwab, Simone C. Tauber, AnjaDrinkut, Kristian Harms, Chrstioph P. Beier, Aaron Voigt, Sandra Gobbels, MatthiasEndres, and Jorg B. Schulz1. Neurobiology of Disease Fas/CD95Regulatory ProteinFaim2Is Neuroprotective after Transient Brain Ischemia. J. Neurosci.2011,31(1):225–233.
    29. Li T, Yu HM, Sun YF, Song YJ, Zhang GY, Pei DS. Inhibition of cerebralischemia/reperfusion-induced injury by adenovirus expressed C-terminal amino acids ofGluR6. Brain Res.2009,1300:169-76.
    1. Khan M, Sekhon B, Giri S, Jatana M, Gilg AG, Ayasolla K, Elango C, SinghAK, Singh I. S-Nitrosoglutathione reduces inflammation and protects brain againstfocal cerebral ischemia in a rat model of experimental stroke. J Cereb Blood FlowMetab.2005,25(2):177-92.
    2. Zhang J, Yan H, Wu YP, Li C, Zhang GY. Activation of GluR6-containingkainate receptors induces ubiquitin-dependent Bcl-2degradation via denitrosylation inthe rat hippocampus after kainate treatment. J Biol Chem.2011,286(9):7669-80.
    3. Qu ZW, Miao WY, Hu SQ, Li C, Zhuo XL, Zong YY, Wu YP, Zhang GY.N-methyl-D-aspartate receptor-dependent denitrosylation of neuronal nitric oxidesynthase increase the enzyme activity. Plos One.2012,7(12):e52788.
    4. Zhang L, Dong LY, Li YJ, Hong Z, Wei WS. miR-21represses FasL inmicroglia and protects against microglia-mediated neuronal cell death followinghypoxia/ischemia. Glia.2012,60(12):1888-95.
    5. Sun N, Hao JR, Li XY, Yin XH, Zong YY, Zhang GY, Gao C.GluR6-FasL-Trx2mediates denitrosylation and activation of procaspase-3in cerebralischemia/reperfusion in rats. Cell Death Dis.2013,4:e771.
    6. The dynamics of soluble Fas/APO1apoptotic biochemical marker in acuteischemic stroke patients. Mahovic D, Zurak N, Lakusic N, Sporis D, Zarkovic N,Stancin N, Bosnar-Puretic M. Adv Med Sci.2013,58(2):298-303.
    7. Feig C, Tchikov V, Schütze S, Peter ME. Palmitoylation of CD95facilitatesformation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J.2007,26(1):221-31.
    8. Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease:a current perspective. Cell.2009,15:391-404.
    9. Eliasson MJ, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH,Moskowitz MA. Neuronal nitric oxide synthase activation and peroxynitrite formationin ischemic stroke linked to neural damage. J Neurosci.1999,19:5910-8.
    10. Di JH, Li C, Yu HM, Zheng JN, Zhang GY. nNOS downregulation attenuatesneuronal apoptosis by inhibiting nNOS-GluR6interaction and GluR6nitrosylation incerebral ischemic reperfusion. Biochem Biophys Res Commun.2012,420(3):594-9.
    11. Pei DS, Song YJ, Yu HM, Hu WW, Du Y, Zhang GY. Exogenous nitric oxidenegatively regulates c-Jun N-terminal kinase activation via inhibiting endogenousNO-induced S-nitrosylation during cerebral ischemia and reperfusion in rathippocampus. J Neurochem.2008,106(4):1952-63.
    12. Hu SQ, Ye JS, Zong YY, Sun CC, Liu DH, Wu YP, Song T, Zhang GY.S-Nitrosylation of mixed lineage kinase3contributes to its activation after cerebralischemia. J Biol Chem.2012,287(4):2364-77.
    13. Qi SH, Hao LY, Yue J, Zong YY, Zhang GY. Exogenous Nitric oxidenegatively regulates the s-nitrosylation p38Mitogen-activated Protein Kinase activationduring cerebral ischaemia and reperfusion. Neuropathol Appl Neurobiol.2012,9(3):284-97.
    14. Liu DH, Yuan FG, Hu SQ, Diao F, Wu YP, Zong YY, Song T, Li C, ZhangGY. Endogenous Nitric Oxide induces Activation of Apoptosis Signal-RegulatingKinase1via S-nitrosylation in Rat Hippocampus during Cerebral Ischemia-Reperfusion.Neuroscience.2013,229:36-48.
    15. Ishikawa A, Kubota Y, Murayama T, Nomura Y. Cell death by1-chloro-2,4-dinitrobenzene, an inhibitor of thioredoxin reductase and its dualregulation by nitric oxide in rats. Neurosci Lett.1999,277(2):99-102.
    16. Zhang J, Yan H, Wu YP, Li C, Zhang GY. Activation of GluR6-containingkainate receptors induces ubiquitin-dependent Bcl-2degradation via denitrosylation inthe rat hippocampus after kainate treatment. J Biol Chem.2011,286(9):7669-80.
    17. Qi SH, Hao LY, Yue J, Zong YY, Zhang GY. Exogenous Nitric oxidenegatively regulates the s-nitrosylation p38Mitogen-activated Protein Kinase activationduring cerebral ischaemia and reperfusion. Neuropathol Appl Neurobiol.2012,9(3):284-97.
    18. Liu DH, Yuan FG, Hu SQ, Diao F, Wu YP, Zong YY, Song T, Li C, ZhangGY. Endogenous Nitric Oxide induces Activation of Apoptosis Signal-RegulatingKinase1via S-nitrosylation in Rat Hippocampus during Cerebral Ischemia-Reperfusion.Neuroscience.(2013,229:36-48.
    19. Stamler JS, Toone EJ, Lipton SA, Sucher NJ. NO signals: Translocation,regulation, and a consensus motif. Neuron.1997,18:691-6.
    20. Yun HY, Gonzalez-Zulueta M, Dawson VL, Dawson TM. Nitric oxidemediates N-methyl-D-aspartate receptor induced activation of p21ras. Proc Natl AcadSci USA.1998,95:5773-8.
    21. Martin-Villalba A, Hahne M, Kleber S, Vogel J, Falk W, Schenkel J, KrammerPH. Therapeutic neutralization of CD95-ligand and TNF attenuates brain damage instroke. Cell Death Differ.2001,8:679-86.
    22. Pei DS, Wang XT, Liu Y, Sun YF, Guan QH, Wang W, Yan JZ, Zong YY, XuTL, Zhang GY. Neuroprotection against ischemic brain injury by a GluR6-9c peptidecontaining the TAT protein transduction sequence. Brain.2006,129:465-79.
    23. Liu XM, Pei DS, Guan QH, Sun YF, Wang XT, Zhang QX, Zhang GY.Neuroprotection of Tat-GluR6-9c against neuronal death induced by kainate in rathippocampus via nuclear and non-nuclear pathways. J Biol Chem.2006,281(25):17432-45.
    24. Leon-Bollotte L, Subramaniam S, Cauvard O, Plenchette-Colas S, Paul C,Godard C, Martinez-Ruiz A, Legembre P, Jeannin JF, Bettaieb A. S-Nitrosylation of theDeath Receptor Fas Promotes Fas Ligand–Mediated Apoptosis in Cancer Cells.Gastroenterology.2011,140(7);2009-18.
    25. Andoh T, Lee SY, Chiueh CC. Preconditioning regulation of bcl-2and p66shcby human NOS1enhances tolerance to oxidative stress. FASEB J.2000,14(14):2144-6.
    26. Hu SQ, Ye JS, Zong YY, Sun CC, Liu DH, Wu YP, Song T, Zhang GY.S-Nitrosylation of mixed lineage kinase3contributes to its activation after cerebralischemia. J Biol Chem.2012,287(4):2364-77.
    27. Christopherson KS, Hillier BJ, Lim WA, Bredt DS. PSD-95assembles aternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NOsynthase PDZ domain. J Biol Chem.1999,274(39):27467-73.
    28. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, SalterMW, Tymianski M. Treatment of ischemic brain damage by perturbing NMDAreceptor-PSD-95protein interactions. Science.2002,298(5594):846-50.
    29. Yang ZJ, Carter EL, Torbey MT, Martin LJ, Koehler RC. Sigma receptorligand4-phenyl-1-(4-phenylbutyl)-piperidine modulates neuronal nitric oxidesynthase/postsynaptic density-95coupling mechanisms and protects against neonatalischemic degeneration of striatal neurons. Exp Neurol.2010,221(1):166-74.
    30. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL,Schneider P, Seed B, Tschopp J. Fas triggers an alternative, caspase-8-independent celldeath pathway using the kinase RIP as effector molecule. Nat. Immunol.2000,1(6):489-95.
    31. Etienne Meylan and Jürg Tschopp. The RIP kinases: crucial integrators ofcellular stress. TRENDS in Biochemical Sciences.2005,30:151-9.
    32. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK.Phosphorylation-driven assembly of the RIP1/CRIP3complex regulates programmednecrosis and virus-induced inflammation. Cell.2009,137:1112-23.
    33. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X. Receptor interactingprotein kinase-3determines cellular necrotic response to TNF. Cell.2009,137:1100-11.
    1. Brint E, O'Callaghan G, Houston A. Life in the Fas lane: differential outcomesof Fas signaling. Cell Mol Life Sci.2013,70(21):4085-99.
    2. Lettau M, Paulsen M, Kabelitz D, Janssen O. Storage, expression and functionof Fas ligand, the key death factor of immune cells. Curr Med Chem.2008,15(17):1684-96.
    3. Debatin KM, Goldman CK, WaldmannTA, Krammer PH. APO-1inducedapoptosis of leukemia cells from patients with ATL. Blood1993,81:2972-77.
    4. Juvet SC, Thomson CW, Kim EY, Han M, Zhang L. FcRγ controls thefas-dependent regulatory function of lymphoproliferative double negative T cells. PLoSOne.2013,8(6):e65253.
    5. Rethi B, Sammicheli S, Amu S, Pensieroso S, Hejdeman B, Schepis D, ThangPH, Chiodi F. Concerted effect of lymphopenia, viraemia and T-cell activation on Fasexpression of peripheral B cells in HIV-1-infected patients. AIDS.2013,27(2):155-62.
    6. Rathmell JC, Townsend SE, Xu JC, Flavell RA, Goodnow CC. Expansion orelimination of B cells in vivo: dual roles for CD40-and Fas (CD95)-ligands modulatedby the B cell antigen receptor. Cell.1996,87:319-29.
    7. Wang J, Taniuchi I, Maekawa Y, Howard M, Cooper MD, Watanabe T.Ex-pression and function of Fas antigenon activated murine B cells. Eur. J. Immunol.1996,26:92-96.
    8. Watanabe D, Suda T, Nagata S. Expression of Fas in B cells of the mouseger-minal center and Fas-dependent killing of activated B cells. Int. Immunol.1995,7:1949-56.
    9. Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P. Cellsurface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science.1998,282:290-93.
    10. Itoh N, Yonehara S, Ishii A, Yonehara M, Mizushima S, et al. The polypep-tide encoded by the cDNA for human cell surface antigen Fas can mediateapoptosis. Cell.1991,66:233-43.
    11. Itoh N, Nagata S. A novel protein domain required for apoptosis: mutationalanalysis of human Fas antigen. J. Biol. Chem.1993,268:10932-37.
    12. TartagliaL A, Ayres TM, Wong GHW, Goeddel DV. A novel domain withinthe55kd TNF receptor signals cell death. Cell.1993,74:845-53.
    13. Inazawa J, Itoh N, Abe T, Nagata S. Assignment of the human Fas antigengene (FAS) to10q24.1. Genomics.1992,14:821-22.
    14. Lichter P, Walczak H, Weitz S, Behrmann I, Krammer PH. The human APO-1(APT) antigen maps to10q23, a region that is syntenic with mouse chromosome19.Genomics.1992,14:179-80.
    15. Watanabe-Fukunaga R, Brannan CI, Itoh N, Yonehara S, Copeland NG, et al.The cDNA structure, expression, and chromosomal assignment of the mouse Fasantigen. J. Immunol.1992,148:1274-79.
    16. Cascino I, Fiucci G, Papoff G, Ruberti G. Three functional soluble forms of thehuman apoptosis-inducing Fas molecule are produced by alternative splicing. J.Im-munol.1995,154:2706-13.
    17. Papoff G, Cascino I, Eramo A, Starace G, Lynch DH, Ruberti G. A Nerminaldomain shared by Fas/Apo-1(CD95) soluble variants prevents cell death in vitro. J.Immunol.1996,156:4622-30.
    18. Pitti RM, Marsters SA, Lawrence DA, Roy M, Kishkel FC, et al. Genomicamplification of a decoy receptor for Fas ligand in lung and colon cancer. Nature1999,396:699-703.
    19. Sheikh MS, Fornace AJ Jr. Death and decoy receptors and p53-mediatedapoptosis. Leukemia.2000,14(8):1509-13.
    20. Oshimi Y, Oda S, Honda Y, Nagata S, Miyazaki S. Involvement of Fasligand-and Fas-mediated pathway in the cytotoxicity of human natural killer cells. J.Immunol.1996,157:2909-15.
    21. Tanaka M, Suda T, Haze K, Nakamura N, Sato K, et al. Fas ligand in humanserum. Nat. Med.1996,2:317-22.
    22. Bellgrau D, Gold D, Selawry H, Moore J, Franzusoff A, Duke RC. A role forCD95ligand in preventing graft rejection. Nature.1995,377:630-32.
    23. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligandinduced apoptosis as a mechanism of immune privilege. Science.1995,270:1189-92.
    24. Szymanowski A, Li W, Lundberg A, Evaldsson C, Nilsson L, Backteman K,Ernerudh J, Jonasson L. Soluble Fas ligand is associated with natural killer celldynamics in coronary artery disease. Atherosclerosis.2014,233(2):616-622.
    25. Sun Z, Wan ZY, Liu ZH, Guo YS, Yin JB, Duan CG, Gao Y, Li T, Wang HQ,Luo ZJ. Expression of soluble Fas and soluble FasL in human nucleus pulposus cells.Int J Clin Exp Pathol.2013,6(8):1567-73.
    26. Schneider P, Holler N, Bodmer JL, Hahne M, Frei K, et al. Conversion ofmembrane-bound Fas (CD95) ligand to its soluble form is associated withdownregulation of its proapoptotic activity and loss of liver toxicity. J. Exp. Med.1998,187:1205-13.
    27. Suda T, Hashimoto H, Tanaka M, Ochi T, Nagata S. Membrane Fas ligandkills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J.Exp. Med.1997,186:2045-50.
    28. Tanaka M, Itai T, Adachi M, Nagata S. Down-regulation of Fas ligand byshedding. Nat. Med.1998,4:31-36.
    29. Shudo K, Kinoshita K, Imamura R, Fan H, Hasumoto K, Tanaka M, Nagata S,Suda T.The membrane-bound but not the soluble form of human Fas ligand isresponsible for its inflammatory activity. Eur J Immunol.2001,31(8):2504-11.
    30. Eramo A, Sargiacomo M, Ricci-Vitiani L, Todaro M, Stassi G, Messina CG,Parolini I, Lotti F, Sette G, Peschle C, DeMaria R. CD95death-inducing signalingcomplex formation and internalization occur in lipid rafts of type I and type II cells. EurJ Immunol.2004,34:1930-1940.
    31. Muppidi JR, Siegel RM. Ligand-independent redistribution of Fas(CD95) intolipid rafts mediates clonotypic T cell death. Nat. Immunol.2004,5:182-189.
    32. Feig C, Tchikov V, Schütze S, Peter ME. Palmitoylation of CD95facilitatesformation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J.2007,26(1):221-31.
    33. Banner DW, D’OArcy A, Janes W, Gent R, Schoenfeld H-J, et al. Crystalstructure of the soluble human55kd TNF receptor-human TNFβ complex: implicationfor TNF receptor activation. Cell.1993,73:431-45.
    34. Takahashi T, Tanaka M, Ogasawara J, Suda T, Murakami H, Nagata S.Swapping between Fas and G-CSF receptor. J. Biol. Chem.1996,271:17555-60.
    35.Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, anovel MORT1/FADD-interacting pro-tease, inFas/APO-1-and TNF receptor inducedcell death. Cell,1996,85:803-15.
    36. Chinnaiyan AM, Dixit VM. The cell-death machine. Curr. Biol.1996,6:555-62.
    37. Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, etal.FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95(Fas/APO-1) death-inducing signaling complex. Cell.1996,85:817-27.
    38. Martin DA, Siegel RM, Zheng L, Lenardo MJ. Membrane oligomerization andcleavage activates the caspase-8(FLICE/MACHalpha1) death signal. J. Biol. Chem.1998,273:4345-49.
    39. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An inducedproximity model for caspase-8activation. J. Biol. Chem.1998,273:2926-30.
    40. Yang X, Chang HY, Baltimore D. Autoproteolytic activation of pro-caspasesby oligomerization. Mol. Cell.1998,1:319-25.
    41. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase8mediates themitochondrial damage in the Fas pathway of apoptosis. Cell.1998,94:491–501.
    42. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2interactingprotein, mediates cytochrome c release from mitochondria in response to activation ofcell surface death receptors. Cell.1998,94:481–490.
    43. Stroh C, Schulze-Osthoff K. Death by a thousand cuts: an ever increasing listof caspase substrates. Cell Death Differ.1998,5:997-1000.
    44. McIloy D, Sakahira H, Talanian RV, Na-gata S. Involvement ofcaspase3-activated DNase ininternucleosomal DNA cleavage induced by diverseapoptotic stimuli. Oncogene.1999,18:4401-8.
    45. Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activationand DNA degradation during apoptosis. Nature.1998,391:96-99.
    46. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. Acaspase-activated DNase that degrades DNA during apoptosis and its inhibitor ICAD.Nature.1998,391:43-50.
    47. Laster SM, Wood JG, Gooding LR. Tumor necrosis factor can induce bothapoptic and necrotic forms of cell lysis. J. Immunol.1988,141:2629-2634.
    48. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD,Mitchison TJ, Moskowitz MA, Yuan J. Chemical inhibitor of nonapoptotic cell deathwith therapeutic potential for ischemic brain injury. Nature Chem. Biol.2005,1:112-119.
    49. Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependentrecruitment of the protein kinase RIP to the TNF receptor-1signaling complex.Immunity1996,4:387-396.
    50. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL,Schneider P, Seed B, Tschopp J. Fas triggers an alternative, caspase-8-independent celldeath pathway using the kinase RIP as effector molecule. Nature Immunol.2000,1:489-495.
    51. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FK.Phosphorylation-driven assembly of the RIP1/RIP3complex regulates programmednecrosis and virus-induced inflammation. Cell.2009,137:1112/C1123.
    52. He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X. Receptor interactingprotein kinase-3determines cellular necrotic response to TNF-α. Cell.2009,137:1100-1111.
    53. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J. RIP3, anenergy metabolism regulator that switches TNF-induced cell death from apoptosis tonecrosis. Science.2009,325:332-336.
    54. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J.Identification of a molecular signaling network that regulates a cellular necrotic celldeath pathway. Cell.2008,135:1311-1323.
    55. Goossens V, Stange G, Moens K, Pipeleers D, Grooten J. Regulation of tumornecrosis factor-induced, mitochondria-and reactive oxygen species-dependent celldeath by the electron flux through the electron transport chain complex I. Antioxid.Redox Signal.1999,1:285-295.
    56. Kim YS, Morgan MJ, Choksi S, Liu ZG. TNF-induced activation of the Nox1NADPH oxidase and its role in the induction of necrotic cell death. Mol. Cell2007,26:675-687.
    57. Yazdanpanah B, Wiegmann K, Tchikov V, Krut O, Pongratz C, Schramm M,Kleinridders A, Wunderlich T, Kashkar H, Uterm hlen O, Brüning JC, Schütze S,Kr nke M. Riboflavin kinase couples TNF receptor1to NADPH oxidase. Nature2009,460:1159-1163.
    58. Zong WX, Ditsworth D, Bauer DE, Wang Z Q, Thompson CB. AlkylatingDNA damage stimulates a regulated form of necrotic cell death. Genes Dev.2004,18,1272-1282.
    59. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecularmechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol.2010,11(10):700-14.
    60. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis viatwo sequential signaling complexes. Cell.2003,114:181-190.
    61. Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases.Sci. STKE.2006, re13.
    62. Feng S, Yang Y, Mei Y, Ma L, Zhu DE, Hoti N, Castanares M, Wu M.Cleavage of RIP3inactivates its caspase-independent apoptosis pathway by removal ofkinase domain. Cell Signal2007,19:2056-2067.
    63. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D,Cuny GD, Yuan C. Identification of RIP1kinase as a specific cellular target ofnecrostatins. Nature Chem. Biol.2008,4:313-321.
    64. Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG,Dawson TM, Dawson VL. Mediation of poly (ADP-ribose) polymerase-1-dependentcell death by apoptosis-inducing factor. Science.2002,297:259-263.
    65. Cao G, Xing J, Xiao X, Liou AK, Gao Y, Yin XM, Clark RS, Graham SH,Chen J. Critical role of calpain I in mitochondrial release of apoptosis-inducing factor inischemic neuronal injury. J. Neurosci.2007,27:9278-9293.
    66. Moubarak RS, Yuste VJ, Artus C, Bouharrour A, Greer PA, Menissier-deMurcia J, Susin SA. Sequential activation of poly (ADP-ribose) polymerase1, calpains,and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol.Cell. Biol.2007,27:4844-4862.
    67. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilizationin cell death. Physiol. Rev.2007,87:99-163.
    68. Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W,Fiers W, Vandenabeele P.Dual signaling of the Fas receptor: initiation of both apoptoticand necrotic cell death pathways.J. Exp. Med.1998,188(5):919-30.
    69. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL,Schneider P, Seed B, Tschopp J. Fas triggers an alternative, caspase-8-independent celldeath pathway using the kinase RIP as effector molecule.Nat. Immunol.2000,1(6):489-95.
    70. Kataoka T, Budd RC, Holler N, Thome M, Martinon F, Irmler M, Burns K,Hahne M, Kennedy N, Kovacsovics M, Tschopp J. The caspase-8inhibitor FLIPpromotes activation of NF-κB and erk signaling pathways. Curr. Biol.2000,10:640–648.
    71. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, BodmerJL, Schr ter M, Burns K, Mattmann C, Rimoldi D, French LE, Tschopp J. Inhibition ofdeath receptor signals by cellular FLIP. Nature1997,388:190–195.
    72. Leon-Bollotte L, Subramaniam S, Cauvard O, Plenchette-Colas S, Paul C,Godard C, Martinez-Ruiz A, Legembre P, Jeannin JF, Bettaieb A.S-nitrosylation of thedeath receptor fas promotes fas ligand-mediated apoptosis in cancercells.Gastroenterology.2011,140(7):2009-18.
    73. Eberle A, Reinehr R, Becker S, Keitel V, H ussinger D.CD95tyrosinephosphorylation is required for CD95oligomerization. Apoptosis.2007,12(4):719-29.
    74. Kamitani T, Nguyen HP, Yeh ET. Activation-induced aggregation andprocessing of the human Fas antigen detection with cytoplasmic domain-specificantibodies. J. Biol. Chem.1997,272:22307-22314.
    75. Papoff G, Hausler P, Eramo A, Pagano MG, DiLeve G, Signore A, Ruberti G.Identification and characterization of a ligand-independent oligomerization domain inthe extracellular region of the CD95death receptor. J. Biol. Chem.1999,274:38241-38250.
    76. Barnhart BC, Legembre P, Pietras E, Bubici C, Franzoso G, Peter ME. CD95ligand induces motility and invasiveness of apoptosis-resistant tumor cells. EMBO J.2004,23:3175-3185.
    77. Lee KH, Feig C, Tchikov V, Schickel R, Hallas C, Schutze S, Peter ME, ChanAC. The role of receptor internalization in CD95signaling. EMBO J.2006,25:1009-1023.
    78. Feig C, Tchikov V, Schütze S, Peter ME. Palmitoylation of CD95facilitatesformation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J.2007,10;26(1):221-31.
    79. Lee Y, Shacter E. Fas aggregation does not correlate with Fas-mediatedapoptosis. J. Immunol.2001,167:82-89.
    80. Legembre P, Beneteau M, Daburon S, Moreau JF, Taupin JL. Cutting edge:SDS-stable Fas microaggregates: an early event of Fas activation occurring withagonistic anti-Fas antibody but not with Fas ligand. J. Immunol.2003,171:5659-5662.
    81. Pei DS, Sun YF, Guan QH, Hao ZB, Xu TL, Zhang GY. Postsynaptic densityprotein95antisense oligodeoxynucleotides inhibits the activation of MLK3and JNK3via the GluR6.PSD-95.MLK3signaling module after transient cerebral ischemia in rathippocampus. Neurosci. Lett.2004,367(1):71-5.
    82. Tian H, Zhang QG, Zhu GX, Pei DS, Guan QH, Zhang GY. Activation ofc-Jun NH2-terminal kinase3is mediated by the GluR6.PSD-95.MLK3signalingmodule following cerebral ischemia in rat hippocampus. Brain Res.2005,1061(1):57-66.
    83. Pei DS, Wang XT, Liu Y, Sun YF, Guan QH, Wang W, Yan JZ, Zong YY, XuTL, Zhang GY. Neuroprotection against ischaemic brain injury by a GluR6-9c peptidecontaining the TAT protein transduction sequence. Brain.2006,129(Pt2):465-79.
    84. Guan QH, Pei DS, Zhang QG, Hao ZB, Xu TL, Zhang GY. Theneuroprotective action of SP600125, a new inhibitor of JNK, on transient brainischemia/reperfusion-induced neuronal death in rat hippocampal CA1via nuclear andnon-nuclear pathways. Brain Res.2005,1035(1):51-9.
    85. Zhang QX, Pei DS, Guan QH, Sun YF, Liu XM, Zhang GY. Blockade of thetranslocation and activation of mitogen-activated protein kinase kinase4(MKK4)signaling attenuates neuronal damage during later ischemia-reperfusion. J Neurochem.2006,98(1):170-9.
    86. Chen J, Li C, Pei DS, Han D, Liu XM, Jiang HX, Wang XT, Guan QH, WenXR, Hou XY, Zhang GY. GluR6-containing KA receptor mediates the activation of p38MAP kinase in rat hippocampal CA1region during brain ischemia injury. Hippocampus.2009,19(1):79-89.
    87. Guan QH, Pei DS, Zong YY, Xu TL, Zhang GY. Neuroprotection againstischemic brain injury by a small peptide inhibitor of c-Jun N-terminal kinase (JNK) vianuclear and non-nuclear pathways. Neuroscience.2006,139(2):609-27.
    88. Jia J, Guan D, Zhu W, Alkayed NJ, Wang MM, Hua Z, Xu Y. Estrogen inhibitsFas-mediated apoptosis in experimental stroke. Exp Neurol.2009,215(1):48-52.
    89. Reich A, Spering C, Gertz K, Harms C, Gerhardt E, Kronenberg G, Nave KA,Schwab M, Tauber SC, Drinkut A, Harms K, Beier CP, Voigt A, G bbels S, Endres M,Schulz JB. Fas/CD95regulatory protein Faim2is neuroprotective after transient brainischemia. J Neurosci.2011,31(1):225-33.
    90. Delgado P, Cuadrado E, Rosell A, Alvarez-Sabín J, Ortega-Aznar A,Hernández-Guillamón M, Penalba A, Molina CA, Montaner J. Fas system activation inperihematomal areas after spontaneous intracerebral hemorrhage. Stroke.2008,39(6):1730-4.
    91. Kim MJ, Lim HS, Yoo YB, Lee YI, Hahm DH, Lee HJ, Jung KW, Kim JW,Yoe SM, Chung DC, Chang YP. Expression of CD95and CD95L on astrocytes in theCA1area of the immature rat hippocampus after hypoxia-ischemia injury. Comp Med.2007,57(6):581-9.
    92. Bi FF, Xiao B, Hu YQ, Tian FF, Wu ZG, Ding L, Zhou XF. Expression andlocalization of Fas-associated proteins following focal cerebral ischemia in rats. BrainRes.2008,1191:30-8.
    93. Graham EM, Sheldon RA, Flock DL, Ferriero DM, Martin LJ, O'Riordan DP,Northington FJ. Neonatal mice lacking functional Fas death receptors are resistant tohypoxic-ischemic brain injury. Neurobiol Dis.2004,17(1):89-98.
    94. Padosch SA, Popp E, Vogel P, B ttiger BW. Altered protein expression levelsof Fas/CD95and Fas ligand in differentially vulnerable brain areas in rats after globalcerebral ischemia. Neurosci Lett.2003,338(3):247-51.
    95. Jin K, Graham SH, Mao X, Nagayama T, Simon RP, Greenberg DA. Fas(CD95) may mediate delayed cell death in hippocampal CA1sector after global cerebralischemia. J Cereb Blood Flow Metab.2001,21(12):1411-21.
    96. Eliasson MJ, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH,Moskowitz MA. Neuronal nitric oxide synthase activation and peroxynitrite formationin ischemic stroke linked to neural damage. J. Neurosci.1999,19:5910-5918.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700