厌氧颗粒污泥特性和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工程化IC反应器处理柠檬酸废水形成了性能良好的厌氧颗粒污泥,本文对厌氧颗粒污泥的特性、形成过程和保活储存进行实验性研究,并将其应用于工程化IC反应器的再启动过程中。
     厌氧颗粒污泥呈完全黑色,外观为规则的椭圆形或球形,边界清晰,表面光滑,内部存在较多空隙,是基质和气体传输的通道;颗粒粒径在0.93~1.7mm之间占整个厌氧颗粒污泥的58.74%,是IC反应器处理有机物的主体;颗粒的平均沉降速度92.3m/h,含水率93.82%,VSS含量5.01%,灰分含量1.17%,其中VSS/TSS比值为0.81,表明颗粒内微生物含量较为丰富;颗粒中含有少量的K、Ca、Mg和Fe等金属元素,其中Ca含量最多,约为66.05mg/gTSS,影响了污泥的颗粒化进程。
     厌氧颗粒污泥的形成过程类似于结晶过程,柠檬酸废水中含有的大量Ca2+以CaC03的形式聚集于厌氧颗粒污泥的中央,为颗粒提供了支撑骨架的作用,微生物围绕CaC03不断生长繁殖,此外,Ca2+可通过吸附架桥作用加速污泥的颗粒化进程并且形成性能良好的厌氧颗粒污泥。
     保活储存试验表明,不同保存温度对厌氧颗粒污泥最大比产甲烷速率(Umax)的影响较大,在室温25℃条件下保存30d,60d和90d后,Umax分别从287.3mlCH4/(gVSS·d)下降到223.5mlCH4/(gVSS·d),164.4mlCH4/(gVSS·d)和93.7mlCH4/(gVSS·d);在低温5℃条件下保存同等时间后,Umax依次只下降到266.4mlCH4/(gVSS·d),172.9mlCH4/(gVSS·d)和145.1mlCH4/(gVSS·d),下降幅度比室温25℃保存时小,分析原因在于室温25℃保存时期,颗粒内的微生物仍保持一定的活性,对残存的营养物质进行分解,而低温5℃保存时期,颗粒内的微生物基本进入“休眠”状态,暂时抑制了厌氧颗粒污泥的活性,使其在保存过程中避免遭受大的活性损失甚至永久失去活性;低温保存有利于厌氧颗粒污泥活性和完整性的保存,以便其在时间和空间发生较大变化后延续使用,发挥最大作用。
     将保存3个多月的厌氧颗粒污泥作为接种污泥,对工程化IC反应器进行再启动,接种污泥量15.3kgVSS/m3,进水pH值5.5~6.5,进水温度39~41℃,HRT18h,水力负荷1.09m3/(m2·h),初始容积负荷2.61kgCOD/(m3·d),通过先提高有机负荷再逐步提高进水流量的方式启动,启动初期IC反应器对COD去除率就达到70%以上,表明厌氧颗粒污泥活性的保存和恢复性较好,此外污泥颗粒化程度经历了由慢到快的增长过程,最后稳定在70%左右;IC反应器成功启动后,容积负荷最高为17.76kgCOD/(m3·d), COD去除效率稳定在82~87%之间,出水COD浓度<700mg/L,VFA≤300mg/L,ALK≥1500mg/L
     IC反应器的高负荷和精处理两个区域,可以按完全混合状态和平推流状态分别进行基质降解模型的推导,从而确定IC反应器处理柠檬酸废水的基质降解模型;从模型可知基质降解效率与高负荷区污泥浓度、水力停留时间和内循环量呈正相关,反应器结构的优化和厌氧颗粒污泥的培养是提高IC反应器基质降解效率的有效方法。
IC reactor treating citric acid wastewater can form anaerobic granular sludge with good performance, this paper studied experimentally on the characteristics, the formation and preservation of anaerobic granular sludge, and it was applied to the re-start process of the IC reactor.
     Anaerobic granular sludge was with black color, regular elliptical or spherical shape, clear boundary, smooth surface, and many gaps within it which was the channel matrix and gas transmission; 58.74% of the anaerobic granular sludge with particle diameters in the range from 0.93mm to 1.7mm was the main body of IC reactor for the treatment of the organism; The average settling velocity of particles was 92.3m/h, the water content, VSS content, the ash content of anaerobic granular sludge were 93.82%,5.01%,1.17%, respectively, and the VSS/TSS ratio was 0.81, which showed that the anaerobic granular sludge consisted of a large number of microorganisms; Particles contain a small amount of K, Ca, Mg and Fe and other metal elements, Ca content up to about 66.05mg/gTSS which affected the process of sludge particles.
     Conservation of granules test the formation of anaerobic granular sludge was similar to the crystallization process. The wastewater contained massive amounts of Ca2+ in terms of CaCO3, which gathered in the center of the anaerobic granular sludge to provide a support framework for the particles. The microorganisms would grow around the CaCO3. In addition, the bridge and adsorption of Ca2+ in the particles can accelerate the formation of sludge particles and form good anaerobic granular sludge.
     Conservation of granules test show that the maximum specific methane production rate of anaerobic granular sludge (umax) was affected by different temperature for storage, after preservation for 30d,60d and 90d at 25℃, the umax fell to 223.5mlCH4/(gVSS·d),164.4mlCH4/(gVSS·d) and 93.7mlCH4/(gVSS·d) from 287.3mlCH4/(gVSS·d), respectively, and after preservation for same time at 5℃, the umax fell to 266.4mlCH4/(gVSS·d),172.9mlCH4/(gVSS-d) and 145.1mlCH4/(gVSS·d), respectively, the decrease was more prominent in the former than in the latter, the reason was that the microbial particles still maintain a certain activity with the residual nutrients were decomposed at 25℃, but at 5℃, the basic particles within the micro-organisms to enter "sleep" state, it temporarily inhibit anaerobic the activity of granular sludge to save the process to avoid being in the activity of large losses and even permanent loss of activity, Low-temperature preservation of anaerobic granular sludge can keep the activity and integrity, So that it can play the most effect with continue to use when time and space changed greatly.
     The anaerobic granular sludge which keep more than three months were selected as seed sludge, and it was applied to the re-start process of the IC reactor, when the biomass of inoculants was 15.3kgVSS/m3, the influent pH, temperature were within the range of 5.5-6.5,39~41℃, respectively, and the HRT, hydraulic loading and initial volume load were 18h,1.09m3/(m2·h),2.61kgCOD/(m3·d), respectively, by first raising the organic loading and then the quantity of influent was enhanced step by step, at the start-up initial stage, the COD removal efficiency of IC reactor reached 70%, which indicating that the activity of anaerobic granular sludge recovered well, besides, sludge granulation rate experienced from slow to fast growth process, and finally stabilized at about 70%; After the successful start-up of IC reactor, the maximum volume load can reach 17.76kgCOD/(m3·d), the removals of COD generally ranged from 82% to 87%, and the COD concentration in the effluent was less than 700mg/L, VFA was lower than 300mg/L, and ALK was not less than 1500mg/L.
     Substrate degradation models of high load and extract processing of IC reactor were deduced respectively in the state of complete mixture and plug flow. The model of IC reactor used for the citric acid wastewater treatment was confirmed as follows; the substrate degradation rate has a positive correlation with the sludge concentration at high load area, hydraulic retention time and the quantity of cycle. The optimization of reactor structure and the culture of the anaerobic granular sludge were effective ways to enhance the efficiency of the substrate degradation of IC reactor.
引文
[1]仲海涛,胡勇有,张宪宁,等.颗粒污泥技术在污水处理中的应用研究进展[J].江苏环境科技,2006,19(4):35~38.
    [2]Macleod F A, Cuiot S R, Costerton J W. Layered structure of bacterial aggregates produced in an up-flow anaerobic sludge bed and filer reactor[J].Applied Environmental Microbiology, 1990,56(6):1598~1607.
    [3]赵一章,张辉.高活性厌氧颗粒污泥微生物特性和形成机理的研究[J].微生物学报,1994,34(1):45~54.
    [4]竺建荣,胡纪萃.颗粒污泥的产甲烷细菌及结构模型初探[J].微生物学报,1993,33(4):304-308.
    [5]王凯军,左剑恶,甘海南,等UASB工艺的理论与工程实践[M].北京:中国环境科学出版社,2000.
    [6]苏玉民,范健.脉冲上流式厌氧污泥床反应器的应用[J].环境科学,1996,17(1):50~52.
    [7]杨秀山,田沈.固定化甲烷八叠球菌(Methanosarcina)研究[J].中国环境科学,1998,18(4):356~359.
    [8]Lettinga G, Field J, Vanlier J, et al. Advanced anaerobic wastewater treatment in the near future[J].Water Science and Technology,1997,35(10):5-12
    [9]Liu Y, Xu H L, Yang S F, et al. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor[J].Water Research,2003,37(3):661-673.
    [10]Yu H Q, Fang H H P, Tay J H. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactor by aluminum chloride[J].Chemosphere,2001,44(1):31-36.
    [11]Yu H Q, Tay J H, Fang H H P. The roles of calcium in sludge granulation during UASB reactor startup [J].Water Research,2001,35(4):1052~1060.
    [12]Liu Y Q, Liu Y, Tay J H. The effects of extracellular polymeric substances on the formation and stability of biogranules[J].Applied Microbiology Biotechnology,2004,65(2):143~148.
    [13]陈坚,李春生.厌氧颗粒污泥的形成机制[J].中国环境科学,1993,13(5):334~339.
    [14]Sekiguchi Y, et al. Fluorescence in situ hybridization using 16S rRNA-Targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and themophilic sludge granules[J]. Applied Environmental Microbiology,1999, 65(3):1280~1288.
    [15]Macleod F, McGaw B A, Shand C A. Sequential extraction of selenium from four Scottish soils and a sewage sludge[J].Communications in Soil Science and Plant Analysis,1998,29(5-6):523~534.
    [16]MacLeod F A, Guiot S R, Costerton J W. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor[J]. Applied Environmental Microbiology,1990,56(6):1598~1607.
    [17]Guiot S R, Pauss A, Costerton J W. Astructured model of the anaerobic granules consortium[J].Water Science and Technology,1992,25(7-8):1~10.
    [18]Tay J H, Xu H L, Teo K C. Molecular mechanism of granulation Ⅰ:H+ translocation dehydration theory[J] Journal of Environmental Engineering,2000,126(5):403~410.
    [19]Teo K C, Xu H L, Tay J H. Molecular mechanism of granulation Ⅱ:Proton translocating activity[J] Journal of Environmental Engineering,2000,126(5):411~418.
    [20]Picioreanu C, Batstone D J, Van Loosdrecht M C M. Multidimensional modeling of anaerobic granules [J].Water Science and Technology,2005,52(1-2):501~507.
    [21]Schmidt J E, Ahring B K. Granular Sludge Formation in Upflow Anaerobic Sludge Blanket (UASB) Reactors[J].Biotechnology and Bioengineering,1996,49(3):229~246.
    [22]Liu Y, Xu H L, Show K Y, et al. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor[J].Water Research,2003,37(3):661-673.
    [23]Thaveesri J, Liessens B, Verstraete W. Granular sludge growth under different reactor liquid surface tensions in lab-scale upflow anaerobic sludge blanket reactors treating wastewater from sugar-beet processing [J]. Applied Microbiology and Biotechnology,1995,43(6): 1122~1127.
    [24]Grootaerd H, Liessens B, Verstraete W. Effects of directly soluble and fibrous rapidly acidifying chemical oxygen demand and reactor liquid surface tens ion on granulation and sludge bed stability in up-flow anaerobic sludge blanket reactors[J]. Applied Microbiology and Biotechnology,1997,48(3):304~310.
    [25]胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2002:15.
    [26]竺建荣,夏晓红,胡纪萃等.进水浓度对UASB颗粒污泥形成的影响研究[J].环境科学,1992,13(6):33~38.
    [27]谢海宁.厌氧颗粒污泥形成影响因素分析[D].上海:上海师范大学,2007:17.
    [28]周兴求,伍健东,阮君.SO42-对厌氧折流板反应器中颗粒污泥性能的影响[J].安全与环境学报,2008,8(3):74~77.
    [29]黄志甲,张旭.糖蜜酒精废液处理技术[J].工业水处理,2002,22(10):19~21.
    [30]方晓,蒋柱武,张亚雷,等.厌氧颗粒污泥性质与颗粒化研究新进展[J].江苏环境科技,2005,18(4):44~46.
    [31]孙振世,陈英旭,杨哗.UASB的启动及其影响因素[J].中国沼气,2000,18(2):17~19.
    [32]Fang H H P,Yu H Q, Tay J H. Effects of added powdered and granular activated carbons on start-up performance of UASB reactors[J].Environmental Technology,1999,20(10):1095-1101.
    [33]Grotenhuis J T C, VanLier J B, Plugge C M, et al. Effect of ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid (EGTA) on stability and activity of methanogenic granular sludge[J]. Applied Microbiology and Biotechnology,1991,36(1):109~114.
    [34]Van Langerak E P A, Lettinga G. Effects of high calcium concentrations on the development of methanogenic sludge in upflow anaerobic sludge bed (UASB) reactors[J].Water Research, 1998,32(4):1255~1257.
    [35]Schmidt E J, Alberto J. Effects ofmagmesiumonmethanogenic subpopulations in a thermophic a acetate-degrading granular consortium [J].Applied Environmental Microbiology,1992,58(3):862~868.
    [36]肖本益.UASB反应器的启动及厌氧颗粒污泥的特性研究[D].天津:天津轻工业学校,2002:12.
    [37]Yu H Q, Fang H H, Tay J H. Effects of Fe2+ on Sludge Granulation in Upflow Anaerobic Sludge Blanket Reactors[J].Water Science and Technology,2000,41(12):199~205.
    [38]潘云锋,李文哲.微量金属元素对厌氧污泥颗粒化的影响[J].可再生能源,2007,25(6):51~54.
    [39]刘双江,胡纪萃,顾夏声UASB反应器系统中污泥颗粒化研究进展[J].中国环境科学,1990,10(5):343~346.
    [40]李克勋,徐智华,张振家.水力作用对颗粒污泥形成的影响[J].中国沼气,2003,21(1):8~10.
    [41]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社,2005:18~21.
    [42]Bryant M P. Microbial Methane. Production-Theoretical Aspects[J].Animal Science,1979, 48(1):193~201.
    [43]Zeikus J G. Microbial Popilations in Digesters[M].Anaerobic Digestion, Applied Science Publisher,1979:66~89
    [44]任南琪,王爱杰,等.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004:13~26.
    [45]高庭耀,顾国维.水污染控制技术[M].北京:高等教育出版社,2005:197~198.
    [46]郝雯娣.UASB厌氧处理系统处理柠檬酸废水[J].给水排水,1999,25(10):41~45.
    [47]王世何,何炜.厌氧颗粒污泥流化床处理有机废水的运行特征东南大学学报,1998,28(2):82~88.
    [48]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版社,1999.
    [49]Lettinga G. Anaerobia treatment of sewage and low strength wastewater, Proc. Anaerobic Digestion[M].Amsterdam:Elsevier Biomedical Press,1981:271-291.
    [50]林红军,陆晓峰,梁国明,等.厌氧膜生物反应器的研究和应用进展[J].净水技术,2007,26(6):1~6.
    [51]Kimura S. Japan's aqua renaissance 90 project[J].Water Science and Technology,1991,23(7-9):1573~1579.
    [52]白玲,蓝伟光,万金保.厌氧膜生物反应器在废水处理中的研究进展[J].工业水处理,2007,27(9):16~19.
    [53]韩德新,高年发,丁鑫减,等.减少CO2排放的柠檬酸生产新工艺[J].发酵科技通讯,2009,38(3):1-3.
    [54]卓燕,刘宏宇,宋猛.A/O法在柠檬酸废水处理中的应用[J].江苏环境科技,200518(3):23~24.
    [55]王文一,杜兵,胡志逵,等.柠檬酸生产废水处理工程改造[J].给水排水2007,33(6):52~54.
    [56]李敬存,曹志恒,杨丰坤UASB-接触氧化-气浮处理柠檬酸废水[J].环境污染治理技术与设备,2006,7(5):135~137.
    [57]魏国,杨敏.EIC厌氧-曝气生物滤池处理工艺在柠檬酸工业有机废水处理中的应用[J]中国水运,2008,8(9):248~249.
    [58]裴红洋,刘峰,蒋京东,等.山东某柠檬酸废水处理改造工程实例[J].水处理技术,2008,34(9):88~91.
    [59]裴红洋,蒋京东,刘峰,等.内循环(IC)厌氧反应器在几种高浓度废水中的工程应用及发展[J].环境科学与管理,2008,32(12):120~123.
    [60]胡纪萃.废水厌氧生物处理理论与技术(第一版)[M].北京:中国建筑工业出版社,2003:218~219.
    [61]Frijters C T M J, Vos R H, Scheffer G, et al. Bleaching and dyeing wastewater treatment combined with anaerobic/aerobic system[J].Printing and dyeing,2005,2:47~51.
    [62]Driessen W, Yspeert P, Engelaar A帕克厌氧技术处理化工废水[J].聚酯工业,2004,17(5):70~73.
    [63]陈志强.IC厌氧反应器在制浆造纸废水处理中的应用[J].中国造纸,2004,23(3):37~39.
    [64]陈厂元.附加气循环IC反应器处理低浓度有机废水[J].中国沼气,2002,20(4):22~23.
    [65]王凯军.厌氧工艺的发展和新型厌氧反应器[J].环境科学,1998,19(1):94~96.
    [66]杨爽,张雁秋.对内循环厌氧(IC)反应器的探讨[J].工业安全与环保,2005,31(8):12-14
    [67]邵希豪,喻俊,范国东,等.内循环厌氧反应器(IC)探讨[J].中国沼气,2001,19(1):27~28.
    [68]张忠波,陈吕军,胡纪萃.IC反应器技术的发展[J].环境污染与防治,2000,22(3):39~41.
    [69]虢清伟,杨仁斌,吴跟义.内循环(IC)厌氧反应器的发展与应用[J].云南环境科学,2004,23(1):40~43.
    [70]Pereboom J H F. Methanogenic Granule development in full scale internal circulation reactors[J].Water Science and Technology,1994,30(8):9~21.
    [71]杨保永.内循环厌氧处理技术(IC)在废水处理中的应用[J].山东食品发酵,2009,1:45~46.
    [72]王锴,买文宁,郭成超.厌氧内循环反应器研究进展[J].工业水处理,2003,23(12):4~7.
    [73]龚钢明,邵希豪,蔡宝国.IC厌氧反应器的内循环装置[J].中国沼气,2002,20(1):23~25.
    [74]唐远东,李东伟.论内循环(IC)厌氧反应器的设计工艺思想[J].决策管理,2009,7:49~50.
    [75]刘顺明,陈嘉川,臧立华,等.IC反应器在造纸废水中的应用前景[J].江苏造纸,2009,1:45~48.
    [76]李鹏,王爱杰,丁杰.污水厌氧生物处理的新工艺-IC厌氧反应器[J].哈尔滨商业大学学报(自然科学版),2004,20(1):86~88.
    [77]郭永福,储金宇.内循环厌氧反应器(IC)的应用与发展[J].工业安全与环保,2007,33(5):6~9.
    [78]郭永福.郭维华.新型高效三相分离器处理低浓度工业废水的研究[J].环境污染治理技术与设备,2004,5(11):85~89.
    [79]甘树福,徐文彬,王国胜.新型废水厌氧处理工艺-内循环厌氧反应器[J].水资源保护,2002,22(2):48~51.
    [80]Pereboom J H F. Size distribution model for methanogenic granules from full scale UASB and IC reactors[J].Water Science and Technology,1994,30(12):211~221.
    [81]田志海,王增长.柠檬酸废水处理研究[J].山西建筑,2007,33(35):19~20.
    [82]朱亦仁,周仓,王锦化,等.高浓度柠檬酸生产废水处理[J].环境污染治理技术与设备,2004, 5(9):64~67.
    [83]谢昕,张振琳,王荣民,等.柠檬酸工业废水处理现状[J].工业水处理,2004,24(1):8~11.
    [84]马三剑,蒋京东,刘锋,等.柠檬酸生产废水的治理[J].环境保护,2002,1:18~19.
    [85]王立军,郑文华,史绪盛,等.IC反应器酸化原因分析及重新启动[J].中国给水排水,2007,23(24):95~97.
    [86]吴建华,刘锋,冯俊强,等.处理柠檬酸生产废水的MIC反应器的快速启动[J].中国给水排水,2008,24(5):102~104.
    [87]蔡苇.柠檬酸废水达标治理和循环利用的研究[J].工业安全与环保,2008,34(12):13~14.
    [88]高剑平.新型厌氧反应器-反应器结构及应用研究[J].漳州职业大学学报,2002,1:77~78.
    [89]丁建南,于一尊,金志农.附加外循环IC反应器启动试验[J].中国沼气,2004,22(4):29~31.
    [90]杨景亮,焦珍,李再兴.柠檬酸废水处理技术及进展[J].河北工业科技,2004,21(2):49~52.
    [91]邵希豪,陈协,吴九九,用旧罐改造成IC厌氧反应器处理柠檬酸废水[J].中国沼气,2004,22(4):32~33.
    [92]石宪奎,王凯军,倪文.颗粒污泥粒径的工程测定方法[J].环境污染与防治,2006,25(2):140~142.
    [93]刘永红,贺延龄,李耀中,等UASB反应器中颗粒污泥的沉降性能与终端沉降速度[J].环境科学学报,2005,25(2):176~179.
    [94]董春娟,吕炳南.EGSB反应器内颗粒污泥的快速培养及特性研究[J].中国给水排水,2006,22(15):62~70.
    [95]国家环境保护总局,水和废水监测分析方法编委会.水和废水监测分析方法(第4版)[M].北京:中国环境科学出版社,2002.
    [96]朱兰保,盛蒂,许晖.蔬菜地土壤重金属酸消解测定方法研究初探[J].农业资源与环境科学,2007,23(3):420~423.
    [97]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998:594~557.
    [98]Harada H, Uemura S, Chen A, et al. Anaerobie treatment of a recalcitrant distillery wasterwater by a thermophilic UASB reactor[J].Bioresoure Teehnology,1996,55(3): 215~219.
    [99]韩丰波,呼世斌,冯贵颖,等.污泥负荷对上流式厌氧污泥床中颗粒污泥快速形成的影响[J].环境污染与防治,2008,30(1):44~49.
    [100]Wang Z W, Li Y, Liu Y. Mechanism of calcium accumulation in acetate-fed aerobic granule[J].Applied Microbiology and Biotechnology,2007,74(2):467~473.
    [101]Van L, Ramaekers H, Wiechers J, et al. Impact of location of CaCO3 precipitation on the development of intact anaerobic sludge[J].Water Research,2002,34(2):437~446.
    [102]Yu H Q, Tay J H, Fang H P. The roles of calcium in sludge granulation during UASB reactor start-up[J].Water Research,2001,35(4):1052~1060.
    [103]Barat R, Montoya T, Borras L, et al. Calcium effect on enhanced biological phosphorus removal[J].Water Science and Technology,2006,53(12):29~37.
    [104]韩丰波.厌氧颗粒污泥的快速培养方法和保活储存方法研究[D].陕西:西北农林科技大学;2008:57~58.
    [105]殷其中,徐志念,杨永凯.工程化BIC反应器的快速启动研究[J].化学工程师,2008,5:31~33.
    [106]韩丰波,呼世斌,冯贵颖,等.污泥负荷对上流式厌氧污泥床中颗粒污泥快速形成的影响[J].环境污染与防治,2008,30(1):44~51.
    [107]应一梅,贾晓凤,刘丽格等.内循环厌氧反应器的启动研究[J].华北水利水电学院学报,2007,28(1):97~99.
    [108]杨淑英,孙洪涛,秦霄鹏.柠檬酸生产废水治理工程的调试[J].中国给水排水,2002,18(3):73~75.
    [109]丁丽丽,任洪强,华兆哲.内循环厌氧反应器的运行特性[J].中国给水排水,2002,18(11):46~48.
    [110]徐宏英,李亚新,岳秀萍,等.厌氧颗粒污泥对有机物的初期吸附[J].环境科学学报,2008,28(9):1807~1812.
    [111]刘永峰,周兴求,伍健东EGSB反应器快速培养厌氧颗粒污泥[J].环境工程,2008,26(3):32~34.
    [112]吴根义,杨仁斌,罗琳,等.附加气IC反应器启动研究[J].工业用水与废水,2007,38(4):91~94.
    [113]王新华,管锡珺,徐世杰.水力循环UASB反应器处理柠檬酸废水[J].水处理技术,2006,32(11):61~65.
    [114]李亚峰,陈涛,金亚斌.玉米淀粉废水处理中UASB反应器内颗粒污泥特性及其影响因素的研究[J].沈阳建筑大学学报(自然科学版),2006,22(6):962~967.
    [115]党朝华,汤桂腾.IC反应器处理制浆废水的新探索[J].中华纸业,2006,27(11):75~78.
    [116]张杰,成庆利,李海华,等.IC反应器处理低浓度有机废水的启动实验研究[J].可再生能源,2007,25(3):57~60.
    [117]游胜,周兴求,牛晓君,等.IC反应器在微氧条件下的运行特性研究[J].中国给水排水,2009,25(9):16~19.
    [118]曾金樱,杨仁斌,吴根义.IC反应器颗粒污泥的成功培养研究[J].环境科学导刊,2008,27(3):5-7.
    [119]房景燕UASB工艺处理养殖废水的厌氧氨化及产气率实验研究[D].四川,西南交通大学,2008:16~17
    [120]王慧芳,买文宁,梁允,等.IC反应器处理维生素制药废水的启动试验研究[J].水处理技术,2009,35(6):79~81.
    [121]冯俊强,刘锋,吴建华,等.MIC厌氧反应器在500m3/d柠檬酸废水处理工程中的应用[J].环境科学与管理,2008,33(4):79~83.
    [122]张杰,刘亚纳,胡张保,等.IC反应器处理猪粪废水的启动特性研究[J].农业环境科学学报,2004,23(4):777~781.
    [123]李海松,买文宁,代吉华.内循环厌氧反应器的启动研究[J].水处理技术,2008,28(10):88~90.
    [124]马三剑,刘锋,吴建华,等.柠檬酸废水生物处理过程中的pH值问题[J].中国给水排水,2002,18(10):39~41.
    [125]刘琼,徐伏秋,孙雪萍.IC反应器处理乳酸废水的启动特性[J].水处理技术,2008,34(1):66~68.
    [126]许英杰.IC反应器处理酒精废水的生产性启动研究[J].环境工程,2009,27(5):33~35.
    [127]Wu J, Lu Z Y, Hu J C, et al. Disruption of granules by hydrodynamic force in internal circulation anaerobic reactor[J].Water Science and Technology,2006,54(9):9~16.
    [128]毕蕾,吴静,谢宇铭,等.内循环厌氧反应器的污泥颗粒化过程[J].清华大学学报(自然科学版),2007,47(9):1485~1488.
    [129]胡勇,尚连生,刘永红,等.厌氧颗粒污泥床反应器污泥的流失与对策[J].工业用水与废水,2007,38(4):6~8.
    [130]李宗义,王海磊,程彦伟.成熟颗粒污泥的结构及其特征[J].微生物学通报,2003,30(3):56~59.
    [131]Grotenhuis J J C, Kissel J C, Plugge C M, et al.Role of substrate concentration in particle site distribution of methanogenic granular in UASB reactors [J].Watet Research,1991,25(1): 21~27.
    [132]曾国敏,马文.常温下IC反应器启动过程中的颗粒污泥性能研究[J].环境工程学报,2010,4(1):67~70.
    [133]张杰,李海华,岳建芝,等.内循环厌氧反应器处理养猪场污水基质降解动力学模型研究[J].环境工程学报,2007,1(6):47~50.
    [134]丁一,张杰,李海华,等.IC反应器处理猪场废水基质降解的动力学模型[J].农业工程学报,2008,24(8):236~239.
    [135]曾鸿鹄,王双飞,朱义年,等.内循环厌氧反应器处理草浆黑液过程中基质降解的动力学研究[J].中华纸业,2008,12:42~44.
    [136]高剑平.反应器运行特性及基质降解动力学模型研究[J].漳州职业大学学报,2003,2:116~119.
    [137]She Z L, Zheng X H, Yang B R, et al. Granule development and performance in sucrose fed anaerobic baffled reactors[J] Journal of Biotechnology,2006,122(2):198~208.
    [138]杨世关,张杰,张百良,等.IC反应器基质降解动力学特性研究[J].中国沼气,2004,22(2):18~21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700