小鼠精原干细胞体内增殖和分化阶段睾丸组织基因的差异表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:精原干细胞是一群具有高度自我更新能力和分化潜能的成体干细胞,是精子发生的起始。揭示精原干细胞增殖和分化的调控机制是促进精原干细胞体外培养和移植以及精子发生机制研究的重要基础。由于精原干细胞在生精细胞中的含量极低且缺乏特异性的表面标志,以及精子发生存在不同步性(在小鼠中精子发生的12个阶段同时存在于曲细精管生精上皮),这两方面因素使得直接研究精原干细胞在体内增殖和分化的分子调控机制非常困难。研究显示烷化剂白消安对生精细胞的杀伤作用具有剂量和物种相关性。若能利用白消安杀灭大部分精原干细胞,那么,为了恢复干细胞池的稳定,精子再生初期精原干细胞的更新会得到加强而其分化会被延缓,精原干细胞体内增殖与分化的相对同步就可能再这一过程中得到实现。
     目的:探讨建立昆明小鼠精子再生模型的白消安适宜剂量,通过该剂量建立的较理想的精子再生模型实现精子再生初期精原干细胞增殖与分化的相对同步。在此基础上,采用基因芯片检测精原干细胞增殖和分化阶段小鼠睾丸组织基因表达谱的差异,初步探讨精原干细胞增殖和分化的分子调控机制。
     方法:8-10周龄雄性昆明白小鼠按区组随机分为实验组(168只)和对照组(8只)。实验组小鼠接受白消安腹腔注射,根据不同给药剂量进一步分为4组:A、B两组各36只,分别接受10mg/kg和20mg/kg白消安单次注射;C、D两组各48只,分别接受10mg/kg和15mg/kg白消安间隔24d二次注射。对照组小鼠接受单次等量溶剂腹腔注射。于给药结束后1、2、3、4、6和8周,分别将各实验组小鼠按期颈椎脱臼处死(组内等量),对照组小鼠在注射后1周一次性处死。取出小鼠双侧睾丸。一侧睾丸采用HE染色观察曲细精管的组织形态学变化和免疫组化法检测C、D组和对照组生精细胞Ki-67表达;对侧睾丸组织采用电镜观察超微结构。通过前述研究判断建立精子再生模型的白消安适宜剂量和模型分期。以此适宜剂量白消安再次建立精子再生模型,分别选取精原干细胞处于增殖和分化阶段的睾丸组织标本,Trizol一步法提取组织总RNA并进行纯化和荧光标记。将经前述反应得到的标记DNA于42℃在芯片杂交仪上与36kMouse Genome Array杂交过夜。用双通道激光扫描仪扫描杂交芯片,对各芯片进行片间线性校正和片内归一化处理。对筛选得到的差异表达基因进行GO和KEGG信号通路分析。参照www. sabiosciences. com/gene_array_product/HTML/OMM-405. html.筛选差异表达的干细胞相关基因。实时定量PCR验证Kit、bFGF和Oct4表达。免疫组化检测Oct4和Thy-1在生精上皮的表达。
     结果:第一周C、D两组生精上皮的损伤程度介于A、B两组之间。第二周,C、D两组生精上皮仅基底膜部残留以单个型精原细胞(As型)为主精原细胞和Sertoli细胞,D组生精上皮部分Sertoli细胞空泡变性;第三周,C、D两组As型精原细胞均增多;第四周,C、D两组均出现分化精原细胞和精母细胞;6-8周,两组均出现精子发生,C组生精上皮结构逐步恢复正常,而D组曲细精管直径和生精上皮厚度仍显著低于对照组。C、D两组精原细胞Ki-67阳性率在第一、二周显著低于对照组,在第三周极度增高,第四周开始下降,6-8周与对照组无显著差异,第二、三周D组精原细胞Ki-67阳性率均低于C组。基因芯片试验结果显示911个基因在精原干细胞增殖和分化阶段的睾丸组织中表达存在差异,其中,上调608个(增殖期/分化期),下调303个。这些差异表达基因分别涉及生物学过程、分子功能和分子组成。84个信号通路功能改变具有统计学意义(P<0.05),包括Notch和Wnt信号通路。与干细胞相关的差异基因有56个,上调40个,下调16个。部分干细胞的阳性标记物(如Cd9, Stra8, Itgb1,Oct4和Thyl)和部分生长因子(如Fgf2, Csfl和Pdgfa)上调。免疫组化染色结果显示Oct4抗原表达于曲细精管基底膜的精原细胞且在精原干细胞增殖期表达显著高于分化期。
     结论间隔24天10mg/kg白消安二次腹腔注射是建立小鼠精子再生模型的理想剂量。该模型可实现精子发生的相对同步:二次给药后3周主要为精原干细胞增殖期,4周为分化期,6-8周为精子发生恢复期。小鼠精原干细胞增殖和分化过程的调控涉及许多基因(分属不同信号通路)的差异表达,进一步研究这些基因(和通路)功能有助于揭示精原干细胞增殖和分化的调控机制。
Background:Spermatogonia stem cells (SSCs), the origin of spermatogenesis, are a cluster of adult stem cells which have the potential of both self-renewal and differentiation. To uncover the mechanism behind SSCs proliferation and differentiation is a prerequisite to the progress in SSCs culturing and transplantation and regulation in spermatogenesis. The extremely low content of SSCs in germ cells and the concurrence of all stages of spermatogenesis in seminiferous tubules constitute two main obstacles to this mechanism research in vivo. Busulfan, an alkylating agent, can kill germ cells in a manner of dose and species dependant. If busulfan evanishes most SSCs, doubtless, SSCs' self-renewal will be strengthened and their differentiation suspended in the initial of spermatogenesis, from which synchronization of SSCs proliferation and differentiation could be achieved.
     Objective:To establish a model of spermatogenesis recovery and achieve the relative synchronization of the SSCs proliferation and differentiation in male Kunming mice, and base on that, to detect the difference in gene expression patterns of mouse testis during SSCs proliferation and differentiation and probe preliminarily into the molecular regulation mechanism in SSCs proliferation and differentiation.
     Methods:Adult male Kunming mice were randomly treated with busulfan injection intraperitoneally at different doses or types (A:single dose of 10mg/kg; B: single dose of 20mg/kg; C:two doses of lOmg/kg,24 days apart; D:two doses of 15mg/kg,24 days apart). Mice that received single injection of 50% DMSO (10ml/kg) were used as control. Testes were dissected out 1w,2w,3w,4w,6w and 8w after treatment. Testes of mice in control group were all taken out one week after the treatment. The expression of Ki-67 in germ cells was detected by immunohistochemistry in two doses of busulfan treatment groups and control group. A mice model of spermatogenesis regeneration was reestablished with the suitable busulfan dose determined by the aforementioned study. A 36k Mouse Genome Array was used to detect the differential gene expression profiles between stages of SSCs proliferation and differentiation. Bioinformatics analysis was conducted in GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway to describe the potential roles that may play in regulation of spermatogonial stem cells behavior. Oct4 and Thy-1 expression patterns in spermatogonia were detected by immunohistochemistry.
     Results:The damage effects in seminiferous epithelium by two doses of 10mg/kg or 15mg/kg busulfan injection were between single dose of 10mg/kg and 20mg/kg. Two weeks after the second injection, only fewer dispersed spermatogonia (mainly As type) survived in close contact with the basal portions of adjacent Sertoli cells in group C and D, vacuolization of Sertoli cells appeared in some seminiferous tubulues in group D. In week 3, the number of As spermatogonia increased. In week 4, differentiated spermatogonia and spermatocytes appeared. In week 6-8, spermatogenesis regeneration took place and morphology of seminiferous epithelium got back to normal gradually in group C, while diameter of seminiferous tubulues and thickness of seminiferous epithelium in group D were significantly lower than control group. In week 1 and 2, the Ki-67 positive rates of spermatogonia in group C and D were extremely lower than control group. They rebounded rapidly to apex in week 3, descended in week 4 and restored to the control level in week 6 and 8. In week 2 and 3, Ki-67 positive rates of spermatogonia in group C were significantly higher than group D.911 differential expression genes were identified by gene arrays in mice testes, consisting of 608 up-regulated and 303 down-regulated in SSCs proliferation stage vs. SSCs differentiation stage. The differential expression genes were classified by their biological process, molecular function and cellular component, respectively. Alterations with statistical significance (P<0.05) appeared in 84 KEGG signal pathways, including Notch and Wnt signaling pathways which have been proved to be important for stem cell maintenance.56 differential expression genes were selected as genes related to stem cells, among which 40 genes were up-regulated, including some stem cell biomarkers (such as Cd9, Stra8, Itgbl, Oct4 and Thy1) and some growth factors (such as Fgf2, Pdgfa and Csfl). Oct4 antigen was expressed in spermatogonia located in the basal portions. The positive rate of Oct4 in spermatogonia in SSCs proliferation stage was higher than that in SSCs differentiation stage.
     Conclusions:24 days apart two doses of 10mg/kg busulfan treatment could establish an ideal mice model of spermatogenesis recovery. Relative synchronization of spermatogenesis could be achieved in this model. After the administration, the 3rd week was mainly proliferation stage of spermatogonial stem cells, the 4th week was mainly differentiation stage, and week 6 to 8 was stage of spermatogenesis regeneration. The regulation of SSCs proliferation and differentiation involved in many genes expressed differentially locating in various signal pathways. This study provided a basis for the elucidation of the molecular mechanism behind self-renewal and differentiation of spermatogonial stem cells in vivo.
引文
1. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A.1994; 91:11303-11307.
    2. Brinster RL, Zimmerman JW. Spermatogenesis following male germ cell transplantation. Proc Natl Acad Sci U S A.1994; 91:11298-11302.
    3. Brinster CJ, Ryn BY, Avarbock MR, Karagenc L, Brinster RL. Restoration of fertility by germ cell transplantation requires efficient recipient preparation. Biol Reprod.2003; 69:412-420.
    4. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the postnatal mouse testis is accomplished by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci U S A.2001; 98:6186-6191.
    5. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Gem line stem cell competition in postnatal mouse testes. Biol Reprod.2002; 66:1491-1497.
    6. Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med 2000; 6:29-34.
    7. Boettger-Tong HL, Johnston DS, Russell LD, Griswold MD, Bishop CE. Juvenile spermatogonial depletion (jsd) mutant seminiferous tubules are capable of supporting transplanted spermatogenesis. Biol Reprod 2000; 63:1185-1191.
    8. Ohta H, Yomogida K, Tadokoro Y, Tohda A, Dohmae K, Nishimune Y. Defect in germ cells, not in supporting cells, is the cause of male infertility in the jsd mutant mouse:proliferation of spermatogonial stem cells without differentiation. Int J Androl 2001; 24:15-23.
    9. Tegelenbosch, RAJ, de Rooij, DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res, 1993; 290,193-200.
    10. Rodda DJ, Chew JL, Lim LH, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem,2005; 280:24731-24737.28.
    11. Loh YH, Wu Q, Chew JL et al. The Oct-4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet,2006; 38:431-440. 29.
    12. Ogawa T, Ohmura M, Tamura Y, et al. Derivation and morphological characterization of mouse spermatogonial stem cell lines. Arch Histol Cytol,2004; 67:297-306.30.
    13. Nagano M, McCarrey JR, Brinster RL. Primate spermatogonial stem cells colonize mouse testes. Biol Reprod 2001; 64 (5):1409-1416.31.
    14. Nagano M, Patrizio P, Brinster RL. Long-term survival of human spermatogonial stem cells in mouse testes. Fertil Steril 2002; 78 (6):1225-1233.
    15. Oatley JM, Avarbock MR, Telaranta AI, et al. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci U S A.2006 Jun 20;103(25):9524-95.
    16. Moisan AE, Foster RA, Betteridge KJ,et al. Dose-response of RAG2-/-/gammac-/-mice to busulfan in preparation for spermatogonial transplantation. Reproduction. 2003;126(2):205-16
    17. Jiang FX. Behaviour of spermatogonia following recovery from busulfan treatment in the rat. Anat Embryol.1998,198:53-61
    18. Bucci LR and Meistrich ML Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutat Res.1987,176:259-268.
    19. Kim J-H, Jung-Ha H-S, Lee H-T and Chung K-S. Development of a positive method of male stem cell mediated gene transfer in mouse and pig. Mol Reprod Dev. 1997,46:515-526
    20. Stellflug J, Green J and Leathers C. Antifertility effect of busulfan and Procarbazine in male and female coyotes. Biol Reprod.1985,33:1237-1243
    1. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A.1994; 91:11303-11307.
    2. Brinster RL, Zimmerman JW. Spermatogenesis following male germ cell transplantation. Proc Natl Acad Sci U S A.1994; 91:11298-11302.
    3. Brinster CJ, Ryn BY, Avarbock MR, Karagenc L, Brinster RL. Restoration of fertility by germ cell transplantation requires efficient recipient preparation. Biol Reprod.2003; 69:412-420.
    4. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the postnatal mouse testis is accomplished by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci U S A.2001; 98:6186-6191.
    5. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Gem line stem cell competition in postnatal mouse testes. Biol Reprod.2002; 66:1491-1497.
    6. Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med 2000; 6:29-34.
    7. Jiang FX. Behaviour of spermatogonia following recovery from busulfan treatment in the rat. Anat Embryol.1998,198:53-61
    8. Moisan AE, Foster RA, Betteridge KJ,et al. Dose-response of RAG2-/-/gammac-/-mice to busulfan in preparation for spermatogonial transplantation. Reproduction. 2003;126(2):205-16
    9. Bucci LR and Meistrich ML Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutat Res.1987,176:259-268.
    10. Kim J-H, Jung-Ha H-S, Lee H-T and Chung K-S. Development of a positive method of male stem cell mediated gene transfer in mouse and pig. Mol Reprod Dev. 1997,46:515-526
    11. Stellflug J, Green J and Leathers C. Antifertility effect of busulfan and Procarbazine in male and female coyotes. Biol Reprod.1985,33:1237-1243
    12. Shinohara MK, Miki H, Inoue K, et al. Germline niche transplantation restores fertility in infertile mice. Hum Reprod.2005; 20 (9):2376-2382
    13. Shinohara T, Orwig KE, Avarbock MR, et al. Restoration of spermatogenesis in infertile mice by Sertoli cell transplantation. Biol Reprod.2003;68:1064-1071.
    14. Ohta H, Yomogida K, Dohmae K, et al. Regulation of proliferation and differentiation in spermatogonial stem cells:the role of c-kit and its ligand SCF. Development.2000; 127:2125-2131
    15.Naughton CK,.Jain S, Strickland AM, et al. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod. 2006;74:314-321.
    16. Ryu BY, Kubota H, Avarbock MR, et al. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci USA. 2005;102:14302-14307.
    17. Hofmann MC, Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol.2005;279:114-124.
    18. Oatley JM, Avarbock MR, Telaranta AI, et al. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci USA. 2006;103:9524-9529.
    19. Jiang FX. Behaviour of spermatogonia following recovery from busulfan treatment in the rat. Anat Embryol,1998,198:53-61.
    20. Pospechova K, Kopecky M, Nachtigal P, et al. Changes in the expression of P-cadherin in the normal, cryptorchid and busulphan-treated rat testis. Int J Androl. 2007,30(5):430-8
    1. Nagano M, Avarbock MR, Leonida EB, et al. Culture of mouse spermatogonial stem cells. Tissue Cell,1998; 30:389-97.
    2. Nagano M, Ryu BY, Brinster CJ, et al. Maintenance of mouse male germ line stem cells'in vitro. Biol Reprod,2003; 68:2207-14.
    3. Jeong D, McLean DJ, Griswold MD. Long-term culture and transplantation of murine testicular germ cells. J Androl,2003; 24(5):661-9.
    4. Kubota H, Brinster RL. Technology insight:In vitro culture of spermatogonial stem cells and their potential therapeutic uses. Nat Clin Pract Endocrinol Metab,2006; 2 (2):99-108.
    5. Lacham-Kaplan O. In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction 2004; 128:147-152.
    6. Kubota H, Avarbock MR, and Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. PNAS, 2003,100(11):6487-6492
    7. Shi YQ, Wang QZ, Liao SY, et al. In vitro propagation of spermatogonial stem cells from KM mice. Front Biosci 2006; 11:2614-22.
    8. Liedtke S, Stephan M, Kogler G. Oct4 expression revisited:potential pitfalls for data misinterpretation in stem cell research. Biol Chem 2008; 389:845-850.
    9. Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122:947-956.
    10. Oka M, Tagoku K, Russell TL, et al. CD9 is associated with leukemia inhibitory factor-mediated maintenance of embryonic stem cells. Mol Biol Cell 2002; 13:1274-1281.
    11. Lassalle B, Bastos H, Louis JP, et al.'Side Population' cells in adult mouse testis express Bcrpl gene and are enriched in spermatogonia and germinal stem cells. Development 2004; 131 (2):479-87.
    12. Shinohara T, Avarbock MR, Brinster R L. bl- and a6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA 1999; 96(10):5504-5509.
    13. Xiao P, Tang A, Yu Z, et al. Gene Expression Profile of 2058 Spermatogenesis-Related Genes in Mice. Biol. Pharm. Bull.2008,31(2) 201-206.
    14. Yomogida K, Yagura Y, Tadokoro Y, et al. Dramatic expansion of germinal stem cells by ectopically expressed human glial cell line-derived neurotrophic factor in mouse Sertoli cells. Biol Reprod 2003; 69:1303-1307.
    15. Creemers LB, Meng X, den Ouden K, et al. Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation. Biol Reprod, 2002; 66:1579-1584.
    16. Tadokoro Y, Yomogida K, Ohta H, et al. Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway. Mech Dev 2002; 113:29-39.
    17. Meng X, Lindahl M, HyvOnen ME, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 2000; 287:1489-1493.
    18. Oatley JM, Avarbock MR, Telaranta Al, et al. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci USA. 2006; 103:9524-9529.http://www.genome.jp/kegg/pathway.html
    19. Song X, Call GB, Kirilly D, et al. Notch signaling controls germline stem cell niche formation in the Drosophila ovary. Development 2007; 134:1071-1080.
    20. Alexson TO, Hitoshi S, Coles BL, et al. Notch signaling is required to maintain all neural stem cell populations—irrespective of spatial or temporal niche. Dev Neurosci 2006; 28:34-48.
    21. Duncan AW, Rattis FM, DiMascio LN, et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 3:314-322.
    22. Fleming HE, Janzen V, Lo Celso C, et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008; 2:274-283.
    23. Raverot G, Weiss J, Park SY, et al. Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol,2005, 283(1):215-225.
    24. Hay DC, Sutherland L, Clark J, et al. Oct4 knockdown induces similar patterns of endoderm and trophoblast differentiation markers in human and mouse embryonic stem cells. Stem Cells,2004,22 (2):2252-2235.
    25. Looijenga LH, Stoop H, De Leeuw HP, et al. POU5F1 (OCT3/4) Identifies Cells with Pluripotent Potential in Human Germ Cell Tumors. Cancer research,2003,63 (9):2244-2250.
    26. Ryu BY, Orwig KE, Kubota H, et al. Phenotypic and functional characteristics of spermatogonial stem cells in rats. Dev Biol,2004,274:158-70.
    27. Kubota H, Avarbock MR, Brinster RL. Culture Conditions and Single Growth Factors Affect Fate Determination of Mouse Spermatogonial Stem Cells. Biol Reprod,2004,71(3):722-731.
    28. Kubota H, Avarbock MR, Brinster RL. Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. PNAS,2003, 100(11):6487-6492
    29. Barlow JZ, Kelley KA, Bozdagi O, et al. Testing the role of the cell-surface molecule Thy-1 in regeneration and plasticity of connectivity in the CNS. Neuroscience,2002,111:837-52.
    30. Dolci S, Pellegrini M, Di Agostino S, et al. Signaling through extracellular signal-regulated kinase is required for spermatogonial proliferative response to stem cell factor. J Biol Chem.2001,276(43):40225-33
    31. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A, 2004;101(47):16489-16494.
    32. Kokkinaki M, Lee TL, He Z, et al. The Molecular Signature of Spermatogonial Stem/Progenitor Cells in the 6-Day-Old Mouse Testis. Biol Reprod.2008 Dec 23. [Epub ahead of print]
    1. Kiger A, Fuller MT.2001.Male germline stemcells. In:Marshak, D.R., Gardner, R.K., Gottlieb, D. (Eds.), Stem Cell Biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp.149-188.
    2. Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature. 2001; 414:98-104.
    3. Li L, Xie T. Stem cell niche:structure and function. Annu Rev Cell Dev Biol.2005; 21:605-631.
    4. Buaas FW, Kirsh AL, Sharma M, et al. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet.2004; 36:647-652.
    5. Costoya JA, Hobbs RM, Barna M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet.2004; 36:653-659.
    6. Payne C, Braun RE. Histone lysine trimethylation exhibits a distinct perinuclear distribution in Plzf-expressing spermatogonia. Dev Biol 2006; 293:461-472.
    7. Kotaja N, Sassone-Corsi P. Plzf pushes stem cells. Nat Genet.2004; 36:551-553.
    8. Falender AE, Freiman RN, Geles KG, et al. Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID. Genes Dev.2005; 19:794-803.
    9. Pesce M, Scholer H. Oct4:gatekeeper in the beginnings of mammalian development. Stem Cells,2001,19:271-278.
    10. Scholer HR, Ruppert S, Suzuki N, et al. New type of POU domain in germ line-specific protein Oct-4. Nature.1990,344:435-439.Ballow DJ, Xin Y, Choi Y, et al. Sohlh2 is a germ cell-specific bHLH transcription factor. Gene Expr Patterns. 2006; 6:1014-1018.
    11.申复进,张茨,杨嗣星,等.BALB/c小鼠精原干细胞体外长期培养和鉴定.中华男科学杂志,2008,14(11):977-981.
    12. Shi YQ, Wang QZ, Liao SY, et al. In vitro propagation of spermatogonial stem cells from KM mice. Front Biosci.2006; 11:2614-22.
    13. Dann CT, Alvarado AL, Molyneux LA, et al. Spermatogonial stem cell self-renewal requires OCT4, a factor downregulated during retinoic acid-induced differentiation. Stem Cells.2008; 26(11):2928-37.
    14. Meng X, Lindahl M, Hyvonen ME, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science.2000; 287:1489-1493.
    15. Yomogida K, Yagura Y, Tadokoro Y, et al. Dramatic expansion of germinal stem cells by ectopically expressed human glial cell line-derived neurotrophic factor in mouse Sertoli cells. Biol Reprod.2003; 69:1303-1307.
    16. Meng X. de Rooij DG, Westerdahl K, et al. Promotion of seminomatous tumors by targeted overexpression of glial cell line-derived neurotrophic factor in mouse testis. Cancer Res.2001:61:3267-3271.
    17. Naughton CK, Jain S, Strickland AM, et al. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod. 2006; 74:314-321.
    18. Kubota H, Avarbock MR, Brinster RL. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells. Proc Natl Acad Sci U S A. 2004; 101:16489-16494.
    19. Ryu BY, Kubota H, Avarbock MR, et al. Conservation of spermatogonial stem cell self-renewal signaling between mouse and rat. Proc Natl Acad Sci U S A.2005; 102:14302-14307.
    20. Hofmann MC,Braydich-Stolle L, Dym M. Isolation of male germ-line stem cells; influence of GDNF. Dev Biol.2005; 279:114-124.
    21. Kanatsu-Shinohara M, Miki H, Inoue K, et al. Long-term culture of mouse male germline stem cells under serum-or feeder-free conditions. Biol Reprod.2005; 72:985-991.
    22. Buageaw A, Sukhwani M, Ben-Yehudah A, et al. GDNF family receptor alphal phenotype of spermatogonial stem cells in immature mouse testes. Biol Reprod. 2005; 73:1011-1016.
    23. Oatley JM, Avarbock MR, Telaranta AI, et al. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci USA.2006; 103:9524-9529.
    24. Schoenfeld HA, Hall SJ, Boekelheide K. Continuously proliferative stem germ cells partially repopulate the aged, atrophic rat testis after gonadotropin-releasing hormone agonist therapy. Boil Reprod 2001,64:1273-82
    25. Shinohara T, Orwig KE, Avarbock MR, et al. Restoration of spermatogenesis in infertile mice by Sertoli cell transplantation. Biol Reprod.2003; 68:1064-1071.
    26. Ohta H, Yomogida K, Dohmae K, et al. Regulation of proliferation and differentiation in spermatogonial stem cells:the role of c-kit and its ligand SCF. Development.2000; 127:2125-2131.
    27. Blume-Jensen P, Jiang G, Hyman R, et al. Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3'-kinase is essential for male fertility. Nat Genet. 2000; 24:157-162.
    28. Chen WS, Xu PZ, Gottlob K, et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Aktl gene. Genes Dev.2001; 15:2203-2208.
    29. Berruti G. Signaling events during male germ cell differentiation:update,2006. Front Biosci.2006; 11:2144-2156.
    30. Arber S, Ladle DR, Lin JH, et al. ETS gene Er81 controls the formation of functional connections between group la sensory afferents and motor neurons. Cell. 2000; 101:485-498.
    31. Livet J, Sigrist M, Stroebel S, et al. ETS gene Pea3 controls the central position and terminal arborization of specific motor neuron pools. Neuron.2002; 35:877-892.
    32. Monte D, Baert JL, Defossez PA, et al. Molecular cloning and characterization of human ERM, a new member of the Ets family closely related to mouse PEA3 and ER81 transcription factors. Oncogene.1994; 9:1397-1406.
    33. Chotteau-Lelievre A, Desbiens X, Pelczar H, et al. Differential expression patterns of the PEA3 group transcription factors through murine embryonic development. Oncogene.1997; 15:937-952.
    34. Chen C, Ouyang W, Grigura V, et al. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature.2005; 436:1030-1034.
    35. De Falco E, Porcelli D, Torella AR, et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood.2004; 104:3472-3482.
    36. Von Luttichau I, Notohamiprodjo M, Wechselberger A, et al. Human adult CD34-progenitor cells functionally express the chemokine receptors CCR1, CCR4, CCR7, CXCR5, and CCR10 but not CXCR4. Stem Cells Dev.2005;14:329-336.
    37. Son BR, Marquez-Curtis LA, Kucia M. et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells (Dayton,Ohio).2006; 24:1254-1264.
    38. Hess RA, Cooke PS, Hofmann MC, et al. Mechanistic insights into the regulation of the spermatogonial stem cell niche. Cell Cycle (Georgetown, Tex).2006; 5:1164-1170.
    39. Shinohara T, Avarbock MR, Brinster RL. Betal-and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc Natl Acad Sci USA.1999; 96:5504-5509.
    40. Chiarini-Garcia H, Raymer AM, Russell LD. Non-random distribution of spermatogonia in rats:evidence of niches in the seminiferous tubules. Reproduction. 2003; 126:669-680.
    41. Piquet-Pellorce C, Dorval-Coiffec I, Pham MD, et al. Leukemia inhibitory factor expression and regulation within the testis. Endocrinology 2000; 141:1136-41.
    42. Jenab S, Morris PL. Testicular leukemia inhibitory factor (LIF) and LIF receptor mediate phosphorylation of signal transducers and activators of transcription (STAT)-3 and STAT-1 and induced c-fos transcription and activator protein-1 activation in rat Sertoli but not germ cells. Endocrinology 1998; 139:1883-90.
    43. Piquet-Pellorce C, Dorval I, Jegou B. Paracrine control of spermatogenetic stem cells:example of the leukemia inhibitory factor. Contracept Fertil Sex 1997, 25:565-8
    44. Nikolova DB, Martinova YS, Seidensticker M, et al. Leukaemia inhibitory factor stimulates proliferation of prospermatogonial stem cells. Reprod Fertil Dev.1997; 9(7):717-721.
    45. Dirami G, Ravindranath N, Pursel V. et al. Effects of stem cell factor and granulocyte macrophage-colony stimulating factor on survival of porcine type A spermatogonia cultured in KSOM. Biol Reprod.1999; 61(1):225-30.
    46. Kokkinaki M, Lee TL, He Z, et al. The Molecular Signature of Spermatogonial Stem/Progenitor Cells in the 6-Day-Old Mouse Testis. Biol Reprod.2008 Dec 23. [Epub ahead of print]
    47. Meistrich ML, Wilson G, Ye WS. et al. Hormonal protection from procarbazine-induced testicular damage is selective for survival and recovery of stem spermatogonia. Cancer Res.1994; 54 (4):1027-34.
    48. Kangasniemi M, Wilson G, Parchuri N, et al. Rapid protection of rat spermatogenic stem cells against procarbazine by treatment with a gonadotropin-releasing hormone antagonist (Nal-Glu) and an antiandrogen (flutamide). Endocrinology. 1995;136(7):2881-8.
    49. Schoenfeld HA, Hall SJ, Boekelheide K et al. Continuously proliferative stem germ cells partially repopulate the aged, atrophic rat testis after gonadotropin-releasing hormone agonist therapy. Biol Reprod.2001; 64(4):1273-82
    50. Foresta C, Bettella A, Merico M, et al. Use of recombinant human follicle-stimulating hormone in the treatment of male infertility. Fertil Steril, 2002,77(2):238-244
    1. Dadoune JP. New insights into male gametogenesis:what about the spermatogonial stem cell niche? Folia Histochem Cytobiol.2007,45(3):141-147.
    2. Choi YJ, Ok DW, Kwon DN, Murine male germ cell apoptosis induced by busulfan treatment correlates with loss of c-kit-expression in a Fas/FasL- and p53-independent manner. FEBS Lett.2004; 575(1-3):41-51.
    3. Brinkworth MH, Nieschlag E. Association of cyclophosphamide-induced male-mediated, foetal abnormalities with reduced paternal germ-cell apoptosis Mutat Res.2000; 447(2):149-54.
    4. Hwang KC, Ok DW, Hong JC. Cloning, sequencing, and characterization of the murine nm23-M5 gene during mouse spermatogenesis and spermiogenesis. Biochem Biophys Res Commun.2003; 306(1):198-207
    5. Jahnukainen K, Ehmcke J and Schlatt S. Testicular Xenografts:A Novel Approach to Study Cytotoxic Damage in Juvenile Primate Testis. Cancer Res.2006, 66:3813-3818
    6. Kanatsu-Shinohara M, Toyokuni S, Morimoto T, et al. Functional assessment of self-renewal activity of male germline stem cells following cytotoxic damage and serial transplantation. Biol Reprod,2003; 68(5):1801-1807
    7. De Gendt K, Swinnen JV, Saunders PT, et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. PNAS.2004, 101:1327-1332.
    8. Russell LD, Warren J, Debeljuk L, et al. Spermatogenesis in Bclw deficient mice. Biol Reprod.2001,65:318-332.
    9. He D, Zhang D, Wei G, et al. Cytoskeleton Vimentin Disruption of Mouse Sertoli Cells Injured by Nitrogen Mustard In Vitro. J Androl,2007,28(3):389-396.
    10. Kopecky M, Semecky V, Nachtigal P. Vimentin expression during altered spermatogenesis in rats. Acta Histochem,2005,107 (4):279-289
    11. O'Shaughnessy PJ, Fleming L, Baker PJ, et al. Identification of developmentally regulated genes in the somatic cells of the mouse testis using serial analysis of gene expression. Biol Reprod.2003,69:797-808.
    12. O'Shaughnessy PJ, Hu L, Baker PJ. Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells._Reproduction. 2008,135(6):839-50.
    13. Gnessi L, Basciani S, Mariani S, et al. Leydig cell loss and spermatogenic arrest in platelet-derived growth factor (PDGF)-A-deficient mice. J Cell Biol.2000, 149:1019-1026.
    14. Fecteau KA, Mrkonjich L, Mason JI, et al. Detection of platelet-derived growth factor-alpha (PDGF-A) protein in cells of Leydig lineage in the postnatal rat testis. Histol Histopathol.2006,21:1295-1302.
    15. Brinster RL, Avarbock MR. Germline transmission of donor haplotype following spermatogonial transplantation. Proc Natl Acad Sci U S A.1994; 91:11303-11307.
    16. Brinster RL, Zimmerman JW. Spermatogenesis following male germ cell transplantation. Proc Natl Acad Sci U S A.1994; 91:11298-11302.
    17. Brinster CJ, Ryn BY, Avarbock MR, Karagenc L, Brinster RL. Restoration of fertility by germ cell transplantation requires efficient recipient preparation. Biol Reprod.2003; 69:412-420.
    18. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Remodeling of the postnatal mouse testis is accomplished by dramatic changes in stem cell number and niche accessibility. Proc Natl Acad Sci U S A.2001; 98:6186-6191.
    19. Shinohara T, Orwig KE, Avarbock MR, Brinster RL. Gem line stem cell competition in postnatal mouse testes. Biol Reprod.2002; 66:1491-1497.
    20. Ogawa T, Dobrinski I, Avarbock MR, Brinster RL. Transplantation of male germ line stem cells restores fertility in infertile mice. Nat Med 2000; 6:29-34.
    21. Boettger-Tong HL, Johnston DS, Russell LD, Griswold MD, Bishop CE. Juvenile spermatogonial depletion (jsd) mutant seminiferous tubules are capable of supporting transplanted spermatogenesis. Biol Reprod 2000; 63:1185-1191.
    22. Ohta H, Yomogida K, Tadokoro Y, Tohda A, Dohmae K, Nishimune Y. Defect in germ cells, not in supporting cells, is the cause of male infertility in the jsd mutant mouse:proliferation of spermatogonial stem cells without differentiation. Int J Androl 2001; 24:15-23.
    23. Creemers LB, Meng X, den Ouden K, van Pelt AMM, Izadyar F, Santoro M, Sariola H, de Rooij DG. Transplantation of germ cells from glial cell line-derived neurotrophic factor-overexpressing mice to host testes depleted of endogenous spermatogenesis by fractionated irradiation. Biol Reprod 2002; 66:1579-1584.32.
    24. Giuili G, Tomljenovic A, Labrecque N, Oulad-Abdelghani M, Rassoulzadegan M, Cuzin F. Murine spermatogonial stem cells:targeted transgene expression and purification in an active state. EMBO Rep 2002; 3:753-759.
    25. Moisan AE, Foster RA, Betteridge KJ,et al. Dose-response of RAG2-/-/gammac-/-mice to busulfan in preparation for spermatogonial transplantation. Reproduction. 2003;126(2):205-16
    26. Bucci LR and Meistrich ML Effects of busulfan on murine spermatogenesis: cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutat Res.1987,176:259-268.
    27. Kim J-H, Jung-Ha H-S, Lee H-T and Chung K-S. Development of a positive method of male stem cell mediated gene transfer in mouse and pig. Mol Reprod Dev.1997,46:515-526
    28. Stellflug J, Green J and Leathers C. Antifertility effect of busulfan and Procarbazine in male and female coyotes. Biol Reprod.1985,33:1237-1243
    29. Clouthier DE, Avarbock MR, Maika SD, et al. Rat spermatogenesis in mouse testis. Nature.1996,381:418-421
    30. Ogawa T, Dobrinski I and Brinster R. Recipient preparation is critical for spermatogonial transplantation in the rat. Tissue Cell.1999,31:461-472
    31. Hemsworth BN, Jackson H. Effect of busulphan on the developing gonad of the male rat. J Reprod Fertil.1963; 5:187-194.
    32. Jiang FX. Behaviour of spermatogonia following recovery from busulfan treatment in the rat. Anat Embryol.1998,198:53-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700