miR-34c在小鼠胚胎干细胞向雄性生殖细胞分化过程中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎干细胞(embryonic stem cells,ESCs)作为一种高度未分化细胞,可被诱导分化为包括生殖细胞在内的机体几乎所有的细胞类型。生殖细胞是高等哺乳动物体内非常特殊的一类成体细胞,承担着传宗接代和种族延续的重任。国内外已有多篇有关小鼠胚胎干细胞向雄性生殖细胞成功诱导分化的报道,但诱导效率均很低,关键原因在于对雄性哺乳动物生殖细胞发生的确切机理仍不清楚。多项研究显示,作为一类新发现的小RNA分子,miRNA可能在哺乳动物雄性生殖细胞发生过程中发挥着重要作用。
     本研究旨在通过定量PCR等手段筛选确定与哺乳动物雄性生殖细胞发生相关的特异miRNA分子,合成相应模拟物以及构建该miRNA的表达载体,转染小鼠胚胎干细胞系(mESCs),并结合RA诱导,观察该miRNA超表达对mESCs向雄性生殖细胞诱导效率的影响;进一步通过生物信息学手段预测该miRNA作用的靶基因,构建含有该基因的双荧光素酶载体,通过载体转染试验对预测结果进行验证,初步揭示该miRNA发挥作用的可能靶基因。
     1依据文献初步筛选与哺乳动物生殖发生可能相关的4个miRNA分子,分别为mmu-miR-34c、mmu-miR-449a、mmu-let-7e、mml-miR-122a。设计相应茎环引物,定量PCR检测其在小鼠各个不同组织器官的表达。结果发现,miR-34c在成年小鼠睾丸中表达量最高,与其他各个组织表达量差异均显著;检测其在不同发育阶段小鼠睾丸及成年小鼠睾丸生精细胞和间质细胞的表达,结果显示,miR-34c在性成熟小鼠(出生后1个月)睾丸中表达量最高,且只在生精细胞中高表达,其次为体成熟睾丸,胚胎期及出生后至性成熟之前的小鼠睾丸表达较少,而该miRNA分子在小鼠卵巢组织的表达较低;以上结果表明该miRNA为睾丸生精细胞特异且高度表达。
     2合成miR-34c模拟物,同时构建含该miRNA原转录本序列的真核表达载体(pMiR-34c-GFP质粒),转染mESCs并结合1μmol/L维甲酸(RA)诱导,通过形态学、碱性磷酸酶(AP)染色、多能性及生殖标记基因的定量PCR以及免疫荧光染色等手段,观察该miRNA对小鼠胚胎干细胞向雄性生殖细胞诱导分化的影响。结果显示,与对照组相比,转染miR-34c的mESCs,经RA诱导48 h后,AP阳性克隆数减少,精原细胞样的大圆细胞数明显增多;定量PCR和免疫荧光染色的结果显示,多能性相关基因如Oct4、c-Myc显著下降,而生殖相关基因如Vasa、Scp3表达上调。初步证明,miR-34c在小鼠胚胎干细胞向生殖细胞诱导分化过程中发挥着重要作用,且能提高向生殖细胞诱导分化的效率。
     3采用RNA22、PicTar等软件预测该miRNA分子作用的与生殖发生相关基因的靶位点,选定RARg基因,构建含该作用位点的双荧光素酶表达载体。将载体转染Hela细胞,结合荧光素发光强弱等检测手段对生物信息学预测结果进行验证。结果证明,miR-34c可作用于RARg (RA的γ亚型受体)基因的3'UTR,进而在雄性生殖细胞发生尤其是减数分裂过程中发挥着可能的调控作用。
     综上,本研究初步找出与哺乳动物雄性生殖发生密切相关的miRNA—miR-34c,并证明它在mESCs向雄性生殖细胞分化过程中发挥着重要作用;此外,我们寻找出一个miR-34c发挥生殖调控作用的靶基因RARg,并借此提出了该miRNA发挥调控作用的可能模式。
Embryonic stem cell (ESC), as a kind of pluripotent cell line, can be differentiated into nearly all sorts of cell types, including germ cells. Germ cells, as special adult cells in mammals, take the responsibility of transferring genetic materials to the next generation. By now, there are many researches on induction of mESCs into male germ cells, but with a low efficiency, the basic reason is that the regulating mechanism of male germ cell development in mammals is still unclear. Studies show that miRNA, as a kind of newly found small RNAs, might play an important role in spermatogenesis in mammals.
     In this study, several miRNAs, which might be related to gametogenesis, were initially selected and detected in all the mouse organs by semi- and real-time PCR to find a testis-specific miRNA. Specific miRNA mimics were synthesized and pri-miRNA-GFP plasmid vector was constructed, and they were transfected into mESCs. To study the effect on mESCs differentiation into male germ cells, specific miRNA was overexpressed, combined with retinoic acid (RA) induction, meanwhile. Genes targeted by the specific miRNA were then predicted by bioinformatics and dual-luciferase reporter vector was constructed. By miRNA mimics and vector co-transfection experiment, the predicted target gene was confirmed, and by this, the probable pathway regulated by this specific miRNA was initially studied.
     1. According to the published papers, several miRNAs (mmu-miR-34c, mmu-miR-449a, mmu-let-7e, mml-miR-122a), which might be related to gametogenesis, were initially chosen. The corresponding stem-loop primers were designed and these four miRNAs were detected in all the mouse organs by semi- and real-time PCR. Data showed that, in adult mouse testis, only miR-34c was specifically and highly expressed, with high but not specific expression of miR-449a; miR-122a was liver-specific and let-7e was widely expressed in nearly all the organs. Then the expression of miR-34c in mouse testes of different developmental stages and two sorts of testis cells was detected by real-time PCR. Data showed that, miR-34c was most highly expressed in testis of sexually matured mouse, exactly in spermatogenic cells; followed by mature mouse testis, with a little expression in testis from embryo to sexual maturity. There’s no such phenomenon in mouse ovary.
     2. miR-34c mimics were symthesized by GenePharma, and pMiR-34c-GFP plasmid was constructed. it was overexpressed in mESCs, combined with 1μmol/L RA induction for 48 h, and the effect of miR-34c on induction efficiency of mESC differentiation into male germ cells was evaluated by cell morphology, Alkaline phosphatase (AP) staining, real-time PCR and immunofluorescence staining. Data showed that, after 48 h induction, compared with control, there were fewer AP positive clones and more spermatogonia-like cells in the transfected group, and the expression of Oct4 and c-Myc was down-regulated, with Vasa and Scp3 up-regulated. By this, we initially inferred that, miR-34c could improve the differentiation efficiency of mESCs into germ cells in vitro, and may play an important part during this process.
     3. Gametogenesis-related genes targeted by miR-34c were predicted by bioinformatics (such as RNA22, PicTar softwares), then RARg gene was selected and the recombined dual-luciferase reporter vector was constructed. By miRNA mimics and vector co-transfection experiment, the predicted target gene was confirmed, and by this, the probable pathway regulated by this specific miRNA was initially studied.
     In conclusion, we found a male germ cell specific miRNA--miR-34c, and data showed that it might be pivotal in mESCs differentiation into male germ cells in vitro; we also found a gene (RARg) targeted by miR-34c when it functions in regulating spermatogenesis, and proposed a mode hypothesis that miR-34c regulated male germ cell differentiation in mammals.
引文
白昌明,刘丑生,王志刚,王新庄. 2008.不同培养体系对绵羊类胚胎干细胞分离、传代的影响.生物工程学报, 24(7): 1268-1273
    华进联,张姗姗. 2010. miRNAs与哺乳动物生殖细胞发生.解剖学杂志, 33(3): 281-283
    马丽萍,李娜,何湘君,张旗. 2011. miR-449b和miR-34c对卵巢癌细胞SKOV3-ipl周期相关蛋白的下调及细胞周期阻滞作用.北京大学学报(医学版), 43(1): 129-133
    米美玲,杨蓓,徐斯凡,邹挺. 2009. Stra8:生殖细胞有丝分裂转变为减数分裂前特异表达的基因.中华男科学, 15(1): 51-55
    Abou-Haila A and Tulsiani D R. 2000. Mammalian sperm acrosome: formation, contents, and function. Arch Biochem Biophys, 379(2): 173-182
    Anderson E L, Baltus A E, Roepers-Gajadien H L, Hassold T J, de Rooij D G, van Pelt A M, Page D C. 2008. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A, 105(39): 14976-14980
    Baharvand H, Hashemi S M, Shahsavani M. 2008. Differentiation of human embryonic stem cells into functional hepatocyte-like cells in a serum-free adherent culture condition. Differentiation, 76(5): 465-477
    Banach K, Halbach M D, Hu P, Hescheler J, Egert U. 2003. Development of electrical activity in cardiac myocyte aggregates derived from mouse embryonic stem cells. Am J Physiol Heart Circ Physiol, 284(6): H2114-2123
    Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. 2006. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev, 20(14): 1885-1898
    Benetti R, Gonzalo S, Jaco I, Munoz P, Gonzalez S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P, Li E, Serrano M, Millar S, Hannon G, Blasco M A. 2008. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol, 15(3): 268-279
    Bjork J K, Sandqvist A, Elsing A N, Kotaja N, Sistonen L. 2010. miR-18, a member of Oncomir-1, targets heat shock transcription factor 2 in spermatogenesis. Development, 137(19): 3177-3184
    Blyszczuk P, Czyz J, Kania G, Wagner M, Roll U, St-Onge L, Wobus A M. 2003. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci U S A, 100(3): 998-1003
    Boheler K R, Czyz J, Tweedie D, Yang H T, Anisimov S V, Wobus A M. 2002. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res, 91(3): 189-201
    Bost F, Caron L, Marchetti I, Dani C, Le Marchand-Brustel Y, Binetruy B. 2002. Retinoic acid activation of the ERK pathway is required for embryonic stem cell commitment into the adipocyte lineage. Biochem J, 361(Pt 3): 621-627
    Bouhallier F, Allioli N, Lavial F, Chalmel F, Perrard M H, Durand P, Samarut J, Pain B, Rouault J P. 2010.
    Role of miR-34c microRNA in the late steps of spermatogenesis. Rna, 16(4): 720-731
    Bowles J and Koopman P. 2007. Retinoic acid, meiosis and germ cell fate in mammals. Development, 134(19): 3401-3411
    Cai X, Hagedorn C H, Cullen B R. 2004. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. Rna, 10(12): 1957-1966
    Cannell I G, Kong Y W, Johnston S J, Chen M L, Collins H M, Dobbyn H C, Elia A, Kress T R, Dickens M, Clemens M J, Heery D M, Gaestel M, Eilers M, Willis A E, Bushell M. 2010. p38
    MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc Natl Acad Sci U S A, 107(12): 5375-5380
    Cao S, Wang F, Chen Z, Liu Z, Mei C, Wu H, Huang J, Li C, Zhou L, Liu L. 2009. Isolation and culture of primary bovine embryonic stem cell colonies by a novel method. J Exp Zool A Ecol Genet Physiol, 311(5): 368-376
    Carotta S, Pilat S, Mairhofer A, Schmidt U, Dolznig H, Steinlein P, Beug H. 2004. Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells. Blood, 104(6): 1873-1880
    Castoldi M, Vujic Spasic M, Altamura S, Elmen J, Lindow M, Kiss J, Stolte J, Sparla R, D'Alessandro L A, Klingmuller U, Fleming R E, Longerich T, Grone H J, Benes V, Kauppinen S, Hentze M W, Muckenthaler M U. 2011. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J Clin Invest:
    Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia M A, Xu C, Mason W S, Moloshok T, Bort R, Zaret K S, Taylor J M. 2004. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. Rna Biol, 1(2): 106-113
    Chen C, Ridzon D A, Broomer A J, Zhou Z, Lee D H, Nguyen J T, Barbisin M, Xu N L, Mahuvakar V R, Andersen M R, Lao K Q, Livak K J, Guegler K J. 2005. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 33(20): e179
    Chen U, Kosco M, Staerz U. 1992. Establishment and characterization of lymphoid and myeloid mixed-cell populations from mouse late embryoid bodies, "embryonic-stem-cell fetuses". Proc Natl Acad Sci U S A, 89(7): 2541-2545
    Chinzei R, Tanaka Y, Shimizu-Saito K, Hara Y, Kakinuma S, Watanabe M, Teramoto K, Arii S, Takase K, Sato C, Terada N, Teraoka H. 2002. Embryoid-body cells derived from a mouse embryonic stem cellline show differentiation into functional hepatocytes. Hepatology, 36(1): 22-29
    Chung S S, Wang X, Wolgemuth D J. 2009. Expression of retinoic acid receptor alpha in the germline is essential for proper cellular association and spermiogenesis during spermatogenesis. Development, 136(12): 2091-2100
    Clark A T, Bodnar M S, Fox M, Rodriquez R T, Abeyta M J, Firpo M T, Pera R A. 2004. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro. Hum Mol Genet, 13(7): 727-739
    Dhara S K, Hasneen K, Machacek D W, Boyd N L, Rao R R, Stice S L. 2008. Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures. Differentiation, 76(5): 454-464
    Di Carlo A D, Travia G, De Felici M. 2000. The meiotic specific synaptonemal complex protein SCP3 is expressed by female and male primordial germ cells of the mouse embryo. Int J Dev Biol, 44(2): 241-244
    Doetschman T C, Eistetter H, Katz M, Schmidt W, Kemler R. 1985. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol, 87: 27-45
    Eto K, Murphy R, Kerrigan S W, Bertoni A, Stuhlmann H, Nakano T, Leavitt A D, Shattil S J. 2002.
    Megakaryocytes derived from embryonic stem cells implicate CalDAG-GEFI in integrin signaling. Proc Natl Acad Sci U S A, 99(20): 12819-12824
    Evans M J and Kaufman M H. 1981. Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819): 154-156
    Geijsen N, Horoschak M, Kim K, Gribnau J, Eggan K, Daley G Q. 2004. Derivation of embryonic germ cells and male gametes from embryonic stem cells. Nature, 427(6970): 148-154
    Gjorret J O and Maddox-Hyttel P. 2005. Attempts towards derivation and establishment of bovine embryonic stem cell-like cultures. Reprod Fertil Dev, 17(1-2): 113-124
    Gregory R I, Yan K P, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R. 2004. The Microprocessor complex mediates the genesis of microRNAs. Nature, 432(7014): 235-240
    Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom R A, Ulmert D, Lilja H, Ceder Y. 2010. miR-34c is downregulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer, 127(12): 2768-2776
    Hamaguchi-Tsuru E, Nobumoto A, Hirose N, Kataoka S, Fujikawa-Adachi K, Furuya M, Tominaga A. 2004. Development and functional analysis of eosinophils from murine embryonic stem cells. Br J Haematol, 124(6): 819-827
    Hamazaki T, Iiboshi Y, Oka M, Papst P J, Meacham A M, Zon L I, Terada N. 2001. Hepatic maturation in differentiating embryonic stem cells in vitro. FEBS Lett, 497(1): 15-19
    Hayashi K, Chuva de Sousa Lopes S M, Kaneda M, Tang F, Hajkova P, Lao K, O'Carroll D, Das P P,Tarakhovsky A, Miska E A, Surani M A. 2008. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One, 3(3): e1738
    Hayashi T, Kageyama Y, Ishizaka K, Xia G, Kihara K, Oshima H. 2001. Requirement of Notch 1 and its ligand jagged 2 expressions for spermatogenesis in rat and human testes. J Androl, 22(6): 999-1011
    Hirabayashi M, Kato M, Kobayashi T, Sanbo M, Yagi T, Hochi S, Nakauchi H. 2010. Establishment of rat embryonic stem cell lines that can participate in germline chimerae at high efficiency. Mol Reprod Dev, 77(2): 94
    Hori Y, Rulifson I C, Tsai B C, Heit J J, Cahoy J D, Kim S K. 2002. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci U S A, 99(25): 16105-16110
    Hua J and Sidhu K. 2008. Recent advances in the derivation of germ cells from the embryonic stem cells. Stem Cells Dev, 17(3): 399-411
    Hubner K, Fuhrmann G, Christenson L K, Kehler J, Reinbold R, De La Fuente R, Wood J, Strauss J F, 3rd, Boiani M, Scholer H R. 2003. Derivation of oocytes from mouse embryonic stem cells. Science, 300(5623): 1251-1256
    Kahan B W, Jacobson L M, Hullett D A, Ochoada J M, Oberley T D, Lang K M, Odorico J S. 2003.
    Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes, 52(8): 2016-2024
    Kanno S, Kim P K, Sallam K, Lei J, Billiar T R, Shears L L, 2nd. 2004. Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc Natl Acad Sci U S A, 101(33): 12277-12281
    Kawai T, Takahashi T, Esaki M, Ushikoshi H, Nagano S, Fujiwara H, Kosai K. 2004. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ J, 68(7): 691-702
    Kee K, Angeles V T, Flores M, Nguyen H N, Reijo Pera R A. 2009. Human DAZL, DAZ and BOULE genes modulate primordial germ-cell and haploid gamete formation. Nature, 462(7270): 222-225
    Kerkis A, Fonseca S A, Serafim R C, Lavagnolli T M, Abdelmassih S, Abdelmassih R, Kerkis I. 2007. In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes. Cloning Stem Cells, 9(4): 535-548
    Kim J H, Auerbach J M, Rodriguez-Gomez J A, Velasco I, Gavin D, Lumelsky N, Lee S H, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R. 2002. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature, 418(6893): 50-56
    Kim W Y, Lee J W, Park Y A, Choi J J, Sung C O, Song S Y, Choi C H, Kim T J, Huh S J, Kim B G, Bae D S. 2011. RAR-beta expression is associated with early volumetric changes to radiation therapy in cervical cancer. Gynecol Obstet Invest, 71(1): 11-18
    Kitazawa A and Shimizu N. 2007. Characterization of neurons differentiated from mouse embryonic stemcells using conditioned medium of dorsal root ganglia. Journal of Bioscience and Bioengineering, 104(4): 257-262
    Kleinsmith L J and Pierce G B J. 1964. Multipotentiality of Single Embryonal Carcinoma Cells. Cancer Res, 24: 1544-1551
    Kobayashi T, Kajiura-Kobayashi H, Nagahama Y. 2000. Differential expression of vasa homologue gene in the germ cells during oogenesis and spermatogenesis in a teleost fish, tilapia, Oreochromis niloticus. Mech Dev, 99(1-2): 139-142
    Kotaja N, Bhattacharyya S N, Jaskiewicz L, Kimmins S, Parvinen M, Filipowicz W, Sassone-Corsi P. 2006.
    The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc Natl Acad Sci U S A, 103(8): 2647-2652
    Koubova J, Menke D B, Zhou Q, Capel B, Griswold M D, Page D C. 2006. Retinoic acid regulates sex-specific timing of meiotic initiation in mice. Proc Natl Acad Sci U S A, 103(8): 2474-2479
    Kress T R, Cannell I G, Brenkman A B, Samans B, Gaestel M, Roepman P, Burgering B M, Bushell M, Rosenwald A, Eilers M. 2011. The MK5/PRAK kinase and Myc form a negative feedback loop that is disrupted during colorectal tumorigenesis. Mol Cell, 41(4): 445-457
    Kyba M, Perlingeiro R C, Daley G Q. 2002. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell, 109(1): 29-37
    Lacham-Kaplan O, Chy H, Trounson A. 2006. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes. Stem Cells, 24(2): 266-273
    Lee Y, Jeon K, Lee J T, Kim S, Kim V N. 2002. MicroRNA maturation: stepwise processing and subcellular localization. Embo J, 21(17): 4663-4670
    Lumelsky N, Blondel O, Laeng P, Velasco I, Ravin R, McKay R. 2001. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science, 292(5520): 1389-1394
    Lund E, Guttinger S, Calado A, Dahlberg J E, Kutay U. 2004. Nuclear export of microRNA precursors. Science, 303(5654): 95-98
    Luo L, Ye L, Liu G, Shao G, Zheng R, Ren Z, Zuo B, Xu D, Lei M, Jiang S, Deng C, Xiong Y, Li F. 2010.
    Microarray-based approach identifies differentially expressed microRNAs in porcine sexually immature and mature testes. PLoS One, 5(8): e11744
    Matoba S and Ogura A. 2011. Generation of functional oocytes and spermatids from fetal primordial germ cells after ectopic transplantation in adult mice. Biol Reprod, 84(4): 631-638
    Mattiske D M, Han L, Mann J R. 2009. Meiotic maturation failure induced by DICER1 deficiency is derived from primary oocyte ooplasm. Reproduction, 137(4): 625-632
    McEwan J, Lynch J, Beck C W. 2011. Expression of key retinoic acid modulating genes suggests active regulation during development and regeneration of the amphibian limb. Dev Dyn, 240(5): 1259-1270
    Miranda K C, Huynh T, Tay Y, Ang Y S, Tam W L, Thomson A M, Lim B, Rigoutsos I. 2006. Apattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell, 126(6): 1203-1217
    Mishima T, Takizawa T, Luo S S, Ishibashi O, Kawahigashi Y, Mizuguchi Y, Ishikawa T, Mori M, Kanda T, Goto T. 2008. MicroRNA (miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary. Reproduction, 136(6): 811-822
    Mitalipov S, Kuo H C, Byrne J, Clepper L, Meisner L, Johnson J, Zeier R, Wolf D. 2006. Isolation and characterization of novel rhesus monkey embryonic stem cell lines. Stem Cells, 24(10): 2177-2186
    Miyazaki S, Yamato E, Miyazaki J. 2004. Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes, 53(4): 1030-1037
    Mohr J C, Zhang J, Azarin S M, Soerens A G, de Pablo J J, Thomson J A, Lyons G E, Palecek S P, Kamp T J. 2010. The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials, 31(7): 1885-1893
    Murtaugh L C and Melton D A. 2003. Genes, signals, and lineages in pancreas development. Annu Rev Cell Dev Biol, 19: 71-89
    Nayernia K, Nolte J, Michelmann H W, Lee J H, Rathsack K, Drusenheimer N, Dev A, Wulf G, Ehrmann I E, Elliott D J, Okpanyi V, Zechner U, Haaf T, Meinhardt A, Engel W. 2006. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell, 11(1): 125-132
    Nicholas C R, Haston K M, Grewall A K, Longacre T A, Reijo Pera R A. 2009. Transplantation directs oocyte maturation from embryonic stem cells and provides a therapeutic strategy for female infertility. Hum Mol Genet, 18(22): 4376-4389
    Novotny G W, Sonne S B, Nielsen J E, Jonstrup S P, Hansen M A, Skakkebaek N E, Rajpert-De Meyts E, Kjems J, Leffers H. 2007. Translational repression of E2F1 mRNA in carcinoma in situ and normal testis correlates with expression of the miR-17-92 cluster. Cell Death Differ, 14(4): 879-882
    Ohta K, Lin Y L, Hogg N, Yamamoto M, Yamazaki Y. 2010. Direct Effects of Retinoic Acid on Entry of Fetal Male Germ Cells into Meiosis in Mice. Biol. Reprod., 83(6): 1056-1063
    Okamura D, Hayashi K, Matsui Y. 2005. Mouse epiblasts change responsiveness to BMP4 signal required for PGC formation through functions of extraembryonic ectoderm. Mol Reprod Dev, 70(1): 20-29
    Panula S, Medrano J V, Kee K, Bergstrom R, Nguyen H N, Byers B, Wilson K D, Wu J C, Simon C, Hovatta O, Reijo Pera R A. 2011. Human germ cell differentiation from fetal- and adult-derived induced pluripotent stem cells. Hum Mol Genet, 20(4): 752-762
    Park S M, Shell S, Radjabi A R, Schickel R, Feig C, Boyerinas B, Dinulescu D M, Lengyel E, Peter M E. 2007. Let-7 prevents early cancer progression by suppressing expression of the embryonic gene HMGA2. Cell Cycle, 6(21): 2585-2590
    Pick M, Azzola L, Mossman A, Stanley E G, Elefanty A G. 2007. Differentiation of human embryonic stemcells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells, 25(9): 2206-2214
    Qing T, Shi Y, Qin H, Ye X, Wei W, Liu H, Ding M, Deng H. 2007. Induction of oocyte-like cells from mouse embryonic stem cells by co-culture with ovarian granulosa cells. Differentiation, 75(10): 902-911
    Rathke C, Baarends W M, Jayaramaiah-Raja S, Bartkuhn M, Renkawitz R, Renkawitz-Pohl R. 2007.
    Transition from a nucleosome-based to a protamine-based chromatin configuration during spermiogenesis in Drosophila. J Cell Sci, 120(Pt 9): 1689-1700
    Ro S, Park C, Sanders K M, McCarrey J R, Yan W. 2007. Cloning and expression profiling of testis-expressed microRNAs. Dev Biol, 311(2): 592-602
    Roggia C, Ukena C, B?hm M, Kilter H. 2007. Hepatocyte growth factor (HGF) enhances cardiac commitment of differentiating embryonic stem cells by activating PI3 kinase. Exp Cell Res, 313(5): 921-930
    Sakurai H, Inami Y, Tamamura Y, Yoshikai T, Sehara-Fujisawa A, Isobe K. 2009. Bidirectional induction toward paraxial mesodermal derivatives from mouse ES cells in chemically defined medium. Stem Cell Res, 3(2-3): 157-169
    Singh A, Rokes C, Gireud M, Fletcher S, Baumgartner J, Fuller G, Stewart J, Zage P, Gopalakrishnan V. 2011. Retinoic acid induces REST degradation and neuronal differentiation by modulating the expression of SCF(beta-TRCP) in neuroblastoma cells. Cancer:
    Takada S, Berezikov E, Choi Y L, Yamashita Y, Mano H. 2009. Potential role of miR-29b in modulation of Dnmt3a and Dnmt3b expression in primordial germ cells of female mouse embryos. Rna, 15(8): 1507-1514
    Takahashi T, Lord B, Schulze P C, Fryer R M, Sarang S S, Gullans S R, Lee R T. 2003. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation, 107(14): 1912-1916
    Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton S C, Sun Y A, Lee C, Tarakhovsky A, Lao K, Surani M A. 2007. Maternal microRNAs are essential for mouse zygotic development. Genes Dev, 21(6): 644-648
    Thomson J A, Itskovitz-Eldor J, Shapiro S S, Waknitz M A, Swiergiel J J, Marshall V S, Jones J M. 1998.
    Embryonic stem cell lines derived from human blastocysts. Science, 282(5391): 1145-1147
    Thomson J M, Newman M, Parker J S, Morin-Kensicki E M, Wright T, Hammond S M. 2006. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev, 20(16): 2202-2207
    Thomson J M, Parker J, Perou C M, Hammond S M. 2004. A custom microarray platform for analysis ofmicroRNA gene expression. Nat Methods, 1(1): 47-53
    Toyooka Y, Tsunekawa N, Akasu R, Noce T. 2003. Embryonic stem cells can form germ cells in vitro. Proc Natl Acad Sci U S A, 100(20): 11457-11462
    Trautmann E, Guerquin M J, Duquenne C, Lahaye J B, Habert R, Livera G. 2008. Retinoic acid prevents germ cell mitotic arrest in mouse fetal testes. Cell Cycle, 7(5): 656-664
    Vackova I, Ungrova A, Lopes F. 2007. Putative embryonic stem cell lines from pig embryos. J Reprod Dev, 53(6): 1137-1149
    Van Hoof D, Mendelsohn A D, Seerke R, Desai T A, German M S. 2011. Differentiation of human embryonic stem cells into pancreatic endoderm in patterned size-controlled clusters. Stem Cell Res, 6(3): 276-285
    Vassilieva S, Guan K, Pich U, Wobus A M. 2000. Establishment of SSEA-1- and Oct-4-expressing rat embryonic stem-like cell lines and effects of cytokines of the IL-6 family on clonal growth. Exp Cell Res, 258(2): 361-373
    Vincent R K and Odorico J S. 2009. Reduced serum concentration is permissive for increased in vitro endocrine differentiation from murine embryonic stem cells. Differentiation, 78(1): 24-34
    von Schonfeldt V, Wistuba J, Schlatt S. 2004. Notch-1, c-kit and GFRalpha-1 are developmentally regulated markers for premeiotic germ cells. Cytogenet Genome Res, 105(2-4): 235-239
    Waese E Y L and Stanford W L. 2011. One-step generation of murine embryonic stem cell-derived mesoderm progenitors and chondrocytes in a serum-free monolayer differentiation system. Stem Cell Research, 6(1): 34-49
    Wilkerson D C, Wolfe S A, Grimes S R. 2002. Sp1 and Sp3 activate the testis-specific histone H1t promoter through the H1t/GC-box. J Cell Biochem, 86(4): 716-725
    Woll P S, Martin C H, Miller J S, Kaufman D S. 2005. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J Immunol, 175(8): 5095-5103
    Yan N, Lu Y, Sun H, Qiu W, Tao D, Liu Y, Chen H, Yang Y, Zhang S, Li X, Ma Y. 2009. Microarray profiling of microRNAs expressed in testis tissues of developing primates. J Assist Reprod Genet, 26(4): 179-186
    Yoon B S, Yoo S J, Lee J E, You S, Lee H T, Yoon H S. 2006. Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment. Differentiation, 74(4): 149-159
    Yu Z, Ji P, Cao J, Zhu S, Li Y, Zheng L, Chen X, Feng L. 2009. Dazl promotes germ cell differentiation from embryonic stem cells. J Mol Cell Biol, 1(2): 93-103
    Yu Z, Raabe T, Hecht N B. 2005. MicroRNA Mirn122a reduces expression of the posttranscriptionally regulated germ cell transition protein 2 (Tnp2) messenger RNA (mRNA) by mRNA cleavage. Biol Reprod, 73(3): 427-433
    Yue F, Johkura K, Tomotsune D, Shirasawa S, Yokoyama T, Nagai M, Sasaki K. 2010. Bone marrow stromal cells as an inducer for cardiomyocyte differentiation from mouse embryonic stem cells. Annals of Anatomy - Anatomischer Anzeiger, 192(5): 314-321
    Zhang Y, Li R, Chen W, Li Y, Chen G. 2011. Retinoids induced Pck1 expression and attenuated insulin-mediated suppression of its expression via activation of retinoic acid receptor in primary rat hepatocytes. Mol Cell Biochem:
    Zhou G B, Meng Q G, Li N. 2010. In vitro derivation of germ cells from embryonic stem cells in mammals. Mol Reprod Dev, 77(7): 586-594
    Zhou Q, Nie R, Li Y, Friel P, Mitchell D, Hess R A, Small C, Griswold M D. 2008. Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells induced by retinoic acid: an in vivo study in vitamin A-sufficient postnatal murine testes. Biol Reprod, 79(1): 35-42
    Zovoilis A, Pantazi A, Smorag L, Opitz L, Riester G S, Wolf M, Zechner U, Holubowska A, Stewart C L, Engel W. 2010. Embryonic stem cell-related miRNAs are involved in differentiation of pluripotent cells originating from the germ line. Mol Hum Reprod, 16(11): 793-803

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700