脂筏在TRAIL引起的细胞凋亡早期事件中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TRAIL是TNF家族的成员之一,与其他成员不同的是TRAIL和其受体在绝大多数细胞和组织中均有表达,但TRAIL可选择性地杀伤肿瘤细胞,对大多数正常细胞没有细胞毒作用。由于这种特性的存在,TRAIL成为一种极具治疗前景的抗癌药物。然而,随着研究的深入,人们发现有许多肿瘤细胞对TRAIL并不敏感,这在一定程度上限制了TRAIL的应用。我们利用实验室保存的两株对TRAIL敏感性不同的Jurkat T淋巴细胞为模型,探讨其敏感性不同的原因,重点关注TRAIL诱导细胞凋亡早期阶段的差别。
     脂筏是细胞膜上的特殊微区,其中含有大量的胆固醇和鞘磷脂,因为这两种脂类的稳定性较强,可以使脂筏微区与其它磷脂双层分相,并为许多膜蛋白和病原体提供进出细胞和下传信号的平台。由于脂筏是接受大多数外界信号刺激的门户,我们假定两株Jurkat T淋巴细胞对rsTRAIL敏感性不同的原因可能与脂筏有关。对于TRAIL的敏感性与脂筏微区关系的研究,目前还是空白。
     我们首先以自己制备的重组可溶性TRAIL(rsTRAIL)处理两株Jurkat T淋巴细胞白血病细胞,发现二者对TRAIL细胞毒作用的敏感性存在明显差别。对TRAIL敏感的称JKS细胞,对TRAIL不敏感的称为JKR细胞。Western Blot分析显示,JKS细胞经rsTRAIL处理后,其细胞浆中的促凋亡分子procaspase-8和RIP表达减少,而在JKR细胞中检测不到这种变化。而且未经rsTRAIL处理的JKS细胞内procaspase-8的表达量也比JKR细胞为多。rsTRAIL处理使JKS细胞膜中的procaspase-8、RIP和FADD发生相应的募集或减少,而JKR细胞膜中的FADD和RIP未发生明显变化,procaspase-8则检测不到,提示procaspase-8表达量低可能是JKR细胞对TRAIL不敏感的原因。但是caspase—8抑制剂能全部抑制rsTRAIL引起的JKR细胞凋亡,但只能部分抑制JKS细胞凋亡,抑制率约为50%,表明procaspase-8的表达量差别不能完全解释这两株细胞对TRAIL敏感性的不同,procaspase-8的上游因素可能也影响细胞对TRAIL的敏感性。我们进一步研究了两株细胞脂筏成分的变化,结果表明两株细胞受到TRAIL刺激后,募集促凋亡分子的能力不同。DR5、FADD、procaspase-8、RIP和PI3K-p85亚基在JKS细胞中均是脂筏预装蛋白,TRAIL刺激20分钟内DR5、FADD、procaspase-8和PI3K-p85亚基均增加,而RIP减少。尽管DR5和RIP在JKR细胞中是脂筏预装分子,但随TRAIL刺激的延长,并没有检测到两种分子的变化,而DISC复合物中的FADD和procaspase-8没有出现在脂筏样品中,PI3K-p85亚基只在20分钟时有轻微增加。进一步研究显示,脂筏募集蛋白能力的这种差别与酸性鞘磷脂酶有关。JKR细胞中的酸性鞘磷脂酶较少,而JKS细胞中较多。该酶的活性分析表明,JKR细胞酸性鞘磷脂酶的活性较低,神经酰胺的增加和鞘磷脂的减少都不及JKS细胞明显,JKS细胞的酸性鞘磷脂酶的本底活性较JKR细胞为高,4小时时神经酰胺增加的倍数达到6.3倍以上。酸性鞘磷脂酶与脂筏的共定位研究显示,JKR细胞接受TRAIL刺激后,酸性鞘磷脂酶与脂筏逐渐共定位,有时空的变化。JKS细胞的酸性鞘磷脂酶与脂筏始终是密切共定位,不存在时空的变化。说明JKS细胞中的酸性鞘磷脂酶能够在脂筏原位发挥更强大的作用,利于脂筏中促凋亡分子的募集。
     综上所述,两株Jurkat T淋巴细胞中酸性鞘磷脂酶的含量、活性和定位的变化是其对TRAIL敏感性不同的重要原因。本项研究可为急性T淋巴细胞白血病的治疗和预后判断提供新的线索。
TRAIL(TNF-related apoptosis-inducing ligand) is a novel member of the TNF super-family.Unlike other members of TNF family,whose expression is restricted to some cells and tissues such as activated T-cells,natural killer(NK) cells,and immtme-privileged sites,TRAIL and TRAIL receptors are widely expressed in many cell types and tissues,suggesting that most tissues and cell types are potential targets for TRAIL.TRAIL selectively trigges apoptosis of tumor cells and is not toxic to most normal cells,suggesting that this unique molecule is a promising anti-cancer agent.However,reports on the resistance to TRAIL have been increased in various tumor cell lines,which might limit the utility of this molecule in clinical application. In the present study,recombinant soluble TRAIL(rsTRAIL) was used as apoptosis-inducer,and two Jurkat T lymphocyte cell lines(JKR and JKS) with different sensitivity to rsTRAIL were used to explore the molecular mechanism of apoptosis regulation,especially in the early stage of apoptosis induction.
     Lipid rafts,as defined by Simoms and Ikonen are unique membrane micro-domains,which contain large amount of cholesterol and sphingomyelin. Cholesterol and spingomyelin are the most stable lipid in the membrane,and thus made lipid rafts separated from other phospholipids bilayer and a platform for membrane proteins signal transduction or virus to come in or out of the cell.We speculated that different sensitivity to rsTRAIL stimuli might be layed under the relationship between the pro-apoptosis molecules and the recruitment ability of lipid rafts.
     In our experiments,two different phenotype cell lines of Jurkat T lymphocytes showed different sensitivity to rsTRAIL stimuli,JKS cells were more sensitive than JKR cells.At cytosolic level,JKS cells showed a more rapid response to the rsTRAIL stimulation than JKR cells.The procaspase-8 and RIP were cleaved upon rsTRAIL stimuli for half an hour.The background concentrations of procaspase-8 were different in the two cell lines,JKS cells containd more procaspase-8 than JKR cells. At plasma-membrane level,JKS cells recruit more FADD,procaspase-8 molecules than JKR cells when stimulated by rsTRAIL for half an hour.The background concentration difference of procaspase-8 in the two cell lines did not fully explain the sensitivity difference.The caspase-8 inhibitor,Z-IETD-FMK,could block the early stage apoptosis of JKR cells,but the blocking ratio dropped to about 50%in the JKS cells.It might be some factors upstream of caspase-8 also affect the sensitivity.Then, we detected the changes happened to the two cell lines upon rsTRAIL treatment at the lipid rafts level.DR5 was a pre-located molecule in lipid rafts in both of the two cell lines.During a 0 to 20 min time course,JKS cells recruited more DR5,FADD, procaspase-8 into lipid rafts,PI3K also was increased in lipid rafts,while RIP was decreased;DR5 and RIP were unaffected in the lipid rafts of JKR cells.FADD, procaspase-8 were not detectable and PI3K had a slightly elevation.2DE image showed that about 33%dots emerging or were increased in the rafts sample of JKS cells after treated with rsTRAIL for half an hour.Most importantly,ASMase,which enable rafts come into being and expanding,was different in concentration,enzyme activity and co-location relationship with lipid rafts.JKS cells contained more ASMase than JKR cells.The enzyme activity of ASMase in JKS cells was higher than that of the JKR cells,with time went on,the enzyme activity of ASMase was even higher than that of the JKR cells.In JKR cells ASMase was gradually co-located with GM1,the symbol of lipid rafts,while in JKS cells ASMase was consecutively co-located with GM1.
     The results above indicated that concentration,activity and localization of ASMase may contribute to the different sensitivity to TRAIL cytotoxicity of the two cell lines.This study may through light on the therapy and prediction of the outcome of T lymphocyte leukemia.
引文
1.Ashkenazi A,Dixit VM.1998.Death receptors:signaling and modulation.Science 281:1305-1308.
    2.Nagata S.1997.Apoptosis by death factor.Cell,88:3355-3365
    3.Salvesen GS,Dixit VM.1997.Caspases:intracellular signaling by proteolysis.Cell,91:443-446.
    4.Wiley SR,Schooley K,Smolak P,et al.1995.Identification and characterization of a new member of the TNF family that induces apoptosis,Immunity,3:673-682.
    5.Pitti RM,Marsters SA,Ruppert S,et al.1996.Induction of apoptosis by Apo-2 ligand,a new member of the tumor necreosis factor cytokine family.J Biol Chem 271:12687-12690.
    6.Liabakk NB,Sundan A,Torp S.et al.2002.Development,characterization and use of monoclonal antibodies against TRAIL:measurement of TRAIL by ELISA.J Immunol Methods 259:119-128
    7.Cha SS,Kim MS,Choi YH,et al.1999.2.8A resolution crystal structure of human TRAIL,A cytokine with selective antitumor activity.Immunity 11:253-261
    8.Hymowitz SG,Christinger HW,Fuh G,et al.1999.Triggering cell death:the crystal structure of Apro2L/TRAIL in a complex with death receptor 5.Mol Cell 4:563-571.
    9.Hymowitz SG,O'Connell MP.Ultsch MH,et al.2000.A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL.Biochemistry 39:633-640.
    10.Seol DW.Billiar TR.2000.Cysteine 230 modulates tumo necrosis factor-related apoptosis-inducing ligand activity.Cancer Res 60:3152-3154.
    11.Pan G,O'Rourke K,Chinnaiyan AM,et al.1997.The receptor for the cytotoxic ligand TRAIL.Sceince 276:815-818
    12.Pan G,Ni J,Wei YF,et al.1997.An antagonist decoy receptor and a death domain containing receptor for TRAIL.Science 277:815-818
    13.Sheridan JP,Marsters SA,Pitti RM,et al.1997.Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors.
    14.Macfarlane M,Ahmad M,srinivasula SM,et al.1997.Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL,J Biol Chem 272:25417-25402
    15.Mongkolsapaya J.Cowper AE,Xu XN,et al.1998.Lymphocyte inhibitor of TRAIL:a new receptor protecting lymphocytes from the death ligand TRAIL.J Immunol.160:3-6
    16.Marster SA,Sheridan JP,Pitti RM,et al1997.A novel receptor for Apo2L/TRAIL contains a truncated death domain.Curr Biol 7:1003-1006.
    17.Degli-Esposti MA,Dougall WC,Smolak PJ,et al.1997.The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis,yet retains an incomplete death domain.Immunity 7:813-820.
    18.Emery JG,McDonnell P,Burke MB,et al.Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL.
    19.Sprick MR,Weigand MA,Rieser E,et al.2000.FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2.Immunity 12:599-609.
    20.Sprick MR,Rieser E,Stahl H,et al.2002.Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signaling complexes in a FADD-dependent manner but can not functionally substitute caspase-8.EMBO J.21:4520-4530.
    21.Kischkel FC,Lawrence DA,Tinel A,et al.2001.Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8.J Biol Chem 276:46639-46646.
    22.Fan TJ,Han LH,Cong RS,et al.2005.Caspase family proteases and Apoptosis Acta Biochim Biophys Sin 37:719-727.
    23.Li H,Zhu H,Xu C,et al.1998.Cleavage of BID by caspase-8 mediates the mitochondrial damage in the Fas pathway of apoptosis.Cell 94:491-501.
    24.Luo X,budiharjo I,Zou H,et al.1998,Bid,a Bcl2 interacting protein,mediat es cytochrome c release from mitochondria in response to activation of cell surface death receptors.Cell 94:481-490.
    25.Amarante-Mendes GP,Green DR.1999 The regulation of apoptotic cell death.Braz J Med Biol Res 32:1053-1061.
    26.Verhagen AM,Ekert PG,Pakusch M,et al.2000.1dentification of DIABLO,a mammalian protein that promotes apoptosis by binding to and antagonizing IAP Proteins.Cell,102:43-53.
    27.Susin SA,Lorenzo HK,Zamzami N,et al.1999,Molecular characterization of mitochondrial apoptosis-inducing factor.Nature.397:441-446.
    28.Li LY,Luo X,Wang X.2001.Endonuclease G is an apoptotic DNase when released from mitochondria.Nature 412:95-99
    29.Susin SA,Lorenzo,HK,Zamzami N,et al.1999,Mitochondrial release of caspase-2 and-9 during the apoptotic process.J Exp Med 189:381-394.
    30.Sakahira H,Enari M,Nagata S,et al.1998.Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis.Nature 391:96-99.
    31.Scaffidi,C,Fulda X,Srinvasan A,et al.1998.Two CD95 (APO-1/Fas) signaling pathways.EMBO,J 17:1675-1687.
    32.Ozoren N,El-Deiry WS.2002.Defining characteristics of Type I and II apoptotic response to TRAIL.Neoplasia 4:551-557.
    33.Kabouridis PS.2006.Lipid rafts in T cell receptor signaling.Mol Membr Biol.23:49-57.
    34.Simons K,Ikonen E.1997.Functional rafts in the membranes.Nature.387:569-572.
    35.Frank PG,Hassan GS,Rodriguez-Feo JA,et al.2007.Caveolae and caveolin-1:novel potential targets for the treatment of cardiovascular disease.Curr Pharm Des.13:1761-1769.
    36.Schulte T,Paschke KA,Laessing U,et al.1997.Reggie-1 and Reggie-2,two cell surface protein expressed by retinal ganglion cells during axon regeneration.Development.124:577-587/
    37.Cribier S,Morrot G,Zachowski A.1993.Dynamics of the membrane lipid phase.Prostsglandins Leukot Essent Fatty Acid.48:27-32.
    38.Ishikawa Y,Inoue N,Zhenfang Y,et al.2004.Molecular mechanisms and drug development in aquaporin water channel diseases:the traslocation of aquaporin-5 form lipid rafts to the apical plasma membranes of parotid glands of normal rats and the impairment of it in diabetic or aged rats.J Pharmacol.Sci.93:271-275.
    39.Muppidi JR,Tschoopp J,Siegel RM.2004.Life and Death decisions:secondary complexes and lipid rafts in TNF receptor family signal transduction.Immunity.21:461-465.
    40.Sandrine L,Arlette H,Solene G,et al.2004.Cisplantin-induced CD95 redistribution into membrane lipid rafts of HT29 human colon cancer cell.Cancer Res.64:3593-3598.
    41.Delmas D,Rebe C,Micheau O,et al.2004.Redistribution of CD95,DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cell.Oncogene 23,8979-8986.
    42.Merino D,Lalaoui N,Morizot A,et al.2006.Diffemtial inhibition of TRAIL-mediated DR5-DISC formation by Decoy Receptors 1 and 2.Mol Cell Biol.26:7046-7055.
    43.Ostrom RS.And Insel PA 2004.The evolving role of lipid rafts and caveolae in G Protein-coupled receptor signaling:implications for molecular pharmacology.Brith J Pharmacol 143:235-245.
    44.Meylan E,Tschopp J.2005,The RIP kinases:crucial integrators of cellular stress.Trends Biochem Sci.30:151-159.
    45.Bell RM,Hannun YA,Loomis CR.1986.Mechanism of regulation of protein kinase C by lipid second messengers.Symp Fundam Cancer Res.39:145-156.
    46.Datta SR,Brunet A,Greenberg ME.1999.Cellular survival:A play in three AKTs.Genes Dev.13:2905-2927.
    47.Abdel-Latif AA.1989 Calcium-mobilizing receptors,polyphosphoinositides,generation of second messengers and contraction in the mammalian iris smooth muscle:historical perspectives and current status.Life Sci.45:757-86.
    48.Barber MA,Welch HC.2006.PI3K and RAC signaling in leukocyte and cancer cell migration.Bull Cancer.93:E44-52.
    49.Colell A,Morales A,Fernandez-Checa JC,et al.2002.Ceramide generated by acid sphingomyelinase comtributes to tumor necrosis factor-a-mediated apoptosis in human colon HT-29 cells through glycosphingolipids formation-possible role of ganglioside GD3.FEBS Lett.526:135-141.
    50.Lin CF,Chen CL,Lin YS.2006.Ceramide in apoptotic signaling and anticancer therapy.Curr Med Chem.13:1609-1616.
    51.Chatterjee M and Wu SY.2001.Cell line dependent involvement of ceramide in ultraviolet light-induced apoptosis.Mol Cell Biochem.219:21-27.
    52.Scarlatti F,Sala G,Somenzi G,et al.2003.Resveratrol induces growth inhibition and apoptosis in metastatic breast cancer cells via de novo ceramide signaling.FASEBJ.17:2339-2341.
    53.Paris F,Grrassme H,Cremesti A,et al.2001.Natural ceramide reverses Fas resistance of Acid Sphingomyelinase~(-/-)Hepatocytes.J Biol Chem.276:8297-8305.
    54.Ma DW.2007.Lipid mediators in membrane rafts are important determinants of human health and disease.Appl Physiol Nutr Metab.32:341-50.
    [1]Hueber AO.Cell Death Differ.2003 Jan;10(1):7-9
    [2]Bathori G,Cervenak L,Karadi I.Crit Rev Ther Drug Carrier Syst.2004;21(2):67-95.
    [3]Simons K,Ikonen E.Nature.1997 Jun 5;387(6633):569-72.
    [4]Mayor S,Rao M.Traffic.2004 Apr;5(4):231-40.
    [5]Helms JB,Zurzolo C.Traffic.2004 Apr;5(4):247-54.
    [6]Matko J,Szollosi J.Immunol Lett.2002 Jun 3;82(1-2):3-15
    [7]Heerklotz H.Biophys J.2002 Nov;83(5):2693-701
    [8]Chamberlain LH.FEBS Lett.2004 Feb 13;559(1-3):1-5.
    [9]Claas C,Stipp CS,Hemler ME.J Biol Chem.2001 Mar 16;276(11):7974-84.Epub 2000 Dec 11.
    [10]Eckert GP,Igbavboa U,Muller WE,Wood WG.Brain Res.2003 Feb 7;962(1-2):144-50.
    [11]Jacobson K,Dietrich C.Trends Cell Biol.1999 Mar;9(3):87-91.
    [12]Gajate C,Mollinedo F.Blood.2001 Dec 15;98(13):3860-3.
    [13]Cottin V,Doan JE,Riches DW.J Immunol.2002 Apr 15;168(8):4095-102
    [14]Kenworthy AK,Petranova N,Edidin M.Mol Biol Cell.2000May;11(5):1645-55
    [15]Gidwani A,Brown HA,Holowka D,Baird B.J Cell Sci.2003 Aug 1;116(Pt 15):3177-87.
    [16]Atomic Force Microscopy
    [17]Giocondi MC,Milhiet PE,Dosset P,Le Grimellec C.Biophys J.2004Feb;86(2):861-9.
    [18]Poole K,Meder D,Simons K,Muller D.FEBS Lett.2004 May 7;565(1-3):53-8.
    [19]Yokoyama T,Du J,Kawamoto Y,Suzuki H,Nakashima I.Immunology.2004May;112(1):64-71.
    [20]Hueber AO,Bernard AM,Herincs Z,Couzinet A,He HT.EMBO Rep. 2002 Feb;3(2):190-6.Epub 2002 Jan 29.
    [21]Grassme H,Schwarz H,Gulbins E.Biochem Biophys Res Commun.2001 Jun22;284(4):1016-30.
    [22]Scheel-Toellner D,Wang K,Singh R,Majeed S,Raza K,Curnow SJ,Salmon M,Lord JM.Biochem Biophys Res Commun.2002 Oct 4;297(4):876-9.
    [23]shu
    [24]Muppidi JR,Siegel RM.Nat Immunol.2004 Feb;5(2):182-9.Epub 2004 Jan 25.
    [25]Gulbins E,Grassme H.Biochim Biophys Acta.2002 Dec 30;1585(2-3):139-45.
    [26]Kolesnick,R.J Clin Invest 2002 110:3-8
    [27]Grassme,EL,Schwarz,H.,Bulbins E.Biochem Biophys Res Commun 2001 284:1016-1030
    [28]Pettus,B.J.,Chalfant,C.E.,Hannun,Y.A.Biochim Biophys Acta 2002 1585:114-125
    [29]Legler DF,Micheau O,Doucey MA,Tschopp J,Bron C.Immunity.2003 May;18(5):655-64.
    [30]Cottin V,Doan JE,Riches DW.J Immunol.2002 Apr 15;168(8):4095-102.
    [31]Schnitzer JE.Adv Drag Deliv Rev.2001 Jul 28;49(3):265-80.
    [32]Struckhoff AP,Bittman R,Burow ME,Clejan S,Elliott S,Hammond T,Tang Y,Beckman BS.J Pharmacol Exp Ther.2004 May;309(2):523-32.Epub 2004 Jan 23.
    1.Hicke,L.and Riezman,H.1996 Ubiquitination of a yeast plasma membrane receptor signals its ligand-stimulated endocytosis.Cell,84:277-287.
    2.Deveraux,Q.,Ustrell,V.,Pickart,C.,and Rechsteiner,M.1994.A 26S proteasome subunit that binds ubiquitin conjugates.J.Biol.Chem.,269:7059-7061.
    3.Terrell,J.,Shih,S.,Dunn,R.,and Hicke,L.1998.A function for monoubiquitination in the internalization of a G protein-coupled receptor.Mol.Cell,1:193-202.
    4.Horak,J.and Wolf,D.H.2001.Glucose-induced monoubiquitination of the Saccharomyces cerevisiae galactose transpoter is sufficient to signal its internalization.J.Bacteriol.183:3083-3088.
    5.Galan,J.-M.and Haguenauer-Tsapis,R.1997.Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein.EMBO J.,16:5847-5854.
    6.Springael,J.-Y.,Galan,J.-M.,Haguenauer-Tsapis,R.,and Andre,B.1999.NH_4~+-induced down-regulation of the Saccharomces cerevisiae Gaplp permease involves its ubiquitination with lysine-63-linked chains.J.Cell Sci.,112:4175-4183.
    7.Polo,S.,Sigismund,S.,Faretta,M.,Guidi,M.,Capua,M.R.,Bossi,G,Chen,H.,De Camilli,P.,and Di Fiore,P.P.2002.A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins.Nature,416:451-455.
    8.Dunn,R.and Hicke,L.2001.Multiple roles for Rsp5p-dependent ubiquitination at the internalization step of endocytosis.J.Biol.Chem.,276:25974-25981.
    9.Levkowitz,G,Waterman,H.,Zamir,E.,Kam,Z.,Oved,S.,Langdon,W.Y.,Beguinot,L.,Geiger,B.,and Yarden,Y.1998.c-Cbl/Sli-1 regulates endovytic sorting and ubiquitination of the epidermal growth factor receptor.Genes Dev.,12:3663-3674.
    10.Duan,L.,Miura,Y,Dimri,M.,Majumder,B.,Dodge,I.L.Reddi,A.L.,Ghosh,A.,Fernandes,N.,Zhou,P.,Mullane-robinson,K.,Rao,N.,Donoghue,S.,Rogers,R.A.,Bowtell,D.,Naranura,M.,Gu,H.,Band,V.,and Band,H.2003.Cbl-mediated ubiquitinylation is required for lysosomal sorting of epidermal growth factor receptor but is dispensable for endocytosis.J.Biol.Chem.,278:28950-28960.
    11.Katzmann,D.J.,Odorizzi,G,and Emr,S.D.2002.Receptor downregulation and multivesicular-body sorting.Nat.Rev.Mol.Cell Biol,3:893-905.
    12.Raymond,C.K.,Howald-Stevenson,I.,Vater,C.A.,and Stevens,T.H.1992.Morphological classification of the yeast vacuolar protein sorting mutants:evidence for a prevacuolar compartment in class E vos mutants.Mol.Biol.Cell,3:1389-1402.
    13.Odorizzi,G,Babst,M.,and Emr,S.D.1998.Fablp PtIns(3)P 5-kinase function essential for protein sorting in the multivesicular body.Cell,95:847-858.
    14.Amerik,A.Y,Nowak,J.,Swaminathan,S.,and Hochstrasser,M.2000.The Doa4 deubiquitinating enzyme isfunctionally linked to the vacuolar protein-sorting and endocytic pathways.Mol.Biol.Cell,11:3365-3380.
    15.Swaminathan,S.,Amerik,A.Y.,and Hochstrasser,M.1999.The Doa4 deubquitinating enzyme is required for ubiquitin homeostasis in yeast.Mol.Biol.Cell,10:2583-2594.
    16.Urbanowski,J.L.and Piper,R.C.2001,Ubiquitin sorts proteins into the intralumenal degradative compartment of the late-endosome /vacuole.Traffic,2:622-630.
    17.Reggiori,F.and Pelham,H.R.B.2001.Sorting of proteins into multivesicular bodies:ubiquitin-dependent and-independent targeting.EMBO J.,20:5176-5186.
    18.Babst,M.,Wendland,B.,Estepa,E.J.,and Emr,S.D.1998.The Vps4p AAA ATPase regulates membrane association of a Vps protein complex required for normal endosome function.EMBO J.,17:2989-2993.
    19.Babst,M.,Odorizzi,G,Estepa,E.J.,and Emr,S.D.2000.Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue,Vps23p,both function in late endosomal trafficking.Traffic,1:248-258.
    20.Babst,M.,Katzmann,D.J.,Estepa-Sabal,E.J.,Meerloo,T,and Emr,S.D.2002.ESCRT-III:an endosome-associated heterooligomeric protein complex required for MVB sorting.Dev.Cell,3:271-282.
    21.Katzmann,D.J.,Stefan,C.J.,Babst,M.,and Emr,S.D.2003.Vsp27 recruits ESCRT machinery to endosomes during MVB sorting.J.Cell Biol.,162:413-423.
    22.Stenmark,H.and Aasland,R.1999.FYVE-figer proteins-effectors of an inositol lipid.J.CellSci,112:4175-4183.
    23.Shih,S.C,Katzmann,D.J.,Sutano,M.,Emr,S.D.,and Hicke,L.2002.Epsins and Vps27p/Hrs contain ubiquitin-binding domains that function in receptor endocytosis.Nat.Cell Biol,4:389-393.
    24.Felder,S.,Miller,K.,Moehren,G,Ullrich,A.,Schlessinger,J.,and Hopkins,C.R.1990.Kinase activity controls the sorting of the epidermal growth factor receptor within in the multivesicular body.Cell,61:623-634.
    25.Bache,K.G,Brech,A.,Mehlum,A.,and Stenmark,H.2003.Hrs regulates multivescular body formation via ESCRT recruitment to endosomes.J.Cell Biol.,162:435-442.
    26.Raiborg,C,Bache,K.G,Billooly,D.J.,Madshus,I.H.,Stang,E.,and Stenmark,H.2002.Hrs sorts ubiquitinqted proteins into clathrin-coated microdomains of early endosomes,Nat.Cell Biol.4:394-389.
    27.Bishop,N.and Woodman,P.2000,ATPase-defective mammalian VPS4 localizes to aberrant endosomes and impairs cholesterol trafficking.Mol.Biol.Cell,11:227-239.
    28.Yoshimori,T.,Yamagata,R,Yamamoto,A.,Mizushima,N.,Kabeya,Y,Nara,A.,Miwako,I.,Ohashi,M.,Ohsumi,M,and Ohsumi,Y 2000.The mouse SKD1,a homologue of yeast Vps4p,is required for normal endosomal trafficking and morphology in mammalian cells.Mol.Biol.Cell,11:747-763.
    29.Katoh,K.,Shibata,H.,Suzuki,H.,Nara,A.,Ishidoh,K.,Kominami,E.,Yoshimori,T.,and Maki,M.2003.The ALG-2-interacting protein Alix associates with ChMP4b,a human homologue of yeast Snf7 that is involved in multivesicular body sorting.J.Biol.Chem.278:39104-39113.
    30.Whitney,J.A.,Gomez,M.,Sheff,D.,Kreis,T.E.,and Mellman,I.1995.Cytoplasmic coat proteins involved in endosome function.Cell,83:703-713.
    31.Piguet,V.,Gu,R,Foti,M.,Demaurex,N.,Graenberg,J.,Carpentier,J.-L.,and Trono,D.1999.Nef-induced CD4 degradation:a diacidic-based motif in Nef functions as a lysosomal targeting signal through the binding of p-COP in endosomes.Cell,97:63-73.
    32.Gu,F.and Graenberg,J.1999.Biogenesis of transport intermediates in the endocytic pathway.FEBS Lett.,452:61-66.
    33.Mayran,N.,Parton,R.D.,and Graenberg,J.2003.Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells.EMBO J.,22:4242-3253.
    34.Miwako,I.,Yamamoto,A.,Kitamura,T,Nagayama,K.,and Ohashi,M.2001.Cholesterol requirement for cation-indepent mannose 6-phosphate receptor exit from multivesicular late endosomes to the Golgi.J.Cell Sci.,114:1765-1776.
    35.Amara,A.and Littman,D.R.2003.After Hrs with HIV.J.Cell Biol.162:371-375.
    36.Garras,J.E.,von Schwedler,U.K.,Pornillos,O.W.,Morham,S.G,Zavitz,K.H., Wang,H.E.,Wettstein,D.A.,Stray,K.M.,Cote,M.,Rich,R.L.,Myszka,D.G.,and Sundquist,W.I.2001.TsglOl and the vacuolar protein sorting pathway are essential for HIV-1 budding.Cell,107:55-65.
    37.Pornillos,O.W,Higginson,D.S.,Stray,K.M.,Fisher,R.D.,Garrus,J.E.,Payne,M.,He,G.-R,Wang H.P.,Morham,S.G.,and Sundquist,W.I.2003.HIV Gag mimics the TsglOl-regulating activity of the human Hrs protein.J.Cell Biol.,162:425-434.
    38.Helliwell,S.B.,Losko,S.,and Kaiser,C.A.2001.Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease.J.Cell Biol,153:649-662.
    39.Roberg,K.J.,Rowley,N.,and Kaiser,C.A.1997.Physiological regulation of membrane protein sorting late in the secretory pathway of Saccharomyces cerevisiae.J.Cell Biol.,137:1469-1482.
    40.Yashiroda,H.,Kaida,D.,Toh-e,A.,and Kikuchi,Y.1998.The PY-motif of Bull protein is essential for growth of Saccharomyces cerevisiae under various stress conditions.Gene,225:39-46.
    41.Soetens,O.,De Craene,J.-O.,and Andre,B.2001.Ubiquitin is required for sorting to the vacuole of the yeast general amimo acid permease,Gapl.J.Biol.Chem.,276:43949-43957.
    42.Nakatsu,F.,Sakuma,M.,Matsuo,Y,Arase,H.,Yamazaki,S.,Nakamura,N.,Saito,T,and Ohno,H.2000.A di-leucine signal in the ubiquitin moiety.J.Biol.Chem.,275:26213-26219.
    43.Shih,S.C.,Sloper-Mould,K.E.,and Hicke,L.2000.Monoubiquitin carries a novel internalization signal that is appended to activated receptors.EMBO.J.,19:187-198.
    44.van Nocker,S.,Sadis,S.,Rubin,D.M.,Glickman,M.,Fu,H.,Coux,O.,Wefes,I.,Finley,D.,and Viertra,R.D.1996.the multiubiquitin-chain-biding protein Mcbl is a component of the 26S proteasome in Saccharomyces cerevisiae and play nonessential,substrate-specific role in protein turnover.Mol.Cell Biol.,16:6020-6028.
    45.Davies,B.A.,Topp,J.D.,Sfeir,A.J.,Katzmann,D.J.,Carney,D.S.,Tall,G.G.,Friedberg,A.S.,Deng,L.,Chen,Z.,and Horazovsky,B.F.2003.Vsp9p CUE domain ubiquitin binding is required for efficient endocytic protein traffic.J.Biol.Chem.,278:19826-19833.
    46.Simons,K.and Ikonen,E.1997.Functional rafts in cell membranes.Nature,387:569-572.
    47.Fiedler,K.,Kobayashi,T.,Kurzchalia,T.V.,and Simons,K.1993.Glycosphingalipid-enriched,detergent-insoluble complexes in protein sorting in epithelial cells.Biochemistry,32:6365-6373.
    48.Schuck,S.,Honsho,M.,Ekroos,K.,Shevchenko,A.,and Simons,K.2003.Resistance of cell membranes to different detergents.Proc.Natl.Acad.Sci.USA.,100:5795-5800.
    49.Keller,P.,and Simons,K.1998.Cholesterol is required for surface transport of influenza virus hemagglutinin.J.Cell Biol.,140:1357-1367.
    50.Bagnat,M.,Keranen,S.,Shevchenko,A.,Shevchenko,A.,and Simons,K.2000.lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast.Proc.Natl.Acad.Sci.USA.,97:3254-4259.
    51.Bagnat,M.,Chang,A.,and Simons,K.2001.Plasma membrane proton ATPase Pmqlp requires rafts association for surface delivery in yeast.Mol.Biol.Cell.,12:4129-4138.
    52.Gong,X.and Chang,A.2001.A mutant plasma membrane ATPase,Pmal-10,is defective in stability at the yeast cell surface.Proc.Natl.Acad.Sci.USA.,98:9104-9109.
    53.Munn,A.L.,Heese-Peck,A.,Stevenson,B.J.,Pichler,H.,and Riezman,H.1999.Specific sterols required for the internalization step of endocytosis in yeast.Mol.Biol.Cell,10;3943-3957.
    54.Heese-Peck,A.,Pichler,H.,Zanolari,B.,Watanabe,R.,Daum,G,and Riezman,H.2002.Multiple functions of sterols in yeast endocytosis.Mol.Biol.Cell,13:2664-2680.
    55.Umebayashi,K.and Nakano,A.2003.Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane.J.Cell Biol.,161:1117-1131.
    56.Beck,T.,Schmidt,A.,and Hall,M.N.1999.Starvation induces vacuolar targeting and degradation of tryptophan permease in yeast.J.Cell Biol.,146:1227-1237.
    57.Gaber,R.F.,Copple,D.M.,Kennedy,B.K.,Vidal,M.,and Bard,M.1989.The yeast gene ERG6 is required for normal membrane function but is not essential for biosynthesis of the cell-cycle-sparking sterol.Mol.Cell Biol.,9:3447-3456.
    58.Simons,K.,and Gruenberg,J.2000,Jamming the endosomal systerm:lipid rafts and lysosomal storage diseases.Trends Cell Biol.,10:459-462.
    59.Lafont,F.and Simons,K.2001.Raft-partitioning of the ubiquitin ligases Cbl and Nedd4 upon LgE-triggered cell signaling.Proc.Natl.Acad.Sci.USA.98:3180-3184.
    60.Bagnat,M.and Simons,K.2002.Cell surface polarization during yeast mating.Proc.Natl.Acad.Sci.USA.,99:14183-14188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700