东海中北部主要游泳动物食物网结构和营养关系初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东海北部近海为陆架浅海区,受台湾暖流、黄东海沿岸流、长江冲淡水以及黄海冷水团综合作用,基础饵料丰富,为多种鱼类的产卵场和索饵场,是重要的海洋渔区。目前因过度捕捞、海洋环境污染等问题面临着渔业资源衰退危机。虽已采取多种养护措施并取得一定效果,但为提高管理政策的科学性和针对性,应加强东海区相关基础,为实际生产提供理论支持。
     本论文依据2009年夏季和2010年春季在东海北部大面积采样,以及黄海南部和长江口海域的补充采样(29°~34°N;122°~127°E),首次利用稳定同位素分析方法对此水域内主要游泳动物营养关系进行全面系统的研究,得到以下主要结论。
     1.对东海最为重要的经济种类小黄鱼稳定同位素比值分析显示,小黄鱼δ~(13)C比值变化范围为-20.67‰~-15.43‰,δ~(15)N比值为9.18‰~12.23‰。δ~(13)C和δ~(15)N比值在站位间具有明显变化,其中δ~(13)C变化幅度大于δ~(15)N,跨度超过4‰。综合考虑样品体长和C/N比值因素条件下,δ~(13)C比值具有显著的空间差异(P<0.001),δ~(15)N未显示空间差异(P=0.459)。δ~(13)C比值随个体体长发生显著变化(R2=0.378,P=0.007;R2=0.584,P=0.001)。δ~(15)N比值也随体长增加出现显著增长(R2=0.489,P=0.001;R2=0.552,P=0.001)。结果显示东海北部小黄鱼摄食策略具有高度多样性,摄食饵料复杂。
     2.研究水域内主要游泳动物稳定同位素比值时空分布特点显示,2009年南黄海、东海北部水域和东海中部水域的鱼类样品δ~(13)C比值无显著性差异(P>0.05)。南黄海水域鱼类样品δ~(15)N比值与其他两处相比差异显著(P<0.001)。2010年三个海域鱼类样品δ~(13)C比值均有显著性差异(P<0.05),而δ~(15)N比值间无显著性差异(P>0.05)。此外,各海域鱼类样品存在显著的季节差异。
     利用稳定同位素方法划分鱼类食性类型的结果显示,2009年南黄海采集鱼类中,混合生物食性鱼类占总数的50%,浮游生物食性种类占37.5%,底栖生物食性鱼类仅占12.5%。东海北部采集鱼类中,混合食性种类占7.69%,完全底栖生物食性种类占总量的76.9%。东海中部水域采集种类中,混合食性种类占44.4%,完全底栖生物食性占55.6%。2010年结果具有一定差异。南黄海水域调查鱼类中,完全浮游生物食性仅占9.1%,混合食性种类占72.7%,完全底栖生物食性种类占18.2%。东海北部水域无完全浮游食性种类,混合食性类型占43.8%,完全底栖生物食性类型占56.3%。东海中部水域调查种类都是完全底栖生物食性。总体看来,本次研究中鱼类的主要食性类型偏底层生物,浮游生物食性种类很少。
     单鱼种食性类型分析结果显示,2009年夏季和2010年春季浮游生物在小黄鱼饵料中所占比例极小。2009年夏季小型鱼类如发光鲷的食物贡献率最大,为68.8%。2010年春季,神户枪乌贼为主要的食源贡献者,贡献率为56.1%。绿鳍鱼饵料食物中浮游生物的贡献率显著增多,2009年夏季和2010年春季的中值分别为5.7和1.5。底层饵料如鹰爪虾、凹管鞭虾在食源贡献占据优势地位。而神户枪乌贼贡献率中值达到45.9%,是2010年春季最大的食源贡献者。
     3.东海北部及邻近水域主要游泳动物(39种)稳定同位素分析表明,所有样品的δ~(15)N值范围为6.9‰(鳀鱼)~13.4‰(带鱼),跨度为6.5‰。δ~(13)C值-20.7‰(小黄鱼)~-14.7‰(刺鲳),跨度为6‰。各类群稳定碳氮同位素比值有显著变化(P<0.01)。线性回归分析结果表明,δ~(13)C比值和个体大小之间无显著相关( R2=0.03 , P=0.56 )。而随着个体体长增加,δ~(15)N比值有增加的趋势(y=0.0053x+9.987,R2=0.37,P=0.029)。6种游泳动物(鹰爪虾、戴氏赤虾、脊腹褐虾、小黄鱼、蓝圆鲹和黄鮟鱇)体长和δ~(13)C比值之间存在显著相关关系。4种游泳动物(脊腹褐虾、小黄鱼、银鲳和白姑鱼)δ~(15)N比值随体长而发生显著变化。
     东海北部海域主要生物资源种类的营养级处于2.50~4.01,主要集中在3.2~3.9之间。其中,营养级在2.5~3之间的生物种类占2.56%;营养级在3~3.5之间的生物种类占41.03%,以龙头鱼、鳄齿鱼、哈氏仿对虾等次级消费者为代表;营养级在3.5~4之间的生物种类占48.72%,以小黄鱼、带鱼、花斑蛇鲻、齐头鳗等杂食或肉食性鱼类为主。而营养级大于4的种类仅占7.69%,以黄鮟鱇、剑尖枪乌贼为代表。
     4.利用δ~(13)C、δ~(15)二维坐标多边形模型分析结果显示,2009年多边形顶点种类分别为脊腹褐虾、黄鮟鱇、剑尖枪乌贼、黄鲫、神户枪乌贼、日本须鳎、角木叶鲽。2010年模型结果显示图形中顶点种类依次为银鲳、龙头鱼、叫姑鱼、三疣梭子蟹、日本蟳、太阳强蟹和七星底灯鱼。这些生物是游泳动物群落的关键种,对于维持群落结构的稳定性具有重要作用。研究还表明,黄海南部、东海北部水域游泳动物群落的营养结构存在显著的季节差异。夏季群落营养结构的食源多样性和营养冗余度较低。
     5.个体大小和稳定同位素相耦合的分析结果显示,各体重等级的平均δ~(15)N比值与体重(㏒ 2)之间存在显著的线性相关,各体重等级的平均δ~(15)N比值与各等级物种丰富度之间也存在显著线性相关。研究水域捕食者-食物体重比为983.3:1,捕食者-食物数量比为0.33。
The northern East China Sea represented one of typical shallow waters within continental shelf. It served as spawning and feeding grounds for many commercial fishes for the rich food resources brought by sea currents, including Taiwan warm current, coastal currents from the Yellow Sea and the East China Sea, freshwaters from the Changjiang River and Cold water mass in the Yellow Sea. Therefore the northern East China Sea had long been considered as important marine fishery waters in China. However, fishery resources in the area were over exploited in the recent years. Theoretic studies should be enhanced in the area to make efficient and scientific managements.
     The present research studied trophic structures of main nektonic organisms in the northern East China Sea, based on a large scaled collection in this area and additional samples from the southern Yellow Sea and the Changjiang River Estuary during summer 2009 and spring 2010 (29°-34°N;122°-127°E). The results were listed as follows.
     1. Analysis on the isotope content of one of the most important fishes, small yellow croaker (Pseudosciaena polyatis) showed that theδ~(13)C varied from -20.67‰to -15.43‰, andδ~(15)N from 9.18‰to 12.23‰. Both of them had clear differences among different sampling stations. Bothδ~(13)C andδ~(15)N increased in line with the body length.
     2. Contents ofδ~(13)C in fish samples from three study areas showed no clear differences (P>0.05) during 2009 cruises, whileδ~(15)N in materials from the southern Yellow Sea showed discrepancies to the others (P<0.001). The materials from In 2010 cruises, values ofδ~(13)C in collected fish samples exhibited significant differences (P<0.05), while there existed no difference considering those ofδ~(15)N (P>0.05).
     Contents ofδ~(13)C andδ~(15)N between cruises conducted in 2009 and 2010 at three study areas showed remarked differences (P=0.015, 0.002 forδ~(13)C andδ~(15)N in southern Yellow Sea, respectively; P<0.01 forδ~(13)C andδ~(15)N in Northern East China Sea), with the exception thatδ~(13)C values in the Central East China Sea (P=0.9).
     Among eight species collected from the southern Yellow Sea from 2009, three of which were identified as feeding exclusively on planktons (including Larimichthys polyactis, Harpadon nehereus and Engraulis japonicus), four of which feeding on both plankton and benthos and the remainder only feeding on marine benthos. Fishes from the Changjiang River Estuary (13 species) could be classified into group that fed on both plankton and benthos (Pampus argenteus, Larimichthys polyactis and Champsodon capensis) and the other group fed merely on benthos (10 species in total, such as Lophius litulon, Trichiurus lepturus, Argyrosomus argentatus and Chelidonichthys kumu). Four species from the northern East China Sea (Trachurus japonicas, Acropoma japonicum, Champsodon capensis and Saurida undosquamis) utilized both plankton and benthos as food resources, while the remainder fed only on marine benthos (a total of five species, such as Psenopsis anomala, Argyrosomus argentatus, Anago anago).
     Proportions of organisms with different habits which were analyzed on the basis of materials from 2010 cruises were slightly different from those in 2009. Among organisms from the Southern Yellow Sea (11 species), only one species feeding on plankton (Apogon lineatus), eight species feeding on both plankton and benthos (such as Pampus argenteus, Engraulis japonicas, Trachurus japonicas and Larimichthys polyactis) and the other two species feeding merely on benthos (Johnius belengerii and Lophius litulon). In the Changjiang River Estuary, seven species feeding both on plankton and benthos (Pampus argenteus, Engraulis japonicas, Trichiurus lepturus, Champsodon capensis and etc.), while the other nine species feeding on benthos (such as Saurida undosquamis, Larimichthys polyactis, Lophius litulon, Chelidonichthys kumu, Rhynchoconger ectenurus, Dysomma anguillare). Twelve species from the northern East China Sea all exclusively utilized marine benthos (including Trichiurus lepturus, Champsodon capensis, Saurida undosquamis, Dysomma anguillare, Muraenesox cinereus, Rhynchoconger ectenurus and etc.).
     Both evidences from summer 2009 and spring 2010 suggested that marine planktons contributed only a small fraction of food resources for small yellow croaker. Some small sized species, such as Acropoma japonicum and Loliolus sumatrensis mainly served as food resources in 2009 and 2010 (68.8% and 56.1%, respectively). Food resources for Chelidonichthys kumu were similar with those for small yellow croaker. The largest proportion was benthos, including Trachypenaeus curvirostris, Solenocera koelbeli and etc..
     3. Studies on the isotope content of the main nektonic fishes (39 species) indicated thatδ~(15)N ranging from 6.9‰to 13.4‰, andδ~(13)C from -20.7‰to -14.7‰. There existed remarked differences among individuals within species. There were present significant differences among different groups consideringδ~(13)C andδ~(15)N values (P<0.01). Values ofδ~(13)C had no clear relationships with body length after using linear regression (R2=0.03, P=0.56), which was in contrast to that ofδ~(15)N (y=0.0053x+9.987, R2=0.37, P=0.029). Close correlations of body length andδ~(13)C were observed in a total of six species, including Trachypenaeus curvirostris, Metapenaeopsis dalei, Crangon affinis, Larimichthys polyactis, Decapterus maruadsi and Lophius litulon. As for theδ~(15)N values, the correlations were observed in four species, which were Crangon affinis, Larimichthys polyactis, Pampus argenteus and Argyrosomus argentatus.
     Trophic level for main nektonic organisms in the northern East China Sea was about the class from2.50 to 4.01, and mostly situated in the level from 3.2 to 3.9. The number of species, with which the trophic level from 2.5 to 3 accounted for the 2.56% of the total species, while those ranging from 3 to 3.5 represented the 41.03%, such as Harpadon nehereus, Champsodon capensis, Parapenaeopsis hardwickii. Species with higher trophic levels (from 3.5 to 4) in this study was about 48.72% of the total number, including Larimichthys polyactis, Trichiurus lepturus, Saurida undosquamis, Anago anago and etc.. There were also a few species with trophic level more than four in this study (represented 7.69% of total number), i.e. Lophius litulon and Uroteuthis edulis.
     4. Analysis on samples collected in 2009 using“δ~(13)C andδ~(15) two dimensional polygon”model showed Crangon affinis, Lophius litulon, Uroteuthis edulis, Setipinna taty, Loliolus sumatrensis, Paraplagusia japonica, Pleuronichthys cornutus were fringer species which suggested they played important roles in the system. Analysis on material from 2010 cruises with the same method revealed that marginal species were Benthosema pterotum, Pampus argenteus, Harpadon nehereus, Johnius belengerii, Portunus trituberculatus, Charybdis japonica, Eucrate solaris and Benthosema pterotum, respectively.
     5. Regression analysis showed body sizes were closely related to the averageδ~(15)N values. The ratio of predator and food resources in the study area was 983.3. The species richness index were also related to the averageδ~(15)N values in different size groups and the ratio of predator and food resources in the study area was 0.33.
引文
Altabet M A, Small L F. 1990. Nitrogen isotopic ratios in fecal pellets produced by marine zooplankton. Geochimica et Cosmochimica Acta. 54:155-163.
    Anderson W T. Fourqurean J W. 2003. Intra- and interannual variability in seagrass carbon and nitrogen stable isotope from south Florida, a preliminary study. Org Geochem. 34: 185-194.
    Andrew N R, Hughes L. 2005. Herbivore damage along a latitudinal gradient: Relative impacts of different feeding guilds. Oikos. 108: 176-182.
    Atwell L, Hobson K A, Welch H E. 1998. Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis. Can J Fish Aquat Sci. 55: 1114-1121.
    Bakun A. 2006. Wasp-waist populations and marine ecosystem dynamics: navigating the‘predator pit’topographies. Prog Oceanogr. 68: 271-288.
    Bearhop S, Adams C E, Waldron S, Fuller R A, Macleod H. 2004. Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology. 73:1007-1012.
    Bligh E G. Dyer W J. 1959. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37: 911-917.
    Bosley K L, Witting D A, Chambers R C, Wainright S C. 2002. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotope. Mar Ecol Prog Ser. 236: 233-240.
    Bosley K L. Wainright S C. 1999. Effects of preservatives and acidification on the stable isotope ratios (15N:14N, 13C:12C) of two species of marine animals. Can J Fish Aquat Sci. 56:2181-2185.
    Bowles K C, A pte S C, Maher W A, Kawei M, Smith R. 2001. Bioaccumulation and biomagnifications of mercury in Lake Murray, Papua New Guinea. Can J Fish Aquat Sci. 58: 888-897.
    Bray T R, Curtis J T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr., 27, 325-349.
    Brodeur R D, Pearcy W G. 1992. Effects of environmental variability on trophic interactions and food web structure in a pelagic upwelling ecosystem. Mar. Ecol. Prog. Ser., 84, 101-119.
    Broman D, Naf C, Rolff C, Zebuhr Y, Fry B, Hobbie J. 1992. Using ratios of stable nitrogen isotoes to estimate bioaccumulation and flux of polychlorinated dibenzop-dioxins (PCDDs) and dibenzofurans (PCDFs) in two food chains from the northern Baltic. Environ Toxicol Chem. 11: 331-345.
    Brose U. 2006. Consumer-resource body-size relationships in natural food webs. Ecology. 87: 2411-2417.
    Brown J H, Gillooly J F. Allen A P, Savage V M, West G B. 2004 Toward a metabolic theory of ecology. Ecology. 85(7): 1771-1789.
    Bulman C, Althaus F, He X, Bax N J, Williams A. 2001. Diets and trophic guilds of demersal fishes of the southeastern Australian shelf. Mar Freshwater Res. 52: 537-548.
    Burd B J, Thomson R E, Calvert S E. 2002. Isotopic composition of hydrothermal epiplume zooplankton: evidence of enhanced carbon recycling in the water column. Deep-Sea Res. 49: 1877-1900.
    BurtonR K, Koch P L. 1999. Isotopic tracking of foraging and long distance migration in northeastern Pacific pinnipeds. Oecologia, 119: 578-585.
    Cabana G, Rasmussen J. 1994. Modelling food-chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature, 372, 255-257.
    Caddy J, Csirk J, Garcia S M. 1998.Grainger R J R. How pervasive is“Fishing down marine food webs”. Science. 282: 183.
    Caddy J F, Rodhouse P G. 1998. Cephalopod and gtoundfish landings: evidence for ecological change in global fisheries. Reviews in Fish Biology and Fisheries. 8(4): 431-444.
    Carr W E S, Adams C A. 1973. Food habits of juvenile marine fishes occupying seagrass beds in the estuarine zone near Crystal River, Florida. T Am Fish Soc. 102:511-540.
    Chavez J A, Knotts T A, Wang L P, Li G, Dobrowsky R T, Florant G L, Summers S A. 2003. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 278:10297-303.
    Cheng J H, Cheung W W L, Pitcher T J. 2009. Mass-balance ecosystem model of the East China Sea. Prog. Nat. Sci., 19, 1271-1280.
    Chong V C, Low C B, Ichikawa T. 2001. Contribution of mangrove detritus to juvenile prawn nutrition: a dual stable isotope study in a Malaysian mangrove forest. Mar Biol. 138: 77-86.
    Cifuentes L A, Sharp J H, Fogel M L. 1988. Stable carbon and nitrogen isotope biogeochemistry in the Delaware estuary. Limnol Oceanog. 33: 1102-1115.
    Clarke K R, Gorley R N. 2006. PRIMER v6: User Manual/Turorial. PRIMER-E, Plymouth.
    Cloern J E, Canuel E A, Harris D. 2002. Stable carbon and nitrogen isotope composition of aquatic and terrestrial plants of the San Francisco Bay estuarine system. Limnol Oceanog. 47:713-729.
    Cohen J E, Beaver R A, Cousins S H, DeAngels D L, et al. 1993. Improving food webs. Ecology. 74: 252-258.
    Coplen T B, Krouse H R. 1998. Sulfer isotope consistency improved. Nature. 392:32.
    Coplen T B. 1996. New guidelined for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochim Cosmochim Acta. 60: 3359-3360.
    Craig H. 1953. The geochemistry of the stable carbon isotopes. Ceochim Cosmochim Acta. 3: 53-92.
    Craig H. 1957. Isotopic standards for carbon and oxygen and correction fractors for mass spectrometric analysis of carbon dioxide. Ceochim Cosmochim Acta. 12: 133-149.
    Craig H. 1961. Isotopic variations in meteoric waters: Science. 133: 1702-1703.
    Currin C A, Wainright S C, Able K W. 2003. Determination of food web support and trophic position of the Mummichog, Fundulus heteroclitus, in New Jersey smoothCordgrass (Spartina alterniflora), common reed (Phragmites australis), and restored salt marshes. Estuaries. 26: 496-510.
    Cushing D H. 1975. Marine ecology and fisheries. Cambridge: Cambridge University Press.
    Daskalov G M. 2002. Overfishing drives a trophic cascade in the Black Sea. Mar Ecol Prog Ser. 225: 53-63.
    Dayton P K, Thrush S, Coleman F C. 2002. Ecological Effects of Fishing in Marine Ecosystems of the United States. Virginia: Pew Oceans Commission press. Del Giorgion P A, France R L. 1996. Ecosystem-specific patterns in the relationship between zooplankton and POM or microplanktonδ13C. Limnol. Oceanog. 41: 359-365.
    DeNiro M J, Epstein S. 1978. Influence of diet on the distribution of carbon isotope in animals. Geochim. Cosmochim Acta., 42, 495-506.
    Dittel A I, Epifanio C E, Fogel M L. 2006. Trophic relationships of juvenile blue crabs (Callinectes sapidus) in estuarine habitats. Hydrobiologia. 568: 379-390.
    Doucett R R, Power G, Barton D R, Drimmie R J, Cunjak R A. 1996a. Stable isotope analysis of nutrient pathways leading to Atlantic salmon. Can J Fish Aquat Sci. 53: 2058-2066.
    Edwards M, Richardson A J. 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature. 430: 881-884.
    Elton C. 1927. Animal ecology. London: Sidgewick and Jackson Publication press.
    Estes J A. 1996. The influence of large, mobile predators in aquatic food webs: examples from sea otters and kelp forests. In: Greenstreet S, Tasker M eds. Aquatic Predators and their Prey. London: Blackwell press. 65-72.
    Evans D O, Henderson B A, Bax N J, Marshall T R, Oglesby R T, Christie W J. 1987. Concepts and methods of community ecology applied to freshwater fisheries management. Can J Fish Aquat Sci. 44: 448-470.
    Finlay J C, Power M E, Cabana G. 1999. Effects of water velocity on algal carbon isotope ratios: implications for river food web studies. Limnol Oceanog. 44:1198-1203.
    Finney B P, Gregory-Eaves I, Douglas M S V, Smol J P. 2002. Fisheries productivity in the northeastern Pacific Ocean over the past 2,200 years. Nature. 416: 729-733.
    Focken U, Becker K. 1998. Metabolic fractionation of stable carbon isotopes: implications of different proximate compositions for studies of the aquatic food webs usingδ13C data. Oecologia. 115:337-343.
    France R L. 1995a. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Mar Ecol Prog Ser. 124: 307-312.
    France R L. 1995b. Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnol Oceanog. 40: 1310-1313.
    France R L. 1996. Absence or masking of metabolic fractionations of 13C in a freshwater benthic food web. Freshwater. Biol., 36, 1-6.
    France R L. 1999. Relationships between DOC concentration and epilithon stable isotopes in boreal lakes. Freshwater Biol. 41: 101-105.
    France R L. Peters R H. 1997. Ecosystem differences in the trophic enrichment of 13C in aquatic food webs. Can J Fish Aquat Sci. 54: 1255-1258.
    France R, Chandler M, Peters R. 1998. Mapping trophic continua of benthic foodwebs: body size-δ15N relationships. Mar Ecol Prog Ser. 174: 301-306.
    Frazer T K, Ross R M, Quetin L B, Montoya J P. 1997. Turnover of carbon and nitrogen during growth of larval krill, Euphasia superba Dana: a stable isotope approach. J Exp Mar Biol Ecol. 212:259-275.
    Froese R, Garthe S, Piatkowski U, Pauly D. 2005. Trophic signature of marine organisms in the Mediterranean as compares with the other ecosystem.Belg J Zool. 135: 139-143.
    Fry B, Arnold C. 1982. Rapid 13C/12C turnover during growth of brown shrimp (Penaeus aztecus). Oecologia. 54: 200-204.
    Fry B, Sherr E B. 1984.δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contribution. Mar. Sci., 27, 13-47.
    Fry B, Silva S R, Kendall C, Anderson R K. 2002. Oxygen isotope corrections foronlineδ34S analysis. Rapid Commun Mass Sp. 16: 854-858.
    Fry B. 1991. Stable isotope diagrams of freshwater food webs. Ecology. 72: 2293-2297.
    Fry B. 1981. Natural stable carbon isotope tag traces Texas shrimp migrations. J Fish Bull US. 79(2):337-345. Fry B. 2006. Stable Isotope Ecology. Springer Press.
    Gaedke U, Straile D, Pahl-Wostl C. 1996. Trophic structure and carbon flow dynamics in the pelagic community of a large lake. In: Polis G, Winemiller K eds. Food webs: Integration of Pattern and Dynamics. New York: Chapman and Hall publication press. 60-71.
    Gaedke U. 1993. Ecosystem analysis based on biomass size distribution: A case study of plankton community in a large lake. Limnol Oceanogr. 38(1): 112-127.
    Gaskett A C, Bulman C, He X, Goldsworthy S D. 2001. Diet composition and guild structure of mesopelagic and bathypelagic fishes near Macquarie Island, Australia. New Zealand J Mar Freshwater Res. 35: 469-476.
    Gilles L, Patrick D, Sylvie G. 2004. Applications of C and N stable isotopes to ecological and environmental studies in seagrass ecosystem. Marine Pollution Bulletin. 49: 887-891.
    Gleason D F. 1986. Utilization of salt marsh plants by postlarval brown shrimp: carbon assimilation rates and food preferences. Mar Ecol Prog Ser. 31:151-158.
    Gonfiantini R. 1978. Standards for stable isotope measurements in natural compounds. Nature. 271: 534-536.
    Greenfield B K, Hrabik T R, Harvey C J, Carpenter S R. 2001. Predicting mercury levels in yellow perch: use of water chemistry, trophic ecology, and spatial traits. Can J Fish Aquat Sci. 58: 1419-1429.
    Greenstreet S P R, Rogers S I. 2006. Indicators of the health of the North Sea fish community: identifying reference levels for an ecosystem approach to management. ICES J Mar Sci. 63: 573-593.
    Grey J. 2001. Ontogeny and dietary specialization in brown trout (Salmo trutta L.) from Loch Ness, Scotland, examined using stable isotopes of carbon and nitrogen.Ecol Freshw Fish. 10: 168-176.
    Gu B, Schell D M, Alexander V. 1994. Stable carbon and nitrogen isotope analysis of the plankton food web in a subarctic lake. Can J Fish Aquat Sci. 51: 1338-1344.
    Gu B, Schelske C L, Brenner M. 1996a.. Relationship between sediment and plankton isotope ratios (δ13C andδ15N) and primary productivity in Florida lakes. Can J Fish Aquat Sci. 53: 875-883.
    Guiguer K R R A, Reist J D, Power M, Babaluk J A. 2002. Using stable isotopes to confirm the trophic ecology of Arctic charr morphotypes from Lake Hazen, Nunavut, Canada. J. Fish. Biol., 60, 348-362.
    Haines E B, Montague C L. 1979. Food source of estuarine invertebrates analyzed using 13C/12C ratios. Ecology. 60: 48-56.
    Hall R O Jr., Mayer J L. 1998. The trophic significance of bacteria in a detritus-based stream food web. Ecology. 79: 1995-2012.
    Hall S J. 1999. The Effects of Fishing in Marine Ecosystems and Communities. Oxford: Blackwell Science Ltd press.
    Hansson S, Hobbie J E, Elmgren R. 1997. The stable nitrogen isotope ratio as a marker of food-web interactions and fish migration. Ecology. 78: 2249-2257.
    Hayes J M. 1982. An introduction to isotopic measurements and terminology. Spectra. 8:3-8.
    Hecky R E, Hesslein R H. 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. J N Amer Benthol Soc. 14: 631-653.
    Herzka S Z, Holt G J. 2000. Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential applications to settlements studies. Can J Fish Aquat Sci. 57: 137-147.
    Hesslein R H, Hallard K H, Ramlal P. 1993. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced byδ34S,δ13C,δ15N. Can J Fish Aquat Sci. 50: 2071-2076.
    Hobson K A, Gibbs H L, Gloutney M L. 1997. Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis. Can J Zool.75:1720-1723.
    Hobson K A, Fiskb A, Karnovskyc N. 2002. A stable isotope (δ13C,δ15N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep-Sea Research. 49: 5131-5150.
    Holt B D, Engelkemeir A G. 1970 Thermal decomposition of barium sulfate to sulfur dioxide for mass spectrometric analysis. Anal Chem. 27: 1451-1453.
    Holt R D, Polis G A. 1997. A theoretical framework for intraguild predation. Amer Naturalist. 149: 745-764.
    Hutchings P. 1990. Review of the effects of trawling on macrobenthic epifaunal communities. Aust J Mar Freshwater Res. 41: 111-120.
    Hutchinson G E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? Amer Naturalist.93: 45-159.
    Ishihi Y, Yamada Y, Ajisaka T, Yokoyama H. 2001. Distribution of stable carbon isotope ratio in Sargassum plants. Fisheries Sci. 67:367-369.
    Jacob U, Mintenbeck K, Brey T, Knust R, Beyer K. 2005. Stable isotope food web studies: a case for standardized sample treatment. Mar. Ecol. Prog. Ser., 287, 251-253.
    Jaksic F M. 2003. How much functional redundancy is out there, or, are we willing to do away with potential backup species? In: Bradshaw G A, Marquet P A eds. How landscapes change: human disturbance and ecosystem disruptions in the Americas. Ecological Studies. Berlin: Springer-Verlag. 162: 255-262.
    Jarman W M, Hobson K A, Sydeman W J, Bacon C E, McLaren E B. 1996.
    Influence of trophic position and feeding location on contaminant levels in the Gulf of the Farallone food web revealed by stable isotope analysis. Environ Sci Technol. 30: 654-660.
    Jeffries M J, Lawton J H. 1985. Predator-prey ratios in communities of freshwater invertebrates: the role of enemy free space. Freshwater Biol. 15: 105-112.
    Jennings S, Barnes C, Sweeting C J, Polunin N V C. 2008. Application of nitrogen stable isotope analysis in size-based marine food web and macroecological research. Rapid Commun Mass Spectrom. 22:1673-1680.
    Jennings S, Greenstreet S P R, Hill L, Piet G J, Pinnegar J K, Warr K J. 2002. Long-term trends in the trophic structure of the North Sea fish community: evidence from stable isotope analysis, size-spectra and community metrics. Mar Biol. 141: 1085-1097.
    Jennings S, Lock J M. 1996. Population and ecosystem effects of fishing. In: Polunin N V C, Roberts C M eds. Reef Fisheries. London: Chapman and Hall publication press. 193-218.
    Jennings S, Pinnegar J K, Polunin N V C, Boon T W. 2001. Weak-cross species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. J Anim Ecol. 70: 934-944.
    Jennings S, Pinnegar J K, Polunin N V C, Warr K J. 2002. Linking size-based and trophic analyses of benthic community structure. Mar. Ecol. Prog. Ser., 226, 77-85.
    Jiang Y Z, Cheng J H, Li S F. 2009. Temporal changes in the fish community resulting from a summer fishing moratorium in the northern East China Sea. Mar. Ecol. Prog. Ser., 387, 265-273.
    Keough J R, Hagley C A, Ruzycki E, Sierszen M E. 1998.δ13C composition of primary producers and role of detritus in a freshwater coastal ecosystem. Limnol Oceanog. 43: 734-740.
    Kidd K A, Schindler D W, Hesslein R H, Muir D C G. 1998. Effects of trophic position and lipid on organochlorine concentrations in fisher from subarctic lakes in Yokon Territory. Can J Fish Aquat Sci. 55: 869-881.
    Kiriluk R M, Servos M R, Whittle D M, Cabana G, Rasmussen J B. 1995. Using ratios of stable nitrogen and carbon isotopes to characterize the biomagnifications of DDE, mirex, and PCB in a Lake Ontario pelagic food web. Can J Fish Aquat Sci. 52: 2660-2674.
    Kirkwood G P, Beddington J R, Rossouw J A. 1994. Harvesting species of different lifespans. In: Edwards P J, May R M, Webb N R eds. Large-scale ecology and conservation biology. Oxford: Blackwell Scientific Publication press. 199-227.
    Kirshenbaum I, Smith J S, Crowell T, Graff J, McKee R. 1947. Separation of the nitrogen isotopes by exchange reactions between ammonia and solutions ofammonium nitrate. J Chem Phys. 15: 440-446.
    Kline T C Jr, Willette T M. 2002. Pacific salmon (Oncorhynchus spp.) early marine feeding patterns based on 15N/14N and 13C/12C in Prince William Sound, Alaska. Can J Fish Aquat Sci. 59: 1626-1638.
    Kline T C Jr, Wilson W J, Goering J J. 1998. Natural isotope indicators of fish migration at Prudhoe Bay, Alaska. Can J Fish Aquat Sci. 55: 1494-1502.
    Kline T C Jr. 1999. Temporal and spatial variability of 13C/12C and 15N/14N in pelagic biota of Prince William Sound, Alaska. Can J Fish Aquat Sci. 56: 94-117.
    Kling G W, Fry B, O'Brien W J. 1992. Stable isotopes and planktonic trophic structure in Arctic lakes. Ecology, 73: 561-566.
    Kwak T J, Zedler J B. 1997. Food web analysis of southern California coastal wetlands using multiole stable isotopes. Oecologia. 110: 262-277.
    Laughlin R. 1982. Feeding habits of the blue crab, Callinectes sapidus Rathbun, in the Apalachicola Estuary, Florida. Bull. Mar. Sci., 32,807-822.
    Layman C A, Winemiller K O, Arrington D A, Jepsen D B. 2005. Body size and trophic position in a diverse tropical food web. Ecology. 86: 2530-2535.
    Layman C A, Arrington D A, Montana C G, Post D M. 2007. Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology. 88(1): 42-48.
    Leggett M F, Johannsson O, Hesslein R, Dixon D G, Taylor W D, Servos M R. 2000. Influence of inorganic nitrogen cycling on theδ15N of Lake Ontario biota. Can J Fish Aquat Sci. 57: 1489-1496.
    Leggett M F, Servos M R, Hesslein R, Johannsson O, Millard E S, Dixon D G. 1999. Biogeochemical influenes on the carbon isotope signatures of Lake Ontario biota. Can J Fish Aquat Sci. 56: 2211-2218.
    Levin P S, Holmes E E, Piner K R, Harvey C J. 2006. Shifts in a Pacific Ocean fish assemblage: the potential influence of exploitation. Conserv Biol. 4: 1181-1190.
    Lindeman R L. 1942. The trophic-dynamic aspect of ecology. Ecology. 23: 399-418.
    Litvin S Y, Weinstein M P. 2004. Multivariate analysis of stable-isotope ratios toinfer movements and utilization of estuarine organic matter by juvenile weakfish (Cynoscion regalis). Can J Fisheries Aquat Sci. 61: 1851-1861.
    Livingston R J. 1988. Inadequacy of species level designation for ecological studies of coastal migratory fishes. Environmental Biology of Fishes. 22: 225-234.
    Luczkovich J J, Norton S F, Gilmore R G. 1995. The influence of oral anatomy on prey selection during the ontogeny of two percoid fishes, Lagodon rhomboides and Centropom undecimalis. Env Biol Fish. 4: 79-95.
    Macko S A, Fogel Estep M L, Engel M H, Hare P E. 1986. Kinetic fractionation of stable nitrogen isotopes during amino acid transamination. Geochim Cosmochim Acta. 50: 2143-2146.
    Macko S A, Lee W Y, Parker P L.1982. Nitrogen and carbon isotope fractionation by two species of marine amphipods: laboratory and field studies. J Exp Mar Biol Ecol. 63: 145-149.
    Madurell T, Fanelli E, Cartes J E. 2008. Isotopic composition of carbon and nitrogen of suprabenthic fauna in the NW Balearic Islands (western Mediterranean). J. Marine. Syst., 71, 336-345.
    Mariotti A. 1983. Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature. 303: 685-687.
    Mariotti A. 1984. Natural 15N abundance measurements and atmospheric nitrogen standard calibration. Nature. 311: 251-252.
    Maruyama A, Yamada Y, Rusuwa B, Yuma M.2001. Change in the stable nitrogen isotope ratio in the muscle tissue of a migratory goby, Rhinogobius sp., in a natural setting. Can J Fish Aquat Sci.58: 2125-2128.
    Matthews B, Mazumder A. 2005. Temporal variation in body composition (C: N) helps explain seasonal patterns of zooplanktonδ13C. Freshwater. Biol., 50, 502-515.
    McConnaughy T, McRoy C P. 1979. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Mar Biol. 53: 257-262.
    McCutchan Jr. J H, Lewis Jr. W M, Kendall C, McGrath, C C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102(2), 378-390.
    Mckinney C R, Mcrea J M, Epstein S, et al. 1950. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratio. R Sci Instr. 21: 724-730.
    Melville A J, Connolly R M. 2003. Spatial analysis of stable isotope data to determine primary source of nutrition for fish. Oecologia. 136: 499-507.
    Michener R H, Schell D M. 1994. Stable isotopes ratios as tracers in marine aquatic foodwebs. In: Lajtha K, Michener R H eds. Stable Isotopes in Ecology and Environmental Sciences. Blackwell press, Oxford.
    Middelburg J J, Nieuwenhuize J. 1998. Carbon and nitrogen stable isotopes in suspended matter and sediments from the Schelde estuary. Mar Chem. 60: 217-225.
    Minawaga M, Wada E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation betweenδ15N and animal age. Geochim. Cosmochim Acta., 48, 1135-1140.
    Naeem S, Wright J P. Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecol Lett, 2003, 6: 567-579.
    Naeem S. 1998. Species redundancy and ecosystem reliability. Conser Biol. 12: 39-45.
    Nier A O. A mass spectrometer for isotope and gas analysis. Rev Sci Instr, 1947, 18: 398-411.
    Odum E P, Odum H T. 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr. 25: 291-320.
    Odum W E, Heald E J. 1975. The detritus-based food web of an estuarine mangrove community. In: Cronin L E ed. Estuarine Research. New York: Academic Press. 1: 265-286.
    Oguz T, Gilbert D. 2007. Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960-2000: evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate induced variations. Deep-Sea Res. 54: 220-242.
    Osmond C B, Valaane N, Haslam S M, Uotila P, Roksandic Z. 1981. Comparisonsofδ13C values in leaves of aquatic macrophytes from different habitats in Britain and Finland: some implications for photosynthetic processes in aquatic plants. Oecologia. 50: 117-124.
    Owen J S, Mitchell M J, Michener R H. 1999. Stable nitrogen and carbon isotopic composition of seston and sediment in two Adirondack lakes. Can J Fish Aquat Sci. 56: 2186-2192.
    Owens N J P. 1987. Natural variations in 15N in the marine environment. Advan. Mar. Biol., 24, 389-451.
    Pahl-Wostl C. 1993. Food webs and ecological networks across spatial and temporal scales. Oikos. 66: 415-432.
    Paterson A W, Whitfield A K. 1997. A stable carbon isotope study of the food-web in a freshwater-deprived South African estuary, with particular emphasis on the ichthyofauna. Estuar Coast Shelf S. 45: 705-715.
    Pauly D, Christensen V, Dalsgaard J, Froese R, Torres Jr. F. 1998. Fishing down marine food webs. Science. 279: 860-863.
    Pauly D, Christensen V, Walters C. 2000. Ecopath, ecosim and ecospace as tools for evaluating ecosystem impact of fisheries. ICES J Mar Sci. 57: 697-706.
    Pauly D, Christensen V. 1995. Primary production required to sustain global fisheries. Nature (Lond), 1995, 374(16): 255-257.
    Pauly D, Lourdes Palomares M, Froese R,Sa-a P, Vakily M, Preikshot D, Wallace S. 2001. Fishing down Canadian aquatic food web. Can J Fish Aquat Sci. 58: 51-62.
    Pauly D, Watson R. 2005. Background and interpretation of the‘Marine Trophic Index’as a measure of biodiversity. Phil Trans R Soc B. 360: 415-423.
    Perkins S E, Speakman J R. 2001. Measuring natural abundance of 13C in respired CO2: variability and implications for non-invasive dietary analysis. Funct Ecol. 15: 791-797.
    Perry A L, Low P J, Ellis J R, Reynolds J D. 2005. Climate change and distribution shifts in Marine Fishes. Science. 308: 1912-1915.
    Peterson B J, Fry B. 1987. Stable isotopes in ecosystem studies. Ann Rev Ecol Syst. 18: 293-320.
    Peterson B J, Howarth R. 1987. Sulfur, carbon, and nitrogen isotopes used to trace organic matter flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnol. Oceanogr., 32, 1195-1213.
    Peterson B J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: a review. Acta Oecologia. 20: 479-487.
    Phillips D L, Gregg J W. 2003. Source partitioning using stable isotopes: Coping with too many source. Oecologia. 130: 114-125.
    Pinnegar J K, Jennings S, O’Brien C M, Polunin N V C. 2002. Long-term changes in the trophic level of the Celtic Sea fish community and fish market price distribution. J Appl Ecol. 39: 377-390.
    Pomeroy L R, Wiebe W J, Deibel D, Thompson R J, Rowe G T, Pakulski J D. 1991. Bacterial responses to temperature and substrate concentration during the Newfoundland spring bloom. Mar. Ecol. Prog. Ser., 75, 143-159.
    Post D M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology, 83, 703-718.
    Power M, Oiwer G, Caron F, Doucett R R, Guiguer K R A. 2002. Growth and dietary niche in Salvelinus alpinus and Salvelinus frontalis as revealed by stable isotope analysis. Env Biol Fish. 64: 75-85.
    Power M. 1992. Top-down and bottom-up forces in food webs: do plants have primacy? Ecology. 73: 733-746.
    Preisser E L. 2008. Trophic Structure. In: Jorgensen S E, Fath B D eds. Encyclopedia of Ecology. Oxford: Elsevier Press B.V. 4: 3608-3616.
    Quan W M, Fu C Z, Jin B S, Luo Y Q, Li B, Chen J K, Wu J H. 2007. Tidal marshes as energy sources for commercially important nektonic organisms: stable isotope analysis. Mar Ecol Prog Ser. 352: 89-99.
    Radin N S. 1981. Extraction of tissue lipids with a solvent of low toxicity. Method Enzymol. 27: 5-7.
    Rau G H, Ainley D G, Bengston J L, Torres J J, Hopkins T L. 1992. 15N/14N and 13C/12C in Weddell Sea birds, seal, and fish: implications for diet and trophic structure. Mar Ecol Prog Ser. 84: 1-8.Rau G H, Hopkins T L, Torres J J. 1991. 15N/14N and 13C/12C in Weddell Sea
    invertebrates: implications for feeding diversity. Mar Ecol Prog Ser. 77: 1-6. Rau G H. 1980. Carbon-13/Carbon-12 variation in subalpine lake aquatic insects: food source implications. Can. J. Fisheries. Aquat. Sci., 37, 742-746.
    Reid K, Croxall J P. 2001. Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. Proc Roy Soc London B. 268: 377-384.
    Renones O, Polunin N V C, Goni R. 2002. Size related dietary shifts of Epinephelus marginatus in a western Mediterranean littoral ecosystem: an isotope and stomach content analysis. J. Fish. Biol., 61, 122-137.
    Revill A T, Young J W, Lansdell M. 2009. Stable isotopic evidence for trophic groupings and bio-regionalization of predators and their prey in oceanic waters off eastern Australia. Mar Biol. 156: 1241-1253.
    Rice J. 1995. Food web theory, marine food webs, and what climate change may do to northern fish populations. In: Beamish R J eds. Climate Change and Northern Fish Populations. Canadian Special Publication in Fisheries and Aquatic Science press. 121: 561-568.
    Richard R D, W illian H, Geoff P. 1999. Identification of anadromous and nonanadromous adult brook trout and their progeny in the Tabusinatac River,New Brunswick , by means of multiple-stable-isotope analysis. Transactions of the American Fisheries Society. 122(2): 278-288.
    Rigler F H. 1975. The concept of energy flow and nutrients flows between trophic levels .In: W H van Dobben, R H Lowe McConnell eds. Unifying Concept in Ecology. The Hague: Dr W Junk B V Publishers. 15-26.
    Roberts C M. 1995. The effects of fishing on the ecosystem structure of coral reefs. Conserv Biol. 9: 988-995.
    Rochet M J, Trenkel V M. 2003. Which community indicators can measure the impact of fishing? A review and proposals. Can J Fish Aquat Sci. 60: 86-99.
    Romanuk T N, Levings C D. 2005. Stable isotope analysis of trophic position and terrestrial vs. marine carbon sources for juvenile Pacific salmonids in nearshoremarine habitats. Fisheries. Manag. Ecol., 12, 113-121.
    Rooker J R, Turner J P, Holt S A. 2006. Trophic ecology of Sargassum associated fishes in the Gulf of Maxico determined from stable isotopes and fatty acids. Mar Ecol Prog Ser. 313: 249-259.
    Root R B. 1967. The niche exploitation pattern of the blue-grey gnatcatcher. Ecol Monogr. 37: 317-350.
    Rosenfeld J S. 2002. Functional redundancy in ecology and conservation. Oikos. 98: 156-162.
    Sarakinos H C, Johnson M L, Vander Zanden M J. 2002. A synthesis of tissue preservation effects on carbon and nitrogen stable isotope signatures. Can J Zool. 80: 381-387.
    Satterfield IV F R, Finney B P. 2002. Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years. Prog. Oceanogr., 53, 231-246.
    Schimel D S. 1993. Theory and application of tracers. Academic Press. San Diego.
    Sharon Z H, Holt J G. 2000. Change in isotopic composition of red drum larvae in response to dietary shifts:potential applications to settlement studies. Can J Fish Aquat Sci. 57(1): 137-147.
    Sheldon R W, Prakash A, Sutcliffe W H. 1972. The size distribution of particles in the ocean. Limnol Oceanogr. 17(3): 327-340.
    Sheridan P. 1979. Trophic resource utilization by three species of Sciaenid fishes in a Northwest Florida estuary. Northeast Gulf Sci. 3: 1-15.
    Sherwood G D, Rose G A. 2005. Stable isotope analysis of some representative fish and invertebrate of the Newfoundland and Labrador continental shelf food web. Estuar. Coast. Shelf. S., 63, 537-539.
    Shurin J B, Borer E T, Seabloom E W, Anderson K, Blanchette C A, Broitman B, Cooper S D, Halpen B S. 2002. A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett. 5: 785-791.
    Shurin J B, Gruner D S, Hillebrand H. 2006. All wet or dried up? Real differencesbetween aquatic and terrestrial food webs. Proc R Soc London Ser B. 273: 1-9.
    Silvert W, Platt T. 1980. Dynamic energy-flow model of the particle size distribution in pelagic ecosystem. In: Kerfoot W C eds. Evolution and ecology of zooplankton communities. New Hampshire: New England University press. 754-763.
    Simberloff D, Dayan T. 1991. The guild concept and the structure of ecological communities. Annu Rev Ecol S. 22: 115-143.
    Sinclair A R E, Mduma S, Brashares J S. 2003. Patterns of predation in a diverse predator–prey system. Nature. 425: 288-290.
    Slobodkin L B. 1962. Growth and Regulation of Animal Populations. New York. Smith B N, Epstein S. 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47: 380-384.
    Smith F E. 1969. Effects of enrichment in mathematical models. In: Jordan W R, Gilpin M E, Aber J D eds. Eutrophication: Causes, Consequences, Corrections. Washington D C: National Academy of Sciences press. 631-645.
    Spies R B, Kruger H, Ireland R, Rice D W Jr. 1989. Stable isotope ratio and contaminant concentrations in a sewage distorted food web. Mar Ecol Prog Ser. 54: 157-170.
    Swanson H K, Johnston T A, Leggett W C, Bodaly R A, Doucett R R, Cunjak R A. 2003. Trophic positions and mercury bioaccumulation in rainbow smelt (Osmerus mordax) and native forage fishes in northwestern Ontario lakes. Ecosystems. 6: 2889-299.
    Thode H G, Monster J, Dunford H B. 1961. Sulphur isotope geochemistry. Geochim Cosmochim Acta. 25: 159-174.
    Tieszen L L, Boutton T W, Tesdahl K G, Slade N H. 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for 13C analysis of diet. Oecologia, 57, 32-37.
    Tyler A V, Gabriel W L, Overholtz W J. 1982. Adaptative management based on structure of fish assemblages of northern continental shelves. Can Spec Publ Fish. 59: 149-156.
    Urey H C. 1947. The thermodynamic properties of isotopic substances. J ChemSoc. 1947: 562-581.
    Van Dover C L, Fry B. 1994. Microorganisms as food resources at deep-sea hydrothermal vents. Limnol Oceanog. 39: 51-57.
    Vander Zandan M J, Cabana G, Rasmussen J B. 1997. Comoaring trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can J Fish Aquat Sci. 54: 1142-1158.
    Vander Zanden M J, Rasmussen J B. 2001. Variation inδ15N andδ13C trophic fractionation: implications for aquatic food web studies. Limnol. Oceanogr., 46, 2061-2066.
    Vander Zanden M J, Vadeboncoeur Y. 2002. Fishes as integrators of benthic and pelagic food webs in lakes. Ecology. 83: 2152-2l 61.
    Vandermeer J. 2006. Omnivory and the stability of food webs. J Theor Biol. 238: 497-504.
    Wada E, Terazaki M, Kabaya Y, Nemoto T. 1987. 15N and 13C abundances in the Antarctic Ocean with emphasis on the biogeochemical structure of the food web. Deep-Sea. Res., 34, 829-841.
    Wainwright P C. 1988. Morphology and ecology: functional basis of feeding constraints in Caribbean labrid fishes. Ecology. 69: 635-645.
    Wilson J B. 1988. Guilds, functional types and ecological groups. Oikos. 86: 507-522.
    Wilson R M, Chanton J, Lewis G, Nowacek D. 2009. Isotopic variation (δ15N, δ13C, andδ34S) with body size in post-larval estuarine consumers. Estuar Coast Shelf S. 83(3): 307-312.
    Wootton R J. 1990. Ecology of teleost fishes. Chapman and Hall press, London. Xue Y, Jin X, Zhang B, Liang Z. 2005. Seasonal, diel and ontogenetic variation in feeding patterns of small yellow croaker in the central Yellow Sea. J. Fish. Biol., 67, 33-50.
    Yamamuro M, Kayanne H, Minagawa M. 1995. Carbon and nitrogen stable isotopes of primary producers in coral reef ecosystems. Limnol Oceanog. 40: 617-621.
    Zambrano L, Perrow M R, Sayer C D, Tomlinson M L, Davidson T A. 2006. Relationships between fish feeding guild and trophic structure in English lowland shallow lakes subject to anthropogenic influence: implications for lake restoration. Aquat Ecol. 40: 391-405.
    Zohary T, Erez J Gophen M, Berman-Frank I, Stiller M. 1994. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol Oceanog. 39: 1030-1043.
    陈新军,刘必林,王尧耕. 2009.世界头足类.北京:海洋出版社.
    陈作志,邱永松,贾晓平,钟智辉. 2008.捕捞对北部湾海洋生态系统的影响. 应用生态学报.
    窦硕增,杨纪明. 1993.渤海南部牙鲆的食性及摄食的季节性变化.应用生态学报. 4(1): 74-77.
    洪惠馨,秦忆芹,陈莲芳等. 1962.黄海南部、东海北部小黄鱼摄食习性的初步研究.∥海洋渔业资源论文选集.北京:农业出版社. 45-57.
    黄美珍. 2005.台湾海峡及邻近海域主要无脊椎动物食性特征及其食物关系研究.海洋科学. 29(1): 73-80.
    黄美珍. 2004.台湾海峡及邻近海域6种对虾食性特征及其营养级研究.台湾海峡. 23(4): 484-488.
    纪炜炜,李圣法,陈雪忠. 2010.鱼类营养级在海洋生态系统研究中的应用. 中国水产科学. 17(4): 878-887.
    江胜峰, 2007.东海区发光鲷生物学研究.上海水产大学学位论文.上海.
    金显仕. 1996.黄海小黄鱼生态和种群动态的研究.中国水产科学. 3(1): 32-46.
    李慧玉,凌建忠,李圣法. 2009.黄、东海底栖性甲壳动物种类组成的季节变化.渔业科学进展. 30(3): 13-19.
    李建生,李圣法,丁峰元,程家骅. 2007.长江口近海鱼类多样性的年际变化. 中国水产科学. 14(4): 637-643.
    李圣法,程家骅,严利平. 2007.东海大陆架鱼类群落的空间结构.生态学报. 27(11): 4378-4386.
    李圣法. 2005.东海大陆架鱼类群落生态学研究—空间格局及其多样性.华东师范大学博士学位论文.
    李圣法. 2008.以数量生物量比较曲线评价东海鱼类群落的状况.中国水产科学. 15(1): 136-144.
    李忠义,金显仕,庄志猛,唐启升,苏永全. 2005.稳定同位素技术在水域生态系统研究中的应用.生态学报. 25(11): 3052-3060.
    李忠义. 2006.应用稳定同位素技术研究长江口及南黄海水域主要鱼类摄食生态和食物网结构.厦门大学博士学位论文.
    李忠义,左涛,戴芳群,金显仕. 2010.运用稳定同位素技术研究长江口及南黄海水域春季拖网渔获物的营养级.中国水产科学. 17(1): 103-109.
    梁振林. 2000.海洋渔业资源生态监测技术.∥21世纪初海洋监测高新技术发展战略研讨会论文集.海洋出版社: 61-64.
    林龙山,程家骅,任一平. 2004.东海区小黄鱼种群生物学特性的分析.中国水产科学. 11(4): 333-338.
    林龙山,郑元甲,程家骅等. 2006.东海区底拖网渔业主要经济鱼类渔业生物学的初步研究.海洋科学. 30(2): 21-25.
    林龙山,郑元甲,刘勇,张寒野. 2006.东海区小型鱼类生态研究I—小型鱼类的种类组成及季节变化.海洋科学. 30(8): 58-63.
    林龙山. 2007.长江口近海小黄鱼食性及营养级分析.海洋渔业. 29(1): 44-48.
    林龙山. 2008.黄海南部和东海小黄鱼渔业生物学及其管理策略研究.中国海洋大学博士论文.
    刘吉明,任福海,杨辉. 2003.脉红螺生态习性的初步研究.水产科学. 22(1): 17-18.
    刘庆,徐兴华,陈燕妮. 2009.扁玉螺的形态以及行为与繁殖生物学的初步研究.齐鲁渔业.
    刘瑞玉,钟振如等. 1988.南海对虾类.北京:农业出版社.
    刘勇,李圣法,程家骅. 2006.东海、黄海鱼类群落结构的季节变化研究.海洋学报. 28(4): 108-114.
    卢伙胜,欧帆,颜云榕,张军晓. 2009.应用氮稳定同位素技术对雷州湾海域主要鱼类营养级的研究.海洋学报. 31(3): 167-174.
    全为民. 2007.长江口盐沼湿地食物网的初步研究:稳定同位素分析.复旦大学博士学位论文.上海.
    沈伟. 2008.东海区短鳄齿鱼(Champsodon snyderi)生物学和生态学初步研究.国家海洋局第二海洋研究所硕士学位论文.杭州.
    水柏年. 2003.黄海南部、东海北部小黄鱼的年龄和生长研究.浙江海洋学院学报. 22(1): 17-20.
    唐启升,苏纪兰. 2000.中国海洋生态系统动力学研究. I.关键科学问题与研究发展战略.北京:科学出版社.
    唐启升,叶懋中. 1990.山东近海渔业资源开发与保护.北京:农业出版社. 1-214.
    王保栋. 1998.长江冲淡水的扩展及其营养盐的输运.黄渤海海洋学报. 16(2): 41-47.
    王建柱,林光辉,黄建辉. 2004.稳定同位素在陆地生态系统动-植物相互关系研究中的应用.科学通报. 49: 2141-2149.
    王新刚,孙松. 2002.粒径谱理论在海洋生态学研究中的应用.海洋科学. 26(4): 36-39.
    韦晟,姜卫民. 1992.黄海鱼类食物网的研究.海洋与湖沼. 23(2): 182-192. 韦晟. 1980.黄海带鱼的摄食习性.海洋水产研究. 1: 49-57.
    徐军. 2005.应用碳氮稳定同位素探讨淡水湖泊的食物网结构和营养级关系. 中国科学院研究生院博士论文.
    薛莹,金显仕. 2003.鱼类食性和食物网研究评述.海洋水产研究. 24(2): 76-87.
    薛莹. 2005.黄海中南部主要鱼种摄食生态和鱼类食物网研究.中国海洋大学博士学位论文.
    颜忠诚,陈永林. 1998.同资源集团的概念、划分及其意义.动物学杂志. 33(3): 54-57.
    杨纪明,林景祺. 1966.烟台及其附近海区鲐鱼的摄食习性.∥太平洋西部渔业研究委员会第七次全体会议论文集.北京:科学出版社.10-25.
    杨纪明,谭雪静. 2000.渤海3种头足类食性分析.海洋科学. 24(4): 53-55.
    杨纪明,郑严. 1962.浙江、江苏近海大黄鱼Pseudosciaena crocea (Richardson)的食性及摄食的季节变化.海洋科学集刊. 2: 14-30.
    杨林林,姜亚洲,程家骅. 2010.东海太平洋褶柔鱼生殖群体的空间分布及其与环境因子的关系.生态学报. 30(7): 1825-1833. 殷名称.1995.鱼类生态学.北京:中国农业出版社.
    曾玲,金显仕,李富国等. 2005.渤海小黄鱼生殖力及其变化.海洋科学. 29(5): 80-83.
    张波,金显仕,戴芳群. 2008.长江口两种重要石首鱼类的摄食习性.动物学报. 54(2): 209-217.
    张波,唐启升,金显仕. 2009.东海生态系统高营养层次生物群落功能群及其主要种类.生态学报. 2009. 29(3): 1009-1111.
    张秋华,程家骅,徐汉祥,沈新强,俞国平,郑元甲. 2007.东海区渔业资源及其可持续利用.上海:复旦大学出版社.
    张学健,程家骅,沈伟,刘尊雷. 2010.黄海南部黄鮟鱇摄食生态.生态学报. 30(12): 3117-3125.
    张雅芝,李福振,刘向阳,蓝晞文,陈锦坤. 1994.东山湾鱼类食物网研究. 台湾海峡. 13(1): 52-61.
    章申. 2001.长江、珠江口及其邻近海域陆海相互作用.北京:海洋出版社. 10-26.
    庄平,王幼槐,李圣法,邓思明,李长松,倪勇等. 2006.长江口鱼类.上海: 上海科学技术出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700