人核诱导凋亡因子1(NAIF1)基因在胃癌及乳腺癌中的差异表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核诱导凋亡因子1(nuclear apoptosis-inducing factor 1, NAIF1)是一个新发现的核诱导凋亡蛋白,之前的研究表明其在宫颈癌细胞系HeLa人胚肾细胞系HEK293中过表达时能诱导凋亡,但具体的机制还尚未阐明。另有研究发现在HeLa细胞中NAIF11可以靠其Myb-like结构域(Myb-like domain)与HARBl结合并帮助后者入核,而HARB1足迄今唯以已知的与PIF/Harbinger转座元件同源的脊椎动物基因。因此,NAIF1可能在脊椎动物的转座方面发挥重要功能。但NAIF1在肿瘤与正常组织中的表达情况及在其肿瘤细胞中的功能相关研究还未见报道。
     本研究建立了人NAIF1蛋白的原核高效表达体系及纯化方法,并应用该方法获得一定数量和纯度的原核重组表达蛋白,同时用该蛋白作为抗原,制备了兔抗人NAIF1多克隆抗体,为后续工作提供了研究基础。.此外,我们利用该抗体对人NAIF1蛋白在正常和肿瘤组织中的表达进行了研究。组织芯片和病理切片免疫组化结果显示,NAIF1在人正常胃组织和正常乳腺组织中呈现高表达,而对应的胃癌组织和乳腺癌组织中NAIF1呈现低表达或者不表达(P<0.001)。我们还对NAIF1表达水平与临床参数如肿瘤分期、分级、性别、年龄等因索作了相关性分析。研究结果发现,NAIF1在高分化胃癌组织中的表达要高于中,、低分化胃癌组织(P=0.004);并且NAIF1的表达量随着胃癌T分期从T1至T4期的发展而逐渐降低(P=0.024)。在胃癌细胞系MKN-45中,我们发现NAIF1能抑制MKN-45的生长,流式细胞术分析结果显示NAIF1的过表达能引起MKN-45细胞系出现sub-G1期峰,形态学分析MKN-45细胞出现典型的凋亡形态学特点,机制分析结果显示NAIF1在MKN-45细胞中高表达后,导致野生型P53和Bax表达上升,Bcl-2表达下降,并且通过活化procaspase-9而不活化procaspase-8进而激活procaspase-3和PARP从而诱导凋亡。另外,我们还构建了两个NAIF1的截短体,pEGFP-N1-NLS (1-90)和pEGFP-N1-GRR(1-117),并且通过研究发现NAIF1只需其N端片段(1-90aa)即可诱发凋亡。在乳腺癌细胞系MCF-7中,我们发现NAIF1高表达对其生长没有抑制作用,也不诱导凋亡(48 h),但能抑制细胞的体外迁移和体外侵袭能力(P<0.001),机制分析结果显示NAIF1可能是通过抑制FAK的Try397位、ERK的Thr202/Tyr204位磷酸化,进而抑制MMP-9而发挥其抑制作用的。
     综上所述,我们对NAIF1在胃癌和乳腺癌中的表达情况进行了研究,探讨并揭示乐NAIF1诱导胃癌细胞系MKN-45凋亡和抑制乳腺癌细胞系MCF-7运动、侵袭的可能机制,并且发现了NAIF1发挥作用的最小功能区。研究结果不仅对深入认识NAIF1的功能大有裨益,还具有潜在的临床应用前景。
Nuclear Apoptosis-Inducing Factor 1 (NAIF1) was found to induce apoptosis when overexpressed in HeLa cells and HEK293 cells, but the mechanism was unclear. Another study showed NAIF1 can physically interact with HARB1 and promote its nuclear import by the Myb-like domain of NAIF1. As in vertebrates, the HARBI1 gene constitutes the only known example of domesticated genes derived from a PIF/Harbinger transposase, the NAIF1 directly interact with HARB1 may have important function in transposition. However, the expression and function of NAIF1 in normal and cancer tissue was lacked.
     In the present study, we first got an anti-NAIFl polyclonal antibody with high sensitivity and specificity. Then we found NAJF1 was widely expressed in many normal and cancer tissues using immunohistochemistry analysis. Especially, NAIF1 was highly expressed in normal gastric and breast tissue but down-regulated or lost in the cancer tissue respectively (P<0.001). Besides, the associations between NAIF1 protein levels and grade of differentiation, staging and other clinical indexes were also examined. The results showed NAIF1 expression was higher in well-differentiated than in moderately-or poorly-differentiated gastric cancer (p=0.004), and NAIF1 expression was associated with different T stages (p=0.024). In vitro, NAIF1 can inhibit tumor cell proliferation and induce GO/G1 phase cell cycle arrest in the MKN-45 cell line. NAIF1 can induce apoptosis through activation of procaspase-9 rather than procaspase-8 followed by activation of the caspase-3 pathway. Otherwise, we designed two truncation mutants, pEGFP-N1-NLS and pEGFP-N1-GRR. Then we identified the N-terminal 1-90 amino acid domain of NAIF1, which is a helix-turn-helix motif, was sufficient for inducing apoptosis. In breast carcinoma cell line MCF-7, we found NAIF1 can neither inhibit proliferation nor induce apoptosis, but it can inhibit the migration and invasion of MCF-7 cells. The mechanism study showed that NAIF1 can inhibit the phosphorylation of FAK(Try397) and ERK(Thr202/Thr204) pathway, therefore block the expression of MMP-9 to execute its inhibition role.
     In summary, we investigated the expression of NAIF1 in gastric and breast cancer tissue, explored the mechanism of NAIF1 inducing MKN-45 cells apoptosis and inhibiting the migration and invasion of MCF-7 cells, identified the minimal functional domain of NAIF1. Those would be beneficial for profound insights into the function of NAIF1, and will be helpful for potential clinic applications.
引文
1. Lv BF, Shi TP, Wang XY, et al. Overexpression of the novel human gene, nuclear apoptosis-inducing factor 1, induces apoptosis [J]. J Cell Biol,2006,38 (4):671-683.
    2. Sinzelle L, Kapitonov VV, Grzela DP. el al. Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes [J]. PNAS, 2008,105(12):4715-4720.
    3. LaVallie ER, DiBlasio EA, Kovacic S, Grant KL, Schendel PF, McCoy JM. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm [J] Nature Biotechnology 1993 Feb;11(2):187-193.
    4. Van Dyke MW, Sirito M, Sawadogo M. Single-step purification of bacterially expressed polypeptides containing an oligo-histidine domain. Gene.1992 Feb 1;111(l):99-104.
    5. Carrio M.M, Villaverde A. Construction and deconstruction of bacterial inclusion bodies. J Biotechnol.2002,96(1):3-12.
    6. Carrio M.M, Cubarsi R, Villaverde A. Fine architecture of bacterial incusion bodies. FEBS Lett. 2000,471(1):7-11.
    7. Fahnert B, LilieH, Neubauer P. Inclusion bodies:formation and utilisation. Adv Biochem Eng Biotechnol.2004:89:93-142.
    8. 陈晓,欧阳建,温艳婷,等.Flt3的原核表达、纯化及多克隆抗体制备[J].医学研究生学报,2008,21(11):1226-1228.
    9. Douglas Hanahan, Robert A Weinberg. The hallmarks of cancer [J]. Cell,2000,100(1): 57-70
    10. Jin S, Tong T, Fan W, et al. GADD45-indued cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity.Oncogene 2002;21:8696-704.
    11. Tokino T, Nakamura Y. The role of p53-target genes in human cancer. Crit Rev Oncol Hematol 2000;33:1-6.
    12. Hirao A, Kong YY, Matsuoka S, et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 2000;287:1824-7.
    13. Banin S, Moyal L, Shieh S, et al. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 1998;281:1674-7.
    14. Hur E, Hur W, Choi JY, et al:Functional identification of the pro-apoptotic effector domain in human Sox4. Biochem Biophys Res Commun 325:59-67,2004.
    15. Williams GT, Smith CA:Molecular regulation of apoptosis:genetic controls on cell death. Cell 74:777-779,1993.
    16. Zhang Y, Huang SY, Dong W, et al.:SOX7, down-regulated in colorectal cancer, induces apoptosis and inhibits proliferation of colorectal cancer cells. Cancer Lett 277:29-37,2009.
    17. Yu J, Cheng YY, Tao Q, Cheung KF:Methylation of protocadherin 10, a novel tumor suppressor, is associated with poor prognosis in patients with gastric cancer. Gastroenterology 136:640-651, 2009.
    18. Huynh KM, Kim G, Kim DJ, et al.:Gene expression analysis of terminal differentiation of human melanoma cells highlights global reductions in cell cycle-associated genes. Gene 433: 32-39,2009.
    19. Foster I:Cancer:A cell cycle defect. Radiography 14:144-149,2008.
    20. Senderowicz AM:Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr Opin Cell Biol 16:670-678,2004.
    21. Paulovich AG:When checkpoints fail. Cell 88:315-321,1997.
    22. McLaughlin F, Finn P, La Thangue NB:The cell cycle, chromatin and cancer:mechanism-based therapeutics come of age. Drug Discov Today 8:793-802,2003.
    23. Salvesen GS, Dixit VM:Caspases:intracellular signaling by proteolysis. Cell 91:443-446, 1997.
    24. Zhang JH, Zhang YP, Herman B:Caspases, apoptosis and aging. Ageing Res Rev 2:357-366, 2003.
    25. Boatright KM, Salvesen GS:Mechanisms of caspase activation. Curr Opin Cell Biol 15:725-731, 2003.
    26. Alibardi L, Toni M:Immunocytochemistry and protein analysis suggest that reptilian claws contain small high cysteine-glycine proteins. Tissue and Cell 41:180-192,2009.
    27. Komatsu K, Driscoll WJ, Koh YC, Strott CA:A P-Loop-Related Motif (GxxGxxK) highly conserved in sulfotransferases is required for binding the activated sulfate donor. Biochem Biophys Res Commun 204:1178-1185,1994.
    28. Pereira S, Massacrier A, Roll P:Nuclear localization of a novel human syntaxin 1B isoform. Gene 423:160-171,2008.
    29. Wilson KA, Maer AL, Poumbourios P:An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability. Biochem Biophys Res Commun 359:1037-1043,2007.
    30. Nakaminami K, Sasaki K, Kajita S:Heat stable ssDNA/RNA-binding activity of a wheat cold shock domain protein. FEBS Lett 579:4887-4891,2005.
    31. Tubbs JL, Pegg AE, Tainer JA:DNA binding, nucleotide flipping, and the helix-turn-helix motif in base repair by 06-alkylguanine-DNA alkyltransferase and its implications for cancer chemotherapy. DNA Repair 6:1100-1115,2007.
    32. Wang YX, Zhang HJ, Xu J, et al.: Mutational analysis of the "turn" of helix clamp motif of HIV-1 reverse transcriptase. Biochem Biophys Res Commun 377:915-920,2008.
    33. Yoneyama M, Tochio N, Umehara T, Koshiba S:Structural and Functional Differences of SWIRM Domain Subtypes. J Mol Biol 369:222-238,2007.
    34. Tochio N, Umehara T, Koshiba S, Inoue M:solution Structure of the SWIRM Domain of Human Histone Demethylase LSD1. Structure 14:457-468,2006.
    35. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC:Cancer statistics,2005. CA Cancer J Clin 55: 10-30,2005.
    36. Parkin DM, Bray F, Ferlay J, Pisani P:Global cancer statistics,2002. CA Cancer J Clin 55: 74-108,2005.
    37. Wang WP, Ni KY, Zhou GH:Association of IL1B polymorphisms with gastric cancer in a Chinese population. Clin Biochem 40:218-225,2007.
    38. Call JA, Eckhardt SG, Camidge DR:Targeted manipulation of apoptosis in cancer treatment. Lancet Oncol 9:1002-1011,2008
    39. Johnstone RW, Frew AJ, Smyth MJ:The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8:782-798,2008.
    40. Yotsumoto F, Yagi H, Suzuki SO, et al:Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem Biophys Res Commun 365:555-561,2008.
    41. A. Jemal, E.Ward,M.J. Thun, Recent trends in breast cancer incidence rates by age and tumor characteristics among US women, Breast Cancer Res.9 (3) (2007) R28.
    42. M. Lacroix, Significance, detection and markers of disseminated breast cancer cells, Endocr. Relat. Cancer 13 (4) (2006) 1033-1067.
    43. S. Wang, Q. Liu, Y. Zhang, et al, Suppression of growth, migration and invasion of highly-metastatic human breast cancer cells by berbamine and its molecular mechanisms of action, Mol. Cancer 8 (2009) 81.
    44. M. Yilmaz, G. Christofori, F. Lehembre, Distinct mechanisms of tumor invasion and metastasis, Trends Mol. Med.13 (12) (2007) 535-541
    45. M. Hidalgo, S.G. Eckhardt, Development of matrix metalloproteinase inhibitors in cancer therapy, J. Natl. Cancer Inst.93 (3) (2001) 178-193
    46. A.F. Chambers, L.M. Matrisian, Changing views of the role of matrix metalloproteinases in metastasis, J. Natl. Cancer Inst.89 (17) (1997) 1260-1270.
    47. K.S. Nam, Y.H. Shon, Suppression of metastasis of human breast cancer cells by chitosan oligosaccharides, J. Microbiol. Biotechnol.19 (6) (2009) 629-633.
    48. N. Lu, Y. Ling, Y. Gao, et al., Endostar suppresses invasion through downregulating the expression of matrix metalloproteinase-2/9 in MDA-MB-435 human breast cancer cells, Exp. Biol. Med. (2338) (2008) 1013-1020. Maywood.
    49. J.L. Jones, J.A. Shaw, J.H. Pringle, et al, Primary breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells, J. Pathol.201 (4) (2003) 562-572.
    50. M.M. Aye, C. Ma, H. Lin, et al, Ethanol-induced in vitro invasion of breast cancer cells:the contribution of MMP-2 by fibroblasts, Int. J. Cancer 112 (5) (2004) 738-746.
    51. E.S. Kim, Y.W. Sohn, A. Moon, TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells, Cancer Lett. 252 (1)(2007)147-156.
    52. M. Cohen, A. Meisser, L. Haenggeli, et al., Involvement of MAPK pathway in TNF-alpha-induced MMP-9 expression in human trophoblastic cells, Mol. Hum. Reprod.12 (4) (2006)225-232.
    53. R. Kajanne, P. Miettinen, A. Mehlem, et al, EGF-R regulates MMP function in fibroblasts through MAPK and AP-1 pathways, J. Cell Physiol.212 (2) (2007) 489-497.
    54. J. Westermarck, T. Holmstrom, M. Ahonen, el al., Enhancement of fibroblast collagenase-1 (MMP-1) gene expression by tumor promoter okadaic acid is mediated by stress-activated protein kinases Jun N-terminal kinase and p38, Matrix Biol.17 (8-9) (1998) 547-557.
    55. Nakanishi, K., Sakamoto, M.. Yasuda, J., Takamura, M, Fujita, N., Tsuruo, T., Todo, S., Hirohashi, S.,2002. Critical involvement of the phosphatidylinositol 3-kinase/Akt pathway in anchorage-independent growth and hematogeneous intrahepatic metastasis of liver cancer. Cancer Res.62,2971-2975.
    56. Poste, G.,1985. Current concepts of cancer metastasis. Trans. Stud. Coll. Physicians Phila.7, 239-251.
    57. Fidler, I.J., Poste, G.,1982. Macrophages and cancer metastasis. Adv. Exp. Med. Biol.155, 65-75.
    58. Steeg, P.S.,2006. Tumor metastasis:mechanistic insights and clinical challenges. Nat. Med.12, 895-904
    59. Stetler-Stevenson, W.G., Aznavoorian, S., Liotta, L.A.,1993. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol.9,541-573.
    60. Ueda, J., Kajita, M., Suenaga, N., Fujii, K., Seiki, M,2003. Sequence-specific silencing of MT1-MMP expression suppresses tumor cell migration and invasion:importance of MT1-MMP as a therapeutic target for invasive tumors. Oncogene 22,8716-8722
    61. Zhang, J., Shen, Y., Liu, J.,Wei, D.,2005. Antimetastatic effect of prodigiosin through inhibition of tumor invasion. Biochem. Pharmacol.69,407-414
    62. Schwartz, G.K.,1996. Invasion and metastases in gastric cancer:in vitro and in vivo models with clinical correlations. Semin. Oncol.23,316-324
    63. Thompson, E.W., Yu, M., Bueno, J., Jin, L., Maiti, S.N., Palao-Marco, F.L., Pulyaeva, H., Tamborlane, J.W., Tirgari, R., Wapnir, I., et al.,1994. Collagen induced MMP-2 activation in human breast cancer. Breast Cancer Res Treat.31,357-370
    64. Liabakk, N.B., Talbot, I., Smith, R.A.,Wilkinson, K., Balkwill, F,1996.Matrixmetallo-protease 2 (MMP-2) andmatrixmetalloprotease 9 (MMP-9) type IVcollagenases in colorectal cancer. Cancer Res.56,190-196.
    65. Lee, K.H., Hyun, M.S., Kim, J.R.,2003. Growth factor-dependent activation of the MAPK pathway in human pancreatic cancer:MEK/ERK and p38 MAP kinase interaction in uPA synthesis. Clin. Exp. Metastasis 20,499-505.
    66. M. Stallings-Mann, D. Radisky, Matrix metalloproteinase-induced malignancy in mammary epithelial cells, Cells, Tissues, Organs 185 (2007) 104-110
    67. W.G. Stetler-Stevenson, Type IV collagenases in tumor invasion and metastasis, Cancer Metastasis Reviews 9 (1990) 289-303.
    68. F.G. Giancotti, E. Ruoslahti, Integrin signaling, Science 285 (1999) 1028-1032. New York, NY.
    69. Z.S. Zeng, A.M. Cohen, J.G. Guillem, Loss of basement membrane type IV collagen is associated with increased expression of metalloproteinases 2 and 9 (MMP-2 and MMP-9) during human colorectal tumorigenesis, Carcinogenesis 20 (1999) 749-755.
    70. F.J. Bianco Jr., D.C. Gervasi, R. Tiguert, D.J. Grignon, J.E. Pontes, J.D. Crissman, R. Fridman, D.P. Wood Jr., Matrix metaIloproteinase-9 expression in bladder washes from bladder cancer patients predicts pathological stage and grade, Clinical Cancer Research 4 (1998) 3011-3016.
    71. M.I. Cockett, G. Murphy, M.L. Birch, J.P. O'Connell, T. Crabbe, A.T. Millican, I.R. Hart, A.J. Docherty, Matrix metalloproteinases and metastatic cancer, Biochemical Society Symposium 63 (1998)295-313.
    72. A.S. Papathoma, V. Zoumpourlis, A. Balmain, A. Pintzas, Role of matrix metalloproteinase-9 in progression of mouse skin carcinogenesis, Molecular Carcinogenesis 31 (2001) 74-82
    1. Breckenridge, D. and Xue, D. (2004) Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr. Opin. Cell Biol.16,647-652
    2. Schimmer, A. (2004) Inhibitor of apoptosis proteins:translating basic knowledge into clinical practice. Cancer Res.64,7183-7190
    3. O'Brate, A. andGiannakakou, P. (2003) The importance of p53 location:nuclear or cytoplasmic zip code? Drug Resist. Updat.6,313-322
    4. Schimmer, A.D. et al. (2004) Small-molecule antagonists of apoptosis suppressor XIAP exhibit broad antitumor activity. Cancer Cell 5,25-35
    5. Yang, L. et al. (2003) Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells:implication for cancer specific therapy. Cancer Res.63, 6815-6824
    6. Sievers, E. (2003) Antibody-targeted chemotherapy of acute myeloid leukemia using gemtuzumab ozogamicin (Mylotarg). Blood Cells Mol. Dis.31,7-10
    7. DiJoseph, J. et al. (2004) Antibody-targeted chemotherapy with CMC-544:a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 103, 1807-1814
    8. Kreitman, R.J. et al. (2005) Phase I trial of recombinant immunotoxin RFB4(dsFv)-PE38 (BL22) in patients with B-cellmalignancies. J. Clin. Oncol.23,6719-6729
    9. Jazirehi, A.R. and Bonavida, B. (2005) Cellular and molecular signal transduction pathways modulated by rituximab (rituxan, anti-CD20 mAb) in non-Hodgkin's lymphoma:implications in chemosensitization and therapeutic intervention. Oncogene 24,2121-2143
    10. Byrd, J. et al. (2002) The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia:evidence of caspase activation and apoptosis induction. Blood 99,1038-1043
    11. Mone, A. et al. (2004) HulDI0 induces apoptosis concurrent with activation of the AKT survival pathway in human chronic lymphocytic leukemia cells. Blood 103,1846-1854
    12. Friedlos, F. et al. (2002) Three new prodrugs for suicide gene therapy using carboxypeptidase G2 elicit bystander efficacy in two xenograft models. Cancer Res.62,1724-1729
    13. Asklund, T. et al. (2003) Gap junction-mediated bystander effect in primary cultures of human malignant gliomas with recombinant expression of the HSVtk gene. Exp. Cell Res.284,185-195
    14. Eggermont, A. et al. (2003) Current uses of isolated limb perfusion in the clinic and a model system for new strategies. Lancet Oncol.4,429-437
    15. Timmer, T. et al. (2002) Fas receptor-mediated apoptosis:a clinical application? J. Pathol.196, 125-134
    16. Greaney, P. et al. (2006) A Fas agonist induces high levels of apoptosis in haematological malignancies. Leuk. Res.30,415-426
    17. Kelley, S.K. et al. (2001) Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans:characterization of in vivo efficacy, pharmacokinetics, and safety. J. Pharmacol. Exp. Ther.299,31-38
    18. Muhlenbeck, F. et al. (2000) The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J. Biol. Chem.275,32208-32213
    19. Kelley, R. et al. (2005) Receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis factor-related apoptosis-inducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling. J. Biol. Chem.280,2205-2212
    20. MacFarlane, M. et al. (2005) TRAIL receptor-selective mutants signal to apoptosis via TRAIL-R1 in primary lymphoid malignancies. Cancer Res.65,11265-11270
    21. Wajant, H. et al. (2001) Differential activation of TRAIL-R1 and-2 by soluble and membrane TRAIL allows selective surface antigen-directed activation of TRAIL-R2 by a soluble TRAIL derivative. Oncogene 20,4101-4106
    22. Bremer, E. et al. (2004) Target cell-restricted and-enhanced apoptosis induction by a scFv:sTRAIL fusion protein with specificity for the pancarcinoma-associated antigen EGP2. Int. J. Cancer 109,281-290
    23. Bremer, E. et al. (2005) Simultaneous inhibition of epidermal growth factor receptor (EGFR) signaling and enhanced activation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis induction by an scFv:sTRAIL fusion protein with specificity for human EGFR. J. Biol. Chem.280,10025-10033
    24. Samel, D. et al. (2003) Generation of a FasL-based proapoptotic fusion protein devoid of systemic toxicity due to cell-surface antigen-restricted activation. J. Biol. Chem.278, 32077-32082
    25. Bremer, E. et al. (2005) Target cell-restricted apoptosis induction of acute leukemic T cells by a recombinant tumor necrosis factor-related apoptosis-inducing ligand fusion protein with specificity for human CD7. Cancer Res.65,3380-3388
    26. Bremer, E. et al. (2004) Exceptionally potent anti-tumor bystander activity of an scFv:sTRAIL fusion protein with specificity for EGP2 toward target antigen-negative tumor cells. Neoplasia 6, 636-645
    27. Bremer, E. et al. (2005) CD7-restricted activation of Fas-mediated apoptosis:a novel therapeutic approach for acute T-cell leukemia.Blood 107,2863-2870
    28. Le, L.H. et al. (2004) Phase I study of a fully human monoclonal antibody to the tumor necrosis factor-related apoptosis inducing ligand death receptor 4 (TRAIL-R1) in subjects with advanced solid malignacies or non-Hodgkin's lyphoma (NHL). J. Clin. Oncol.22,2533
    29. de Bono, J. et al. (2004) 6 A phase I and pharmacokinetic (PK) study of an agonistic, fully human monoclonal antibody, HGS-ETR2, to the TNFa-related apoptosis inducing ligand receptor 2 (TRAIL-R2) in patients with advanced cancer. Eur. J. Cancer Suppl.2,61 (Meeting Abstracts)
    30. Takeda, K. et al. (2004) Induction of tumor-specific T cell immunity by anti-DR5 antibody therapy. J. Exp. Med.199,437-448
    31. Lane, D. et al. (2006) Acquired resistance to TRAIL-induced apoptosis in human ovarian cancer cells is conferred by increased turnover ofmature caspase-3. Mol. Cancer Ther.5,509-521
    32. Horak, P. et al. (2005) Contribution of epigenetic silencing of tumor necrosis factor-related apoptosis inducing ligand receptor 1 (DR4) to TRAIL resistance and ovarian cancer. Mol. Cancer Res.3,335-343
    33. Liu, F. and Rabinovich, G. (2005) Galectins as modulators of tumour progression. Nat. Rev. Cancer5,29-41
    34. Mallucci, L. et al. (2003) Turning cell cycle controller genes into cancer drugs:A role for an antiproliferative cytokine (bGBP). Biochem. Pharmacol.66,1563-1569
    35. Hahn, H.P. et al. (2004) Galectin-1 induces nuclear translocation of endonuclease G in caspase-and cytochrome c-independent T cell death.Cell Death Differ.11,1277-1286
    36. Ravatn, R. et al. (2005) Circumventing multidrug resistance in cancer by b-galactoside binding protein, an antiproliferative cytokine. Cancer Res.65,1631-1634
    37. Rubinstein, N. et al. (2004) Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection:a potential mechanism of tumor-immune privilege. Cancer Cell 5,241-251
    38. Rabinovich, G. et al. (2006) Synthetic lactulose amines:novel class of anticancer agents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation and endothelial cell morphogenesis. Glycobiology 16,210-220
    39. Mani, A. and Gelmann, E. (2005) The ubiquitin-proteasome pathway and its role in cancer. J. Clin. Oncol.23,4776-4789
    40. Kane, R. et al. (2003) Velcade(R):U. S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist 8,508-513
    41. Fernandez, Y. et al. (2005) Differential regulation of noxa in normal melanocytes and melanoma Cells by proteasome inhibition:therapeutic implications. Cancer Res.65,6294-6304
    42. Ling, Y. et al. (2003) Mechanisms of proteasome inhibitor PS-341-induced G2-M-phase arrest and apoptosis in human non-small cell lung cancer cell lines. Clin. Cancer Res.9,1145-1154
    43. Brooks, A.D. et al. (2005) The proteasome inhibitor bortezomib (Velcade) sensitizes some human tumor cells to Apo2L/TRAIL-mediated apoptosis. Ann. N. Y. Acad. Sci.1059,160-167
    44. Badros, A. et al. (2005) Phase Ⅱ study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J. Clin. Oncol.23,4089-4099
    45. Walensky, L. et al. (2004) Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science 305,1466-1470
    46. Oltersdorf, T. et al. (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435,677-681
    47. Fleischer, B. et al. (2006) Mcl-1 is an anti-apoptotic factor for human hepatocellular carcinoma. Int. J. Oncol.28,25-32
    48. Del Bufalo, D. et al. (2003) Treatment of melanoma cells with a bcl-2/bcl-xL antisense oligonucleotide induces antiangiogenic activity. Oncogene 22,8441-8447
    49. Bockbrader, K. et al. (2005) A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL-and etoposide-induced apoptosis in breast cancer cells. Oncogene 24, 7381-7388
    50. Whitesell, L. and Lindquist, S.L. (2005) HSP90 and the chaperoning of cancer. Nat. Rev. Cancer 5.761-772
    51. Ramanathan, R. et al. (2005) Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin. Cancer Res.11,3385-3391
    52. Grbovic, O.M. et al. (2006) V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc. Natl. Acad. Sci. U. S. A.103,57-62
    53. Castro, J. et al. (2005) ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood 106,2506-2512
    54. Chen, G. et al. (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol. Cell 9,401-410
    55. Wang, X. et al. (2006) 17-Allylamino-17-demethoxygeldanamycin synergistically potentiates tumor necrosis factor-Induced lung cancer cell death by blocking the nuclear factor-kB pathway. Cancer Res.66,1089-1095
    56. Vogelstein,B. et al. (2000) Surfing the p53 network.Nature 408,307-310
    57. Vassilev, L. et al. (2004) in vivo Activation of the p53 Pathway by small-molecule antagonists of MDM2. Science 303,844-848
    58. Issaeva, N. et al. (2004) Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat.Med.10.1321-1328
    59. Bykov, V. et al. (2002) Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound.Nat.Med.8,282-288
    60. Schnitzer, S.E. et al. (2006) Hypoxia and HIF-la protect A549 cells from drug-induced apoptosis. Cell Death. Differ, doi:10.1038/sj.cdd.4401864
    61. Leek, R.D. et al. (2005) The role of hypoxia-inducible factor-1 in three-dimensional tumor growth, apoptosis, and regulation by the insulin-signaling pathway. Cancer Res.65,4147-4152
    62. Welsh, S. et al. (2004) Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-la. Mol. Cancer Ther.3,233-244
    63. Sun, X. et al. (2001)Gene transfer of antisense hypoxia inducible factor-1 a enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther.8,638-645
    64. Baylin, S. and Ohm, J. (2006) Epigenetic gene silencing in cancer-a mechanism for early oncogenic pathway addiction? Nat. Rev. Cancer 6,107-116
    65. Graff, J.R. et al. (1995) E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res.55,5195-5199
    66. Issa, J. et al. (2005) Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J. Clin. Oncol.23,3948-3956
    67. Tamm, I. et al. (2005)Decitabine activates specific caspases downstream of p73 in myeloid leukemia. Ann. Hematol.84 (Suppl.13),47-53
    68. Minucci, S. and Pelicci, P. (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat. Rev.Cancer 6,38-51
    69. Kuendgen, A. et al. (2005) Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann. Hematol.84 (Suppl.13),61-66
    70. Dokmanovic,M. andMarks, P.A. (2005) Prospects:histone deacetylase inhibitors. J. Cell. Biochem.96,293-304
    71. Insinga, A. et al. (2005) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat. Med.11,71-76
    72. Nebbioso, A. et al. (2005) Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells. Nat. Med.11,77-84
    73. Nakata, S. et al. (2004) Histone deacetylase inhibitors upregulate death receptor 5/TRAIL-R2 and sensitize apoptosis induced by TRAIL/APO2-L in human malignant tumor cells. Oncogene 23,6261-6271
    74. Yu, X. et al. (2002) Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J. Natl.Cancer Inst.94,504-513
    75. Yang,H. et al. (2005) Antileukemia activity of the combination of 5-aza-20-deoxycytidine with valproic acid. Leuk. Res.29.739-748
    76. Blagosklonny, M.V. (2005) Overcoming limitations of natural anticancer drugs by combining with artificial agents. Trends Pharmacol. Sci.26,77-81
    77. Blagosklonny,M.V. (2004) Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle 3,1035-1042
    78. Blagosklonny, M.V. (2004) Prospective strategies to enforce selectively cell death in cancer cells. Oncogene 23,2967-2975
    79. Gerspach, J. et al.2005. Restoration of membrane TNF-like activity by cell surface targeting and matrix metalloproteinase-mediated processing of a TNFprodrug.13,273-284.
    80. Azam, M. et al. (2003) Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112,831-843

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700