光滑假丝酵母菌耐药性分析及对氟康唑耐药机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     近年来,随着广谱抗生素、免疫抑制剂的广泛应用,器官移植、骨髓移植、介入性诊疗的开展以及艾滋病患者的增多,深部真菌感染的发生率逐年增加,其中以白假丝酵母菌最为常见,其次就是光滑假丝酵母菌。三唑类代表性药物氟康唑因具有良好的生物利用度和安全性,被广泛用于治疗侵袭性假丝酵母菌感染。光滑假丝酵母菌对氟康唑存在固有的低敏感率,在氟康唑的长期治疗下更易发展为氟康唑耐药株。
     目前,唑类药物主要的耐药机制在白假丝酵母菌和酿酒酵母中研究的较多的包括:14DM的过表达;唑类药物与靶酶结合位点的改变;麦角固醇生物合成途径中其他基因的突变以及由于ATP-结合盒(ABC)和主要易化扩散载体超家族基因过表达而导致的假丝酵母菌属药物外排的增加。国内尚未见光滑假丝酵母菌对唑类抗真菌药物耐药机制的报道。本课题就2007年7月至2008年7月安徽医科大学第一附属医院临床分离的光滑假丝酵母菌的耐药性及对氟康唑的耐药机制进行研究。
     目的了解临床分离的光滑假丝酵母菌的耐药性及其对氟康唑的耐药机制。
     方法运用ATB Fungus3药敏板条检测2007年7月至2008年7月安徽医科大学第一附属医院临床分离的190株光滑假丝酵母菌对抗真菌药物的敏感性;从中随机选取氟康唑耐药和敏感各5株,采用微量肉汤稀释法进一步检测对抗真菌药物的最低抑菌浓度;PCR扩增光滑假丝酵母菌靶酶基因CgERG11并测序分析;测定荧光染料罗丹明123在敏感与耐药菌株中的外排情况;RT-PCR检测光滑假丝酵母菌外排泵基因的表达水平。
     结果190株光滑假丝酵母菌中有23株对氟康唑耐药,耐药率为12.1%;10株光滑假丝酵母菌的MIC值显示,一株氟康唑耐药株对伊曲康唑剂量依赖性敏感,一株氟康唑敏感株对伊曲康唑耐药;靶酶基因的扩增测序结果显示,一株光滑假丝酵母菌氟康唑耐药株的靶酶基因CgERG11出现了一处点突变,并未引起氨基酸改变;光滑假丝酵母菌氟康唑耐药株与敏感株对荧光染料罗丹明123外排检测结果显示,耐药株和敏感株中外排存在显著的差异;RT-PCR检测氟康唑耐药株与敏感株中外排泵基因结果显示,CgCDR1与CgCDR2基因在耐药株与敏感株之间表达水平有显著性差异。
     结论光滑假丝酵母菌对氟康唑的耐药形势严峻;氟康唑和伊曲康唑在光滑假丝酵母菌中存在交叉耐药现象;荧光染料罗丹明123可作为耐药光滑假丝酵母菌外排情况的指示剂;光滑假丝酵母菌对氟康唑耐药的主要机制系外排泵基因的过表达,未发现靶酶基因的有意义突变。
Background:
     In recent years, following the widespread use of wide-spectrum antibiotics, immunosuppressive ,the application of organ transplantation,marrow transplantation, interventional therapy and the rise of the acquired immunodeficiency syndrome(AIDS), the incidence of fungous infections had increased year by year. C. albican is the most prevalent opportunistic pathogen of candida species in human, C. glabrata ranks the second. Being one of triazole antifungal agents, fluconazole has becoming the treatment of choice for invasive candidiasis because of its biological availability and safety. C. glabrata exhibits intrinsically low susceptibility to fluconazole, and resistant strains of this species occurs easily after prolonged therapy with fluconazole
     The major mechanisms of azoles resistance described to date have been primarily based on studies done in C. albicans and Saccharomyces cerevisiae include over expression of C14-lanosterol demethylase, alteration of the azole-binding site of C14-lanosterol demethylase, mutation in other ergosterol biosynthetic genes, and increased drug efflux. Increased drug efflux in Candida species is mainly due to increased expression of ATP-binding cassette (ABC) and major facilitator superfamily transporters. There is no report about the mechanisms of C. glabrata to azoles antifungal agents in China. The subject is to analyze the drug resistance of C. glabrata isolated from the First Affiliated Hospital of Anhui Medical University from Jul 2007 to Jul 2008 and to investigate the molecular mechanisms of fluconazole resistance in clinical isolates of C. glabrata. Objective: To analyze the drug resistance of C. glabrata isolated from clinical and to investigate the molecular mechanisms of fluconazole resistance in clinical isolates of C. glabrata.
     Methods: The ATB Fungus 3 reagents board was performed to determine the drug susceptibilities of antifungal agents to 190 strains of C. glabrata isolated from the First Affiliated Hospital of Anhui Medical University from Jul 2007 to Jul 2008.The broth microdilution method was performed to determine the minimal inhibitory concentration of four sorts of antifungal agents to 5 strains of fluconazole-resistace C. glabrata and 5 strains of fluconazole-susceptible C. glabrata which were selected randomly from 190 strains of C. glabrata isolates. The CgERG11 genes of 5 strains of FCA-susceptible and 5 strains of FCA-resistant isolated C. glabrata were amplified by PCR and were sequenced ; Detected the efflux of fluromchrome Rhodamine 123 between FCA-susceptible and FCA-resistant strains; Reverse transcriptase-poly- -merase chain reaction (RT-PCR) was used to measure the mRNA level of active efflux pump gene CgCDR1 and CgCDR2 .
     Results: 23 of the 190 isolates were resistant to fluconazole,the rate of resistance is 12.1%;The MIC results of 10 strains of C. glabrata showed that one strain of FCA- resistance C. glabrata was S-DD to itraconazole, one strain of FCA-susceptible isolate was resistance to itraconazole. The CgERG11 genes of all C. glabrata isolates were amplified and sequenced; the results showed that there is a mutation in one strain of FCA-resistant C. glabrata but no varian chang of amino acid. The results of the efflux of fluromchrome Rhodamine 123 between FCA-resistance isolates and FCA-susceptible isolates showed that there were significant difference between FCA-resistance isolates and FCA-susceptible C. glabrata isolates; and the gene expression levels of CgCDR1 and CgCDR2 were also significant difference between FCA-resistance and FCA-susceptible C. glabrata isolates by RT-PCR.
     Conclusions: The resistance of C. glabrata to fluconazole is severe; There is cross-resistance between fluconazole and itraconazole in C. glabrata; Fluorochrome Rhodamine 123 can use as an indicator of the efflux experiment of FCA- resistance C. glabrata isolates; The main mechanisms of FCA-resistance in clinical isolates of C. glabrata is the over-express of efflux pump genes, no found the missense mutation of the target enzyme genes.
引文
1. Pappas PG, Rex JH, Lee J, et al. A prospective observational study of candidemia: epidemiology, therapy, and influences on mortality in hospitalized adult and pediatric patients [J]. Clin Infect Dis. 2003, 37(5):634–643.
    2. Dan M, Segal R, MarderV, et al. Candida colonization of the vagina in elderly residents of a long-term-care hospital. Eur J Clin Microbiol Infect Dis [J]. 2006, 25(6):394–396.
    3. Goswami D, Goswami R, Banerjee U, et al. Pattern of Candida species isolated from patients with diabetes mellitus and vulvovaginal candidiasis and their response to single dose oral fluconazole. J. Infect [J]. 2006, 52(2):111–117.
    4.. Ray D, Goswami R, Banerjee U, et al .Prevalence of Candida glabrata and its response to boric acid vaginal suppositories in comparison with oral fluconazole in patients with diabetes and vulvovaginal candidiasis. Diabetes Care [J].2007, 30(2):312–317.
    5. Gygax SE, Vermitsky JP, Chadwick SG, et al. Antifungal resistance of Candida glabrata vaginal isolates and development of a quantitative reverse transcription-PCR-based azole susceptibility assay [J].Antimicrob Agents Chemother. 2008, 52(9):3424-3426.
    6. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem [J]. Clin Microbiol Rev. 2007, 20(1): 133–163.
    7.Salavert LletíM, Jarque Ramos I, Pemán García J.Changing epidemiological aspects of candidemia and their clinical and therapeutic implications. Enferm Infecc Microbiol Clin [J]. 2006, 24 (1):36-45.
    8.Fedorovskaia EA, Rybal'skaia AP, Skachkova NK, et al. Characteristic of the yeast isolated from patients with leukaemia[J]. Mikrobiol Z. 2008, 70(4):18-24.
    9. Fujihara S, Imataki O, Tamai Y, et al. Fungal blood stream infection, its pathogen and antifungal susceptibility in cancer patients[J].GanTo Kagaku Ryoho. 2008, 35(13):2383-2387.
    10.Yin QQ, Zhang YT, Fang Q. Study on the morbidity and pathogens of patients with candidemia at the intensive care unit [J]. Zhonghua Liu Xing Bing Xue Za Zhi. 2008, 29(5):464-468.
    11. White .T.C., Marr K.A. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance [J].Clin. Microbiol Rev.1998, 11(2):382-402.
    12 .Smith H, Simons C. Enzyme and their inhibition : drug development [M] . New York CRC press . 2004 , 66.
    13. Prasad R, Panwar SL, Smriti.Drug resistance in yeasts -an emerging scenario [J]. Adv Microb Physiol. 2002, 46: 155-201.
    14. Bader MS, Lai SM, Kumar V, et al. Candidemia in patients with diabetes mellitus: epidemiology and predictors of mortality [J]. Scand J Infect Dis. 2004, 36(11-12):860-864.
    15.Leroy O, Gangneux JP, Montravers P,et al. Epidemiology, management, and risk factors for death of invasive Candida infections in critical care: A multicenter, prospective, observational study in France (2005-2006) [J]. Crit Care Med.2009.
    16.St-Germain G, Laverdière M, Pelletier R, et al. Epidemiology and antifungal susceptibility of bloodstream Candida isolates in Quebec: Report on 453 cases between 2003 and 2005. Can J Infect Dis Med Microbiol [J].2008, 9(1):55-62.
    17.Johnson E, Espinel-Ingroff A, Szekely A, et al. Activity of voriconazole, itraconazole, fluconazole and amphotericin B in vitro against 1763 yeasts from 472 patients in the voriconazole phase III clinical studies. Int J Antimicrob Agents[J]. 2008, 32(6):511-514.
    18. Amer FA, Mohtady HA, el-Behedy IM, et al. Bacteria of nosocomial urinary tract infections at a university hospital in Egypt: identification and associated risk factors[J]. Infect Control Hosp Epidemiol .2004, 25(11):895–897.
    19. Li L, Redding S, Dongari-Bagtzoglou A. Candida glabrata: an emerging oral opportunistic pathogen [J]. J Dent Res. 2007, 86(3):204-215.
    20. Paulo C, Mourao C, Veiga PM, et al. Retrospective analysis of clinical yeast isolates in a hospital in the centre of Portugal: spectrum and revision of the identification procedures. Med Myco[J]. 2009, 19:1-10.
    21.陈晓,滕敏,杨青,等. 516株念珠菌对常用抗真菌药物敏感性分析[J].浙江预防医学.2007,19(5)27-28.
    22.González GM, Elizondo M, Ayala J. Trends in species distribution and susceptibility of bloodstream isolates of Candida collected in Monterrey, Mexico, to seven antifungal agents: results of a 3-year (2004 to 2007) surveillance study. J Clin Microbiol [J].2008, 46(9):2902-2905.
    23. Pfaller MA, Diekema DJ.Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem [J].Clinical microbiology review. 2007, 20(1):133–163.
    24.朱德妹,张婴元,汪复.中国5所医院念珠菌属对氟康唑和伏立康唑的耐药性监测[J].中国感染与化疗杂志.2007, 7(1):14-18.
    25. National Committee for Clinical Laboratory Standards.Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts–Second Edition: Approved Standard M27-A2. NCCLS, Wayne, PA, USA, 2002.
    26. National Committee for Clinical Laboratory Standards. Reference methods for broth dilution antifungal susceptibility testing of yeasts; approved standard.M27-A2.Wayne, PA: NCCLS; 2002.
    27. Rodríguez-Tudela JL, BerenguerJ, Martínez-Suárez JV, et al. Comparison of a spectro- photometric microdilution method with RPMI-2% glucose with the National Committee for Clinical Laboratory Standards reference macrodilution method M27-P for in vitro susceptibility testing of amphotericin B,flucytosine ,and fluconazole against Candida albicans [J].Antimicrob Agents Chemother. 1996,40(9):1998-2003.
    28. Sanguinetti M, Posteraro B, Fiori B,et al. Mechanisms of Azole Resistance in Clinical Isolates of Candidaglabrata Collected during a Hospital Survey ofAntifungal Resistance[J].Antimirob Agents Chemother. 2005, 49(2): 668–679.
    29. Gauthier C , Weber S, Alarco A M , et al. Functional similarities and differences between Candida albicans Cdr1 p and Cdr2 p transporters [J] .Antimicrob Agents Chemother. 2003, 47(5):1543-1554.
    30. Schuetzer-Muehlbauer M , Willinger B , Egner R , et al. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally exp ressed in yeast [J] . Int J Antimicrob Agents.2003, 22(3):291-300.
    31.Patrick Vandeputte, Guy Tronchin, Thierry Berge,et al. Reduced Susceptibility to Polyenes associated with a Missense Mutation in the ERG6 Gene in a Clinical Isolate of Candida glabrata with Pseudohyphal Growth [J].Antimicrob Agents Chemother. 2007, 51(3): 982–990.
    32. Dominque S,Frank CO.Resistance of candida species to agents :molecular mechanisms and clinical consequences[J].Lancet Infect Dis.2002 ,2(2):73-85.
    33. Panackal AA, Gribskov JL, Staab JF, et al. Clinical Significance of Azole Antifungal Drug Cross-Resistance in Candida glabrata [J]. J Clin Microbiol .2006, 44(5):1740-1743.
    34. Pfaller, M.A., and Diekema, D.J. Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida [J]. Clin Microbiol Infect.2004,10(1):11–23.
    35. Malani A, Hmoud J, Chiu L, et al. Candida glabrata fungemia: experience in a tertiary care center [J]. Clin Infect Dis.2005, 41(7):975–981.
    36. Lockhart S R, S. Joly S, Pujol C, et al. Development and verification of fingerprinting probes for Candida glabrata [J]. Microbiology.1997,143(12):3733–3746.
    37.PolákováS, Blume C, Zárate JA, et al.Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata[J]. Proc Natl Acad Sci USA. 2009, 9.
    38. Rex JH, Pfaller MA, Barry AL, et al. Antifungal susceptibility testing of isolates from a randomized, multicenter trial of fluconazole versus amphotericin B as treatment of nonneutropenic patients with candidemia[J]. Antimicrob Agents Chemother.1995, 39(1):40–44.
    39. Wingard, JR. Importance of Candida species other than C. albicansas pathogens in oncology patients [J]. Clin Infect Dis. 1995.20(1):115–125.
    40. Swinne D, Nolard N, VAN Rooij P, et al. Bloodstream yeast infections: a 15-month survey [J]. Epidemiol Infect.2009,12: 1-4.
    41. Cao B, Wang H, Wu L, et al. Epidemiological study of invasive nosocomial candidiasis in 2 teaching hospitals in Beijing[J]. Zhonghua Yi Xue Za Zhi. 2008, 88(28):1970-1973.
    42. Moran GP, Sullivan DJ, Coleman DC. Emergence of non-Candida albicans species as pathogens [J] . In R. A.Calderone (ed.).2002,:37–53.
    43. Anil A. Panackal, Jennifer L. Gribskov, Janet F. Staab, et al. Clinical Significance of Azole Antifungal Drug Cross-Resistance in Candida glabrata [J]. JOURNAL OF CLINICAL MICROBIOLOGY.2006, 44(5): 1740–1743.
    44.周辉,龙铁军.Erg11基因突变与白念珠菌对唑类药物耐药性的初步研究[J].中国感染与化疗杂志. 2007, 7(2):108-111.
    45. Patrick Vandeputte, Ge′rald Larcher, Thierry Berge`s, et al. Mechanisms of Azole Resistance in a Clinical Isolate of Candida tropicalis [J]. Antimicrob Agents Chemother.2005, 49(11):4608–4615.
    46. Berila N, Borecka S, Dzugasova V, et al. Mutations in the CgPDR1 and CgERG11 genes in azole-resistant Candida glabrata clinical isolates from Slovakia [J]. Int J Antimicrob Agents . 2009.
    47. Sanglard D , Kuchler K, Ischer F , et al. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters [J] . Antimicrob Agents Chemother.1995, 39(11):2378-2386.
    48. Maesaki S,Marichal P, Vanden Bossche H, et al. Rhodamine 6G efflux for the detection of CDR1 -overexpressing azole-resistant Candida albicans strains [J]. J Antimicrob Chemother.1999, 44(1): 27-31.
    [1]Dominque S,Frank CO.Resistance of candida species to agents : molecular mechanisms and clinical consequences[J].Lancet Infect Dis.2002,2(2):73-85.
    [2] Marr KA. Invasive infections: the changing epidemiology [J].On cology (Huntingt). 2004, 18(14):9-14.
    [3] Akins R A. An update on antifungal targets and mechanisms of resistance in Candida albicans. MedMycol.2005, 43 (4): 285-318.
    [4] Prasad R, Panwar SL, Smriti. Drug resistance in yeasts—an emerging scenario[J]. Adv Microb Physiol.2002, 46: 155-201.
    [5] Ji HT,Zhang WN,Zhou YJ,et a1.A Three dimensional Model of Lanosterol 14alpha-demethylase of Candida albicans[J].Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao.1998,30(6):585-592.
    [6] Goldman GH, da Silva FerreiraME, dos ReisMarques E, et al. Evaluation of fluconazole resistance mechanisms in Candida albicans clinical isolates from H IV infected patients in Brazil[J]. Diagn Microbiol Infect Dis. 2004, 50 (1): 25-32.
    [7] Lamb D C , Kelly D E , Schunck W H , et al. The R467K amino acid substitution in Candida albican sterol 14α-demethylase causes drug resistance through reduced affinity [J]. Antimicrob Agents Chemother . 2000, 44(1): 63-67.
    [8] Lee MK, Williams LE, Warnock DW, et al. Drug resistance genes and trailing growth in Cadida albican isolates [J]. J Antimicrob Chemother, 2004, 53 (2): 217-224.
    [9] Patrick Vandeputte, Ge′rald Larcher, Thierry Berge,et al.Mechanisms of Azole Resistance in a Clinical Isolate of Candida tropicalis [J]. Antimicrob Agents Chemother.2005, 49(11):4608–4615.
    [10] Marichal P, Vanden Bossche H, Odds FC , et al. Molecular biological characterization of an azole-resistant Candida glabrata isolate [J].Antimicrob Agents Chemother.1997, 41(10):2229-2237.
    [11] Franz R, Kelly SL, Lamb DC, et al. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains [J]. Antimicrob Agents Chemother, 1998, 42 (12): 3065-3072.
    [12] Silver P M, Oliver B G, White T C.Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism [J]. Eukaryot Cell, 2004, 3(6): 1391-1397.
    [13] Nico Dunkel, Teresa T. Liu, Katherine S. Barker et al. A Gain-of-Function Mutation in the Transcription Factor Upc2p CausesUpregulation of Ergosterol Biosynthesis Genes and Increased Fluconazole Resistance in a Clinical Candida albicans Isolate[J].EUKARYOTIC CELL.2008,7(7):1180–1190.
    [14] Kelly S L , Lamb D C , Kelly D E , et al. Resistance to fluconazole and cross-resistance to amphotericinB in Candida albican from AIDS patients caused by defective sterolΔ5 , 6-desaturation [J] . FEBS Lett .1997, 400 (1): 80-82.
    [15]Georgiev VS.Membrane transporters and antifungal drug resistance [J].Curr Drug Target.2000, 1(3):261-284.
    [16]Taiga Miyazaki, Yoshitsugu Miyazaki, Koichi Izumikawa. Fluconazole Treatment Is Effective against a Candida albicans erg3/erg3 Mutant in Vivo Despite in Vitro Resistance [J]. Antimirobial Agents and Chemotherapy .2006, 50(2): 580–586.
    [17] White TC, Holleman S, Dy F, et al. Resistance mechanisms in clinical isolates of Candida albicans [J]. Antimicrob Agents Chemother.2002, 46 (6):1704-1713.
    [18] Kontoyiannis DP, lewis RE.Antifungal drug resistance of pathogenic fungi [J].Lancet 2002, 359:1135-1144.
    [19] Jha S, Karnani N, Lynn AM.Covalent modification of cysteine 193 impairs ATPase function of nucleotide binding domain of a Candida drug efflux pump[J].Biochem Biophys Res Commun ,2003 ,310 (3) :869-875.
    [20] Wolfger H, Mamnun YM, Kuchler K. Fungal ABC proteins:pleiotropic drug resistance ,stress response and cellular detoxification[J]. Res Microbiol.2001 ,152 (324) :375 -389.
    [21] Gauthier C, Weber S, Alarco AM, et al. Functional similarities and differences between Candida albicans Cdr1p and Cdr2p transporters [J]. Antimicrob Agents Chemother.2003,47(5) :1543-1554.
    [22] Holmes AR, Tsao S, Ong SW, et al. Heterozygosity and functional allelic variation in the Candida albicans efflux pump genes CDR1 and CDR2[J]. Mol Microbiol.2006,62 (1) :170-186.
    [23] Holmes AR, Lin YH, Niimi K,et al. ABC transporter Cdr1p contributes more than Cdr2p does to fluconazole efflux in fluconazole-resistant Candida albicans clinical isolates[J].Antimicrob Agents Chemother. 2008 ,52(11):3851-3862.
    [24] Schuetzer muehlbauer M, WilllingerB, EgnerR, et al.Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast [J].Int J Antinicrob Agents.2003,22(3):291-300.
    [25] Biswas, K., and J. Morschha¨user. The Mep2p ammonium permease controls nitrogen starvation-induced filamentous growth in Candida albicans[J].Mol. Microbiol. 2005. 56:649–669.
    [26] Wirsching S ,Moran GP ,Sullivan D J ,et al .MDR1 mediated drug resistance in Candida dubliniensis [J]. Antimicrob Agents Chemother .2001,45(12) : 3416-3421.
    [27] Pasrija R ,Banerjee D , Prasad R. Structure and function analysis of CaMdr1p , a major facilitator superfamily antifungal efflux transporter protein of Candida albicans :identification of amino acid residues critical for drug/ H + transport[J] .Eukaryot Cell ,2007 ,6 (3) :443-453.
    [28] Mukherjee PK, Chandra J, Kuhn DM, et a . Mechanism of fluconazoleresistance in Candida albicans biofilms: phase specific role of efflux pumps and membrane sterols [J]. Infect Immun.2003,71(8) :4333-4340.
    [29]Davina Hiller, Dominique Sanglard and Joachim Morschha¨user .Over expression of the MDR1 Gene Is Sufficient To Confer Increased Resistance to Toxic Compounds in Candida albicans Antimirobial Agents and Chemotherapy. 2006, 5(4):1365–1371.
    [30] Manjistha S,Asis D.Two membrane proteins located in the Nag regulom of candida albicans confer multidrug resistance [J].Biochem Biophys Res commtm.2003,30(1):1099-1108.
    [31] Sanglard D,Odds FC.Resistance of Candida species to antifungal agents: molecular mechanisms an d clinical consequences[J].kmcet Infect Dis 2002,2:73-85.
    [32] Lyons CN, White TC. Transcrip tional analyses of antifungal drug resistance in Candida albicans [J].Antimicrob Agents Chemother. 2000,44: 2296-2303.
    [33] Coste, A.T., Karababa, M., Ischer, F., et al.TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR 2[J].Eukaryot Cell .2007, 3: 1639–1652.
    [34] Morschh?user J, Barker K.S., Liu T.T, et al. Transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans[J].PLoS Pathog .2008 ,3:1603-1616.
    [35] Nico Dunkel, Julia Bla?, P. David Rogers et al. Mutations in the multi-drug resistance regulator MRR1,followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains[J]. Molecular Microbiology 2008, 69(4):827–840.
    [36]DuglasL J.Candida biofilms and their role in infection [J].Trends in microbiobgy.2003, 11 (1):30-36.
    [37] Andes D, Nett J, Oschel P, et al. Development and characterization of an In vivo central venous catheter candida albicans biofilm model [J]. Infect Immun, 2004, 72(10): 6023-6031.
    [38] Vlahou A , Schellhammer PF , Mendrinos S , et al. Development of a novelproteomic approach for the detection of transitional cell carcinoma of the bladder in urine[J].Am J Pathol. 2001,158 (4):1491-1502.
    [39] Sanglard D, Ischer F, Parkinson T, et al. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents[J]. Antimicrob Agents Chemother.2003, 47 (8):2404-2412.
    [40]Patrick Vandeputte, Guy Tronchin, Thierry Berge`s, et al. Reduced Susceptibility to Polyenes Associated with a Missense Mutation in the ERG6 Gene in a Clinical Isolate of Candida glabrata with Pseudohyphal Growth. Antimirob Agents Chemother [J] .2007, 51 (3):982–990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700