用户名: 密码: 验证码:
几种典型金属材料的弹性性能与电子功函数的关联
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弹性性能作为最基本的力学性能之一,它不仅是人们加工和使用金属材料所必需的力学参数,而月.在理解其它物理性能方面起着重要的作用。弹性模量反映了原子间的相互作用势,与金属的本征原子和电子结构密切相关,从而可以联系到金属材料的众多性能,如密排度、过冷液体脆性、延性和韧性等。功函数作为最基本的电子参数,反映了固体内部的价电子浓度、化学势等电子结构信息。因此,研究金属材料弹性模量和电子功函数之间的关系具有重要意义。本论文采用了开尔文探针测试和第一性原理计算的方法,针对固溶体钛合金、金属玻璃和B2相金属间化合物等特殊弹性用途合金,以及弹性变形影响金属功函数的现象中所存在的问题进行了研究。主要工作如下:
     一、研究了金属材料块体属性与功函数的关系。金属元素的功函数呈现出元素周期律;固溶体钛合金的功函数随元素成分变化大致成线性关系,而钛铝金属间化合物的功函数高于钛金属,这归因于价电子浓度的差别和电子轨道的杂化:非晶态合金的功函数可用混合定律来描述,但少量成分改变对功函数影响较小。结果表明这些金属材料的功函数具有体属性,可通过改变体结构来对其进行调控。
     二、研究了不同变形条件下铜、钛及铝铜等金属材料电子功函数的变化情况,发现拉应变使其功函数下降,压应变则反之,且只有垂直表面法向的变形才能有效地改变功函数;纯金属的功函数随体积相对变化量成线性变化规律,并可以用经典的电子理论来进行描述,而合金则不显现出此关系;密排面上的功函数对应变的响应更为敏感。此结果对金属表面属性的应变工程具有指导意义。
     三、利用晶格能量模型,发现不同结构晶体的弹性模量与功函数是可以相关联的。这种关联存在于固溶钛合金中,其归因于功函数是合金的整体“电负性”,并取决于价电子浓度等参数。非晶态合金的泊松比与功函数也存在明显的相关性,从而可将功函数联系到其室温塑/脆性能,这种关系可用能量势垒和结合剪切转变区理论来解释。上述关联为低弹性模量钛合金和高室温塑性非晶态合金的成份设计提供了新的依据。
     四、计算了142种B2相金属间化合物体系的极端泊松比,发现70%的B2相化合物中存在本征拉胀性,它们的极端泊松比与弹性各向异性因子存在很强的关联性,其中128种含稀土的RM合金的负泊松比还与其非稀土组元的功函数存在明显的关联。通过电荷密度的拓扑与几何信息分析,发现这种拉胀材料的弹性各向异性起源于不同拓扑成键体积之间电荷流的各向异性。这些结果为开发具有负泊松比的金属间化合物,拓展金属间化合物使用范围提供了新的理论依据。
As one of the most fundamental mechanical properties, Elastic property is not only an indispensable parameter of metallic materials, but also plays a very important role in understanding their physical property. Elastic response is a consequence of potential interaction of atoms, which is related to their electron structure. Hence, it can be correlated with many other properties, such as densification, connectivity, ductility and the toughness of metallic meterials. Work function (W) is very sensitive to the atomic and electronic structure, and gives general informations about valence election density and chemical potential, which is helpful to understand the elastic property. Thus, the relationship between their work function and elastic behaviors deserves to be investigated. In this paper, we adopted scanning Kelvin Probe technology and First Principle calculation to address this issue, including the effect of bulk property on work function, the correlation between work function and elastic modulus of metallic materials, and the response of work function to elastic deformation. The following are the details,
     1. We have investigated the relationship between work function and bulk parameters in metals and alloys with different structures. The elemental work function exhibits a regular trend with an elemental periodical rule. The change of work function of α-Ti and β-Ti solid solution alloys is linear with the increasing of Zr(Nb) elemental composition, which is due to the change of valance electron density for different alloys. The W of amorphous alloys is a little less than that of counterpart metals, and the minor elemental adding has a little effect on their W. These studies would give a guidance to tailor the work function of metallic materials.
     2. The work functions of strained Cu, Ti and AlCu3surfaces were studied systematically using First-principles methods. Firstly, we conducted an investigation on the various strain states effects of work function on the Ti (0001), Cu (100) and AlCu3(100) surface. The results revealed that the lateral strain states have an impact on work function, whereas the applied strain perpendicular to surface hardly affects work function. The most appreciable strain dependencies of work function can be found in the applied biaxial strain state. Secondly, we found that the strain-dependent work function is anisotropyic. i.e., the higher the atom packed surface is, the larger the change of W altered by strain can be. Finally, the mechanism of the strain-dependent work function, which is linear with change of volume, can be explained by a classic free electron structure model. This study proposed an effective strain-induced approach for the engineering of metal work function.
     3. We have deduced some theoretical correlations between elastic modulus and Ws in cubic and hexagonal structures metallic materials. The experimental results in metals and solid solution alloys prove that these relationships are really true. The correlation between work function, and Poisson's ratio and intrinsic embrittlement also can be found in Bulk Metallic Glasses (BMGs), which can be interpreted by energy potential landscape and shear transition zone theory. These correlations could be used as a new electronic criterion to develop the low-modulus alloys and the intrinsic plasticity of BMGs.
     4. In an effort to clarify the electronic origin of a negative Poisson's ratio, we have performed a comprehensive study of extreme (both positive and negative) Poisson's ratios (PRs) behavior in the B2intermetallic family (including14common intermetallics and128rare earth metal-transition or main group metal (RM) intermetallics) by way of density functional theory calculations. We found a pronounced correlation between the extreme PRs and the elastic anisotropy, with approximately70percent of the B2intermetallics showing intrinsic auxetic behavior. We went on to examine the topology and geometry of the electron charge density and found that the extreme PRs are attributable to the anisotropy of the charge flow between the topological bonding volumes. Furthermore, the extreme PRs of RM B2alloys are strongly related to the work function of elemental M. Our findings provided an essential electronic perspective to forecast the auxetic behavior, and suggested a new application for intermetallic compounds.
引文
[1]http://en.wikipedia.org/wiki/Thomas_Young_(scientist) (Wikipedia.org,2011).
    [2]G. N. Greaves, A. L. Greer, R. S. Lakes and T. Rouxel. Poisson's ratio and modern materials. Nature Materials,2011,10(11):823-827.
    [3]M. Eberhart. Charge-density-shear-moduli relationships in Al-Li alloys. Physical Review Letters,2001,87(20):205503.
    [4]W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation Effects. Physical Review,1965,140(4A):1133-1138.
    [5]J. Hafner. Atomic-scale computational materials science. Acta Materialia,2000, 48(1):71-92.
    [6]C. I. Pakes, D. Hoxley, J. R. Rabeau, M. T. Edmonds, R. Kalish and S. Prawer. Scanning Kelvin-probe study of the hydrogen-terminated diamond surface in ultrahigh vacuum. Applied Physics Letters,2009,95(12):123108.
    [7]B. Reinker, H. Geisler, M. Moske and K. Samwer. Surface topography of amorphous Zr65.0Al7.5Cu27.5 alloy films around the glass transition-an in-situ UHV-STM study. Thin Solid Films,1996,275(1-2):240-243.
    [8]G. Halek, D. Baikie and H. Teterycz. Surface investigation by using a scanning Kelvin Probe, in "Students and Young Scientists Workshop,2010 IEEE International "Photonics and Microsystems"" (IEEE, Szklarska Poreba,2010).
    [9]M. Smetanin, D. Kramer, S. Mohanan, U. Herr and J. Weissmuller. Response of the potential of a gold electrode to elastic strain. Physical Chemicstry Chemical Physics, 2009,11(40):9008-9012.
    [10]P. Ruffieux, K. Ait-Mansour, A. Bendounan, R. Fasel, L. Patthey, P. Groning and O. Groning. Mapping the electronic surface potential of nanostructured surfaces. Physical Review Letters,2009,102(8):086807.
    [11]U. Martinez, J. F. Jerratsch, N. Nilius, L. Giordano, G. Pacchioni and H. J. Freund. Tailoring the interaction strength between gold particles and silica thin films via work function control. Physical Review Letters,2009,103(5):056801.
    [12]S. C. Lim, J. H. Jang, D. J. Bae, G. H. Han, S. Lee, I. S. Yeo and Y. H. Lee. Contact resistance between metal and carbon nanotube interconnects:effect of work function and wettability. Applied Physics Letters,2009,95(26):264103.
    [13]周益春,材料固体力学(科学出版社,北京,2005).
    [14]W. Zhou, L. Liu, B. Li, Q. Song and P. Wu. Structural, elastic, and electronic properties of Al-Cu intermetallics from first-principles calculations. Journal of Electronic Materials,2009,38(2):356-364.
    [15]G. Ghosh, S. Delsante, G. Borzone, M. Asta and R. Ferro. Phase stability and cohesive properties of Ti-Zn intermetallics:First-principles calculations and experimental results. Acta Materialia,2006,54(19):4977-4997.
    [16]K. E. Evans and A. Alderson. Auxetic materials:Functional materials and structures from lateral thinking! Advanced Materials,2000,12(9):617-628.
    [17]R. H. Baughman, J. M. Shacklette, A. A. Zakhidov and S. Stafstrom. Negative Poisson's ratios as a common feature of cubic metals. Nature,1998, 392(6674):362-365.
    [18]A. E. Clark, K. B. Hathaway, M. Wun-Fogle, J. B. Restorff, T. A. Lograsso, V. M. Keppens and R. A. Taylor. Extraordinay magnetoelasticity and lattice softening in bcc Fe-Ga alloys. Journal Applied Physics,2003,93(10):8621-8623.
    [19]R. A. Kellogg, A. M. Russell, T. A. Lograsso, A. B. Flatau, A. E. Clark and M. Wun-Fogle. Tensile properties of magnetostrictive iron-gallium alloys. Acta Materialia,2004,52(17):5043-5050.
    [20]S. F. Pugh. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philosophical Magazine Series 7,1954, 45(367):823-843.
    [21]A. Kelly, W. R. Tyson and A. H. Cottrell. Ductile and brittle crystals. Philosophical Magazine,1967,15(135):567-586.
    [22]J. R. Rice and R. Thomson. Ductile versus brittle behaviour of crystals. Philosophical Magazine,1974,29(1):73-97.
    [23]P. N. H. Nakashima, A. E. Smith, J. Etheridge and B. C. Muddle. The bonding electron density in Aluminum. Science,2011,331(6024):1583-1586.
    [24]I. Akihisa. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia,2000,48(1):279-306.
    [25]W. H. Wang. The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science,2011, In Press, Accepted Manuscript.
    [26]H. S. Chen, J. T. Krause and E. Coleman. Elastic constants, hardness and their implications to flow properties of metallic glasses. Journal of Non-Crystalline Solids. 1975,18(2):157-171.
    [27]S. J. Poon, A. Zhu and G. J. Shiflet. Poisson's ratio and intrinsic plasticity of metallic glasses. Applied Physics Letters,2008,92(26):261902.
    [28]W. H. Wang. Correlations between elastic moduli and properties in bulk metallic glasses. Journal of Applied Physics,2006,99(9):093506.
    [29]X. J. Gu. S. J. Poon, G. J. Shiflet and M. Widom. Ductility improvement of amorphous steels:roles of shear modulus and electronic structure. Acta Materialia, 2008,56(1):88-94.
    [30]K. Xiong, P. Delugas, J. C. Hooker, V. Fiorentini, J. Robertson, D. Liu and G. Pourtois. Te-induced modulation of the Mo/HfO2 interface effective work function. Applied Physics Letters,2008,92(11):113504.
    [31]G. Kumar, D. Rector, R. D. Conner and J. Schroers. Embrittlement of Zr-based bulk metallic glasses. Acta Materialia,2009,57(12):3572-3583.
    [32]Y. Q. Cheng, A. J. Cao and E. Ma. Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses:The roles of atomic configuration and alloy composition. Acta Materialia,2009,57(11):3253-3267.
    [33]X. J. Gu, S. J. Poon, G. J. Shiflet and J. J. Lewandowski. Ductile-to-brittle transition in a Ti-based bulk metallic glass. Scripta Materialia,2009,60(11):1027-1030.
    [34]R. Raghavan, P. Murali and U. Ramamurty. On factors influencing the ductile-to-brittle transition in a bulk metallic glass. Acta Materialia,2009, 57(11):3332-3340.
    [35]L. Zhang, Y. Q. Cheng, A. J. Cao, J. Xu and E. Ma. Bulk metallic glasses with large plasticity:Composition design from the structural perspective. Acta Materialia,2009, 57(4):1154-1164.
    [36]M. Baricco, T. A. Baser, J. Das and J. Eckert. Correlation between Poisson ratio and Mohr-Coulomb coefficient in metallic glasses. Journal of Alloys and Compounds, 2009,483(1-2):125-131.
    [37]P. Yu and H. Y. Bai. Poisson's ratio and plasticity in CuZrAI bulk metallic glasses. Materials Science and Engineering:A,2008,485(1-2):1-4.
    [38]Y. Yokoyama, K. Fujita, A. R. Yavari and A. Inoue. Malleable hypoeutectic Zr-Ni-Cu-Al bulk glassy alloys with tensile plastic elongation at room temperature. Philosophical Magazine Letters,2009,89(5):322-334.
    [39]Y. H. Liu, K. Wang, A. Inoue, T. Sakurai and M. W. Chen. Energetic criterion on the intrinsic ductility of bulk metallic glasses. Scripta Materialia,2010,62(8):586.
    [40]J. J. Lewandowski, W. H. Wang and A. L. Greer. Intrinsic plasticity or brittleness of metallic glasses. Philosophical Magazine Letters,2005,85(2):77-87.
    [41]Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan and W. H. Wang. Super plastic bulk metallic glasses at room temperature. Science,2007, 315(5817):1385-1388.
    [42]N. Hatcher, O. Y. Kontsevoi and A. J. Freeman. Role of elastic and shear stabilities in the martensitic transformation path of NiTi. Physical Review B,2009, 80(14):144203.
    [43]X. Huang, G. J. Ackland and K. M. Rabe. Crystal structures and shape-memory behaviour of NiTi. Nature Materials,2003,2(5):307-311.
    [44]M. F. X. Wagner and W. Windl. Lattice stability, elastic constants and macroscopic moduli of NiTi martensites from first principles. Acta Materialia,2008, 56(20):6232-6245.
    [45]Y. Wu, Y. H. Xiao, G. L. Chen, C. T. Liu and Z. P. Lu. Bulk metallic glass composites with transformation-mediated work-gardening and ductility. Advanced Materials,2010,22(25):2770-2773.
    [46]S. Pauly, S. Gorantla, G. Wang, U. Kuhn and J. Eckert. Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nature Materials,2010,9(6):473-477.
    [47]D. C. Hofmann. Shape memory bulk metallic glass composites. Science,2010, 329(5997):1294-1295.
    [48]K. Gschneidner, A. Russell, A. Pecharsky, J. Morris, Z. Zhang, T. Lograsso, D. Hsu, C. H. Chester Lo, Y. Ye, A. Slager and D. Kesse. A family of ductile intermetallic compounds. Nature Materials,2003,2(9):587-591.
    [49]G. H. Cao, A. T. Becker, D. Wu, L. S. Chumbley, T. A. Lograsso, A. M. Russell and K. A. Gschneidner. Mechanical properties and determination of slip systems of the B2 YZn intermetallic compound. Acta Materialia,2010,58(12):4298-4304.
    [50]Q. Chen and S. B. Biner. Stability of perfect dislocations in rare-earth intermetallic compounds:YCu, YAg and YZn. Acta Materialia,2005,53(11):3215-3223.
    [51]K. A. Gschneidner, M. Ji, C. Z. Wang, K. M. Ho, A. M. Russell, Y. Mudryk, A. T. Becker and J. L. Larson. Influence of the electronic structure on the ductile behavior of B2 CsCl-type AB intermetallics. Acta Materialia,2009,57(19):5876-5881.
    [52]J. R. Morris, Y. Ye, Y. B. Lee, B. N. Harmon, J. K. A. Gschneidner and A. M. Russell. Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds. Acta Materialia,2004,52(16):4849-4857.
    [53]R. P. Mulay, J. A. Wollmershauser, M. A. Heisel, H. Bei. A. M. Russell and S. R. Agnew. X-ray diffraction study of the phase purity, order and texture of ductile B2 intermetallics. Acta Materialia,2010.58(7):2788-2796.
    [54]C. Fall. Ab initio study of the work functions of elemental metal crystals, in "Sibley School of mechanical and Aerospace Engineering" (Cornell University, Lausanne. 1999).
    [55]N. D. Orf,1. D. Baikie, O. Shapira and Y. Fink. Work function engineering in low-temperature metals. Applied Physics Letters,2009,94(11):113504.
    [56]Y. J. Lin and C. L. Tsai. Changes in surface band bending, surface work function, and sheet resistance of undoped ZnO films due to (NH4)2Sx treatment. Journal of Applied Physics,2006,100(11):113721.
    [57]P. Ravindran, L. Fast, P. A. Korzhavyi and B. Johansson. Effects of KrF excimer laser irradiation on surface work function of indium-tin-oxide. Journal of Applied Physics,2005,97(8):083702.
    [58]W. Li, C. W. Wu, W. G. Qin, G. C. Wang, S. Q. Lu, X. J. Dong, H. B. Dong and Q. L. Sun. Characterization of photovoltage evolution of ZnO films using a scanning Kelvin probe system. Physica B,2009,404(16):2197-2201.
    [59]C. V. Hoven, R. Yang, A. Garcia, V. Crockett. A. J. Heeger, G. C. Bazan and T. Q. Nguyen. Electron injection into organic semiconductor devices from high work function cathodes. Proceedings of the National Academy of Sciences,2008. 105(35):12730-12735.
    [60]E. Wigner and J. Bardeen. Theory of the work functions of monovalent metals. Physical Review,1935.48(1):84-87.
    [61]N. D. Lang and W. Kohn. Theory of metal surfaces:Work Function. Physical Review B,1971,3(4):1215-1223.
    [62]H. B. Michaelson. The work function of the elements and its periodicity. Journal of Applied Physics,1977,48(11):4729-4733.
    [63]H. B. Michaelson. Relation between an atomic electronegativity scale and the work function. IBM Journal of Research and Development,1978,22:72-80.
    [64]A. Kiejna and K. F. Wojciechowski. Work function of metals:Relation between theory and experiment. Progress in Surface Science,1981, 11(4):293-338.
    [65]D. Y. Li and W. Li. Electron work function:A parameter sensitive to the adhesion behavior of crystallographic surfaces. Applied Physics Letters,2001, 79(26):4337-4338.
    [66]R. Smoluchowski. Anisotropy of the electronic work function of metals. Physical Review,1941,60(9):661.
    [67]T. Durakiewicz. Comment on "Uncertainty, topography, and work function". Physical Review B,2000,61 (16):11166-11167.
    [68]T. Durakiewicz, S. Halas, A. Arko, J. J. Joyce and D. P. Moore. Electronic work-function calculations of polycrystalline metal surfaces revisited. Physical Review B,2001,64(4):045101.
    [69]S. Halas and D. Tomasz. Work functions of elements expressed in terms of the Fermi energy and the density of free electrons. Journal of Physysics:Condensed Matter, 1998,10(11):10815-10826.
    [70]S. Halas and T. Durakiewicz. Is work function a surface or a bulk property? Vacuum, 2011,85(4):486-488.
    [71]C. M. Wei and M. Y. Chou. Theory of quantum size effects in thin Pb(111) films. Physical Review B,2002,66(23):233408.
    [72]R. Dus. Hydrogen adsorption and absorption on evaporated Nb films:Study by measurements of work function changes. Surface Science,1975,52(2):440-444.
    [73]J. E. Demuth and T. N. Rhodin. Chemisorption on (001), (110) and (111) nickel surfaces:A correlated study using LEED spectra, Auger spectra and work function change measurements. Surface Science,1974,45(1):249-307.
    [74]T. Fukushima, M. B. Song and M. Ito. Local work-function changes of Pt(111) studied by STM and IRAS:coadsorption of Cl- with H3O+, NO, and CO molecules. Surface Science,2000,464(2-3):193-199.
    [75]P. J. Goddard and R. M. Lambert. Adsorption-desorption properties and surface structural chemistry of chlorine on Cu(111) and Ag(111). Surface Science,1977, 67(1):180-194.
    [76]U. Muschiol, P. K. Schmidt and K. Christmann. Absorption and adsorption of hydrogen on a palladium (210) surface:a combined LEED, TDS, △φ and HREELS study. Surface Science,1998,395(2-3):182-204.
    [77]T. T. Magkoev, G. G. Vladimirov, D. Remar and A. M. C. Moutinho. Comparative study of metal adsorption on the metal and the oxide surfaces. Solid State Commun., 2002,122(6):341-346.
    [78]T. C. Leung, C. L. Kao, W. S. Su, Y. J. Feng and C. T. Chan. Relationship between surface dipole, work, function and charge transfer:Some exceptions to an established rule. Physical Review B,2003,68(19):195408.
    [79]J. I. Malov, M. D. Shebzukhov and V. B. Lazarev. Work functions of binary alloy systems with different kinds of phase diagrams. Surface Science,1974,44(1):21-28.
    [80]S. Yamamoto. Electron emission and work function-Past, present and future. Applied Surface Science,2005,251(1-4):4-13.
    [81]A. B. Alchagirov, T. A. Sizhazhev, K. B. Khokonov and M. A. Yaganov. Work function of Sodium-Rubidium alloys. Russian Journal Electrochemistry,2004, 40(1):102-104.
    [82]L. E. Koutsokeras, N. Hastas, S. Kassavetis, O. Valassiades. C. Charitidis, S. Logothetidis and P. Patsalas. Electronic properties of binary and ternary, hard and refractory transition metal nitrides. Surface and Coatings Technology, 204(12-13):2038-2041.
    [83]W. Li, Y. Wang, M. Cai and C. W. Wang. An electronic criterion for the intrinsic embrittlement of structural intermetallic compounds. Journal of Applied Physics. 2005,98(8):083503.
    [84]W. C. Cao. S. H. Liang, X. Zhang, X. H. Wang and X. H. Yang. Effect of Mo addition on microstructure and vacuum arc characteristics of CuCr50 alloy. Vacuum, 85(10):943-948.
    [85]P. Zhao, The work function engineering and thermal stability of novel metal gate electrodes for advanced CMOS devices (The University of Texas at Dallas,2006).
    [86]R. M. Todi, M. S. Erickson, K. B. Sundaram, K. Barmak and K. R. Coffey. Comparison of the work function of Pt-Ru binary metal alloys extracted from MOS capacitor and schottky-barrier-diode measurements. IEEE Transaction on Electron Devices,2007,54(4):807-813.
    [87]S. Park, L. Colombo, Y. Nishi and K. Cho. Ab initio study of metal gate electrode work function. Applied Physics Letters,2005,86(7):073118.
    [88]H. R. Gong and K. Cho. Electronic structure and work function of metal gate Mo-W system. Applied Physics Letters,2007,91 (9):092106.
    [89]H. R. Gong, Y. Nishi and K. Cho. Effects of strain and interface on work function of a Nb-W metal gate system. Applied Physics Letters,2007,91 (24):242105.
    [90]H. R. Gong and C. Kyeongjae. Electronic structure and related properties of Mo-W: a density functional study. Journal of Physics:Condensed Matter,2008, 20(25):255208.
    [91]G. Xu, Q. Wu, Z. Chen, Z. Huang, R. Wu and Y. P. Feng. Disorder and surface effects on work function of Ni-Pt metal gates. Physical Review B.2008. 78(11):115420.
    [92]S. Shusterman, A. Raizman, A. Sher, Y. Paltiel, A. Schwarzman. E. Lepkifker and Y. Rosenwaks. Nanoscale mapping of strain and composition in quantum dots using Kelvin probe force microscopy. Nano Letters,2007.7(7):2089-2093.
    [93]V. V. Levitin, S. V. Loskutov, M. I. Pravda and B. A. Serpetzky. Influence of cyclic stresses upon the electronic work function for the metal surface. Solid State Communication,1994,92(12):973-976.
    [94]V. V. Levitin, O. L. Garin, V. K. Yatsenko and S. V. Loskutov. On structural sensibility of work function. Vacuum,2001,63(1-2):367-370.
    [95]V. Levitin and S. Loskutov. Strained metallic surfaces:Theory, nanostructuring and fatigue strength. Weinheim:Wiley-VCH,2008.
    [96]M. Mamor, E. Finkman, F. Meyer and K. Bouziane. W/Si Schottky diodes:Effect of metal deposition conditions on the barrier height, in "Thin Films:Stresses and Mechanical Properties V. Symposium", edited by S. P. Baker, C. A. Ross, P. H. Townsend, C. A. Volkert and P. Borgesen (Mater. Res. Soc, Boston, MA, USA,1995) p.149.
    [97]A. Kiejna and V. V. Pogosov. Simple theory of elastically deformed metals:Surface energy, stress, and work function. Physical Review B,2000,62(15):10445-10450.
    [98]D. Sekiba, Y. Yoshimoto, K. Nakatsuji, Y. Takagi, T. limori, S. Doi and F. Komori. Strain-induced change in electronic structure of Cu(100). Physical Review B,2007, 75(11):115404.
    [99]Y. Umeno, C. Elsasser, B. Meyer, P. Gumbsch, M. Nothacker, J. Weissmuller and F. Evers. Ab initio study of surface stress response to charging. Europhysics Letters, 2007,78(1):13001.
    [100]P. W. Leu, A. Svizhenko and K. Cho. Ab initio calculations of the mechanical and electronic properties of strained Si nanowires. Physical Review B,2008, 77(23):235305.
    [101]B. Shan and K. Cho. First principles study of work functions of single wall carbon nanotubes. Physical Review Letters,2005,94(23):236602.
    [102]W. Li, M. Cai, Z. Zong and S. Yu. Variation of surface morphology and electronic behavior under dynamic tensile conditions. Applied Physics Letters,2006, 88(18):181902.
    [103]W. Li and D. Y. Li. Effects of elastic and plastic deformations on the electron work function of metals during bending tests. Philosophical Magazine,2004, 84(35):3717-3727.
    [104]W. Li and D. Y. Li. A simple method for determination of the electron work function of different crystallographic faces of copper. Physica Status Solidi (a),2003, 196(2):390-395.
    [105]W. Li and D. Y. Li. On the correlation between surface roughness and work function in copper. The Journal of Chemical Physics,2005,122(6):064708.
    [106]W. Li and D. Y. Li. In situ measurements of simultaneous electronic behavior of Cu and Al induced by mechanical deformation. Journal of Applied Physics,2006, 99(7):073502.
    [107]Y. P. Li and D. Y. Li. Prediction of elastic-contact friction of transition metals under light loads based on their electron work functions. Journal Physics D:Applied Physics,2007,40(19):5980-5983.
    [108]M. Brajczewska, C. Henriques and C. Fiolhais. Dependence of metal surface properties on the valence-electron density in the stabilized jellium model. Vacuum, 2001,63(1-2):135-138.
    [109]I. D. Baidie, Manual Version SKP Kelvin Probe 4.5 (KP Tehcnoogy Ltd,2007).
    [110]P. Li, J. Hao, J. Tan and Q. Wang. The effect of Al on the elastic properties of (Cu0.56Zr0.44)1001-xAlx bulk metallic glasses. Materials Science and Engineering:A, 2009,518(1-2):16-18.
    [111]P. Li, J. Hao, J. Tan and Q. Wang. Influence of annealing on the elastic properties and microstructure of Cu58.1Zr35.9Al6 bulk metallic glass. Materials Science and Engineering:A,2010,527(15):3416-3419.
    [112]P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Physical Review,1964, 136(3B):B864-B871.
    [113]W. Kohn and L. Sham. Self-consistent equations including exchange and correlation effects. Physical Review,1965,140(4A):A 1133.
    [114]J. A. Rothschild and M. Eizenberg. Work function calculation of solid solution alloys using the image force model. Physical Review B,2010,81(22):224201.
    [115]L. T. Lin, H. C. Hsin, H. W. Lin, H. C. H. Wang and C. C. Yen. Continuous and precise work function adjustment for integratable dual metal gate CMOS technology using Hf-Mo binary alloys. IEEE Trans. Electron Devices,2005,52(6):1172-1179.
    [116]T. B. Yue and H. C. Feng. Wide range work function modulation of binary alloys for MOSFET application. IEEE Electron Device Lett.,2003,24(3):153-155.
    [117]L. C. Keun, K. J. Young, H. S. Nam, H. Zhong, B. Chen and V. Misra. Properties of Ta-Mo alloy gate electrode for n-MOSFET. Journal of Materials Science,2005, 40(9-10):2693-2695.
    [118]R. S. Johnson, J. G. Hong, C. Hinkle and G. Lucovsky. Electron trapping in non-crystalline Ta- and Hf-aluminates for gate dielectric applications in aggressively scaled silicon devices. Solid State Electronics,2002,46(11):1799-1805.
    [119]Z. Fluicai, H. S. Nam, S. Y. Seok, H. Lazar, G. Heuss and V. Misra. Properties of Ru-Ta alloys as gate electrodes for NMOS and PMOS silicon devices. International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224).2001:20.5.1.
    [120]J. A. Rothschild and M. Eizenberg. Work function calculation of solid solution alloys using the image force model. Physical Review B,2010,81(22):224201.
    [121]S. Halas.100 years of work function. Materials Science,2006,24(4):951-968.
    [122]H. L. Skriver and N. M. Rosengaard, Surface energy and work function of elemental metals. Physical Review B,1992,46(11):7157-7168.
    [123]I. Brodie, Uncertainty, topography, and work function. Physical Review B,1995, 51(19):13660-13668.
    [124]G. Kresse and J. Furthmuller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B,1996, 54(16):11169-11186.
    [125]J. P. Perdew, K. Burke and M. Ernzerhof. Generalized gradient approximation made simple. Physical Review Letters,1996,77(18):3865-3868.
    [126]H. J. Monkhorst and J. D. Pack. Special points for Brillouin-zone integrations. Physical Review B,1976,13(12):5188-5192.
    [127]M. K. Niranjan, L. Kleinman and A. A. Demkov. Electronic structure, elastic properties, surface energies, and work functions of NiGe and PtGe within the framework of density-functional theory for various surface terminations. Physical Review B,2007,75(8):085326.
    [128]A. L. Edward. Quo vadis gamma titanium aluminide. Intermetallics,2001, 9(12):997-1001.
    [129]C.T. Liu. Recent advances in ordered intermetallics. Materials Chemistry and Physics,1995,42(2):77-86.
    [130]S. Djanarthany, J. C. Viala and J. Bouix. An overview of monolithic titanium aluminides based on Ti3Al and TiAl. Materials Chemistry and Physics,2001, 72(3):301-319.
    [131]X. F. Wang, M. Ma, X. B. Liu and J. G. Lin. Interface characteristics in diffusion bonding of a gamma-TiAl alloy to Ti-6A1-4V. Journal of Materials Science,2007, 42:4004-4008.
    [132]N. Orhan, T. I. Khan and M. Eroglu. Diffusion bonding of a microduplex stainless steel to Ti6Al4V. Scripta Materialia,2001,45(4):441-446.
    [133]M. Holmquist, V. Recina and B. Pettersson. Tensile and creep properties of diffusion bonded titanium alloy IMI 834 to gamma titanium aluminide IHI Alloy 01 A. Acta Materialia,1999,47(6):1791-1799.
    [134]S. R. Chubb, D. A. Papaconstantopoulos and B. M. Klein. First-principles study of L10 Ti-AI and V-AI alloys. Physical Review B,1988,38(17):12120.
    [135]P. Yu, H. Y. Bai, M. B. Tang and W. H. Wang. Excellent glass-forming ability in simple Cu50Zr50-based alloys. Journal of Non-Crystalline Solids,2005, 351(14-15):1328-1332.
    [136]W. H. Wang. Roles of minor additions in formation and properties of bulk metallic glasses. Progress in Materials Science,2007,52(4):540-596.
    [137]J. P. Perdew and Y. Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B,1992,45(23):13244-13249.
    [138]C. J. Fall, N. Binggeli and A. Baldereschi. Work-function anisotropy in noble metals: Contributions from d states and effects of the surface atomic structure. Physical Review B,2000,61(12):8489-8495.
    [139]G. A. Haas and R. E. Thomas. Work function and secondary emission studies of various Cu crystal faces. Journal of Applied Physics,1977,48(1):86-93.
    [140]W. Liu. W. T. Zheng and Q. Jiang. First-principles study of the surface energy and work function of Ⅲ-Ⅴ semiconductor compounds. Physical Review B,2007, 75(23):235322.
    [141]A. V. Babich and V. V. Pogosov. Effect of dielectric coating on the electron work function and the surface stress of a metal. Surface Science,2009, 603(16):2393-2397.
    [142]G. M. Hua and D. Y. Li. Generic relation between the electron work function and Young's modulus of metals. Applied Physics Letters,2011,99(4):041907.
    [143]J. Delaunay. Lattice dynamics of body-centered and face-centered cubic metallic elements. The Journal of Chemical Physics,1953,21(11):1975-1986.
    [144]J. Delaunay. Lattice dynamics of body-centered and face-centered cubic metallic elements. H. The Journal of Chemical Physics,1954,22(10):1676-1677.
    [145]J. F. Thomas. Failure of the cauchy relation in cubic metals. Seripta Metallurgica, 1971,5(9):787-790.
    [146]C. S. G. Cousins. The third-order elastic shear constants of face-centred cubic and body-centred cubic metals. Journal Physics C:Solid State Physics,1967, 91(1):235-247.
    [147]C. S. G. Cousins. Contributions to the first-, second- and third-order elastic shear constants of hexagonal metals for arbitrary axial ratio. Journal Physics C:Solid State Physics,1968, 1(2):478-485.
    [148]C. S. G. Cousins. The calculation of the elastic shear constants of hexagonal metals using the optimized model potential. Journal Physics C:Solid State Physics,1970, 3(8):1667-1693.
    [149]T. Hamada. Note on the virial theorem for Coulomb gas. Progress of Theoretical Physics,38(6):1412-1413.
    [150]M. Gell-Mann and K. A. Brueckner. Correlation energy of an electron gas at high density. Physical Review,1957,106(2):364-368.
    [151]J. Hubbard. Electron correlations at metallic densities. Physics Letters A.1967, 25(10):709-710.
    [152]R. Hill. The Elastic behaviour of a crystalline aggregate. Proceeding Physical Society of London:Section A,1952,65(5):349-354.
    [153]M. J. Mehl. Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds. Physical Review B.1993,47(5):2493-2500.
    [154]L. Cheveau. Model for lattice dynamics in metals. Physical Review,1968, 169(3):496-497.
    [155]S. K. Mishra and S. S. Kushwaha. Model for the lattice dynamics of hexagonal-close-packed metals. Physical Review B.1978,18(12):6719-6726.
    [156]T. Gorecki. The relations between the shear modulus, the bulk modulus and young's modulus for polycrystalline metallic elements. Materials Science and Engineering, 1980,43(3):225-230.
    [157]C. H. Li and P. Wu. Correlation of bulk modulus and the constituent element properties of binary intermetallic compounds. Chemistry of Materials,2001, 13(12):4642-4648.
    [158]M. Q. Jiang and L. H. Dai. Short-range-order effects on intrinsic plasticity of metallic glasses. Philosophical Magazine Letters,2010,90(4):269-277.
    [159]Y. L. Hao, S. J. Li, B. B. Sun, M. L. Sui and R. Yang. Ductile titanium alloy with low Poisson's ratio. Physical Review Letters,2007,98(21):216405.
    [160]H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa and T. Saito. First-principles calculations for development of low elastic modulus Ti alloys. Physical Review B,2004,70(17):174113.
    [161]D. Raabe, B. Sander, M. Friak, D. Ma and J. Neugebauer. Theory-guided bottom-up design of (3-titanium alloys as biomaterials based on first principles calculations: Theory and experiments. Acta Materialia,2007,55(13):4475-4487.
    [162]http://www.teclab.cn/download/AccousticProperties.htm (Teclab,2011).
    [163]S. E. Kim, H. W. Jeong, Y. T. Hyun, Y. T. Lee, C. H. Jung and S. H. Kim. Elastic modulus and in Vitro biocompatibility of Ti-Nb and Ti-Ta alloys. Metals and Materials International,2007,13(2):145-149.
    [164]M. Abdel-Hady, K. Hinoshita and M. Morinaga. General approach to phase stability and elastic properties of beta-type Ti-alloys using electronic parameters. Scripta Materialia,2006,55(5):477-480.
    [165]M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, M. Niinomi, H. Mori and H. Nakajima. Low Young's modulus of Ti-Nb-Ta-Cr alloys caused by softening in shear moduli C and C44 near lower limit of body-centered cubic phase stability. Acta Materialia,58(20):6790-6798.
    [166]L. J. Slutsky and C. W. Garland. Elastic constants of magnesium from 4.2K to 300K. Physical Review,1957,107(4):972-976.
    [167]L. Zhang, L. L. Shi and J. Xu. Hf-Cu-Ni-Al bulk metallic glasses:Optimization of glass-forming ability and plasticity. Journal of Non-Crystalline Solids,2009, 355:1005-1007.
    [168]P. G. Debenedetti and F. H. Stillinger, Supercooled liquids and the glass transition. Nature,2001,410(6825):259-267.
    [169]K. Luo, W. Li, H. Y. Zhang and H. L. Su. Changes of hardness and electronic work function of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass on annealing. Philosophical Magazine Letters,2011,91(4):237-245.
    [170]P. G. Debenedetti, F. H. Stillinger, T. M. Truskett and C. J. Roberts. The equation of state of an energy landscape. The Journal of Physical Chemistry B,1999, 103(35):7390-7397.
    [171]W. L. Johnson and K. Samwer. A universal criterion for plastic yielding of metallic glasses with a (T/TK)2/3 temperature dependence. Physical Review Letters,2005, 95(19):195501.
    [172]W. Yang, Z. M. Li, W. Shi, B. H. Xie and M. B. Yang. Review on auxetic materials. Journal of Materials Science,2004,39(10):3269-3279.
    [173]Y. N. Zhang, R. Q. Wu, H. M. Schurter and A. B. Flatau. Understanding of large auxetic properties of iron-gallium and iron-aluminum alloys. Journal of Applied Physics,2010,108(2):023513.
    [174]Z. A. D. Lethbridge, R. I. Walton, A. S. H. Marmier, C. W. Smith and K. E. Evans. Elastic anisotropy and extreme Poisson's ratios in single crystals. Acta Materialia, 2010,58(19):6444-6451.
    [175]R. H. Baughman, S. O. Dantas, S. Stafstrom, A. A. Zakhidov, T. B. Mitchell and D. H. E. Dubin. Negative Poisson's ratios for extreme states of matter. Science,2000, 288(5473):2018-2022.
    [176]C. Y. Guo and L. Wheeler. Extreme Poisson's ratios and related elastic crystal properties. Journal of the Mechanics and Physics Solids,2006,54(4):690-707.
    [177]G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B,1999,59(3):1758-1775.
    [178]M. C. Gao, A. D. Rollett and M. Widom. Lattice stability of aluminum-rare earth binary systems:A first-principles approach. Physical Review B,2007, 75(17):174120.
    [179]Y. Ouyang, X. Tao, F. Zeng, H. Chen, Y. Du, Y. Feng and Y. He. First-principles calculations of elastic and thermo-physical properties of Al, Mg and rare earth lanthanide elements. Physica B,2009,404(16):2299-2304.
    [180]X. Tao, Y. Ouyang, H. Liu, F. Zeng, Y. Feng and Z. Jin. Calculation of the thermodynamic properties of B2 AIRE (RE=Sc, Y, La, Ce-Lu). Physica B,2007, 399(l):27-32.
    [181]V. Srivastava, G. Pagare, S. P. Sanyal and M. Rajagopalan. First principles calculations of Al-rich RE (RE= Ho, Er, Tm and Yb) intermetallic compounds. Physica status solidi (b),2009,246(6):1206-1214.
    [182]Y. Wu and W. Hu. Elastic and brittle properties of the B2-MgRE (RE= Sc, Y, Ce, Pr, Nd, Gd, Tb, Dy, Ho, Er) intermetallics. The European Physical Journal B Condensed Matter and Complex Systems,2007,60(1):75-81.
    [183]H. Zhang, S. Shang, J. E. Saal, A. Saengdeejing, Y. Wang, L. Q. Chen and Z. K. Liu. Enthalpies of formation of magnesium compounds from first-principles calculations. Intermetallics.2009,17(11):878-885.
    [184]X. Tao, Y. Ouyang, H. Liu, F. Zeng, Y. Feng and Z. Jin. Ab initio calculations of mechanical and thermodynamic properties for the B2-based AIRE. Computational Materials Science,2007,40(2):226-233.
    [185]G. Kresse and J. Furthmuller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science,1996,6(1):15.
    [186]M. C. Gao, A. D. Rollett and M. Widom. First-principles calculation of lattice stability of C15-M2R and their hypothetical C15 variants (M=Al, Co, Ni; R=Ca, Ce, Nd, Y). Calphad,20.06,30(3):341-348.
    [187]M. Mattesini, R. Ahuja and B. Johansson. Cubic Hf3N4 and Zr3N4:A class of hard materials. Physical Review B,2003,68(18):184108.
    [188]G. Ghosh. First-principles calculations of structural energetics of Cu-TM (TM=Ti, Zr, Hf) intermetallics. Acta Materialia,2007,55(10):3347-3374.
    [189]S. Q. Wang and H. Q. Ye. Ab initio elastic constants for the lonsdaleite phases of C, Si and Ge. Journal Physics:Condensed Matter,2003,15(30):5307-5314.
    [190]T. E. Jones and M. E. Eberhart. The topologies of the charge densities in Zr and Ru. Acta Crystallographica Section A,2009, A65:141-144.
    [191]G. Bihlmayer, R. Eibler and A. Neckel. Elastic properties of B2-NiTi and B2-PdTi. Physical Review B,1994,50(18):13113.
    [192]G. Ghosh and M. Asta. First-principles calculation of structural energetics of AI-TM (TM=Ti, Zr, Hf) intermetallics. Acta Materialia,2005,53(11):3225-3252.
    [193]A. C. Branka, D. M. Heyes and K. W. Wojciechowski. Auxeticity of cubic materials. Physica status solidi (b),2009,246(9):2063-2071.
    [194]T. Paszkiewicz and S. Wolski. Anisotropic properties of mechanical characteristics and auxeticity of cubic crystalline media. Physica status solidi (b),2007, 244(3):966-977.
    [195]M. E. Eberhart. The metallic bond:Elastic properties. Acta Materialia,1996,44(6): 2495-2504.
    [196]T. E. Jones, M. E. Eberhart, D. P. Clougherty and C. Woodward. Electronic selection rules controlling dislocation glide in bcc metals. Physical Review Letters,2008, 101(8):085505.
    [197]T. E. Jones, M. E. Eberhart and D. P. Clougherty. Topology of the spin-polarized charge density in bcc and fcc iron. Physical Review Letters,2008,100(1):017208.
    [198]T. E. Jones, M. E. Eberhart and D. P. Clougherty. Topological catastrophe and isostructural phase transition in calcium. Physical Review Letters,2010,105(26): 265702.
    [199]L. Rothenburg, A. A. Berlin and R. J. Bathurst. Microstructure of isotropic materials with negative Poisson's ratio. Nature,1991,354:470-472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700