BODIPY和罗丹明类阳离子荧光探针的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光分子探针具有诸如最高可达单分子检测的高灵敏度、能够实现开关操作、对亚微粒具有可视的亚纳米空间分辨能力和亚毫秒时间分辨能力、原位检测(荧光成像技术)以及利用光纤进行远距离检测等众多优点。氟硼荧(BODIPY)和罗丹明类荧光染料具有优异的光化学光物理性质,例如高的摩尔消光系数、良好的光稳定性、高的荧光量子产率等优点。因此,基于氟硼荧类和罗丹明类染料荧光分子探针的研究己引起人们越来越多的关注。
     设计合成了BODIPY类pH荧光分子探针M1-M6。M5对pH的响应范围是pH5.36-3.66,其它都是近中性的pH荧光分子探针,M1-M6是专一识别质子的pH荧光分子探针。同时,发现可以通过增加BODIPY染料8位亚甲基氮原子上取代基的数量、增加脂肪链取代基的链长、引入芳香烃基团等途径来降低此类染料的pK_a值,这主要是由于该氮原子附近存在的空间张力增加,使得氮原子的质子化变得更难。这种通过改变BODIPY染料8位亚甲基氮原子上的取代基来调变探针pK_a对此类pH荧光分子探针设计很有意义。
     基于PET原理设计合成了BODIPY类pH荧光分子探针BDTA。BDTA具有非常狭窄的pH识别范围(pH 2.00-0.65),具有很高的pH灵敏度。此外,BDTA不能够识别金属离子和阴离子,因此,BDTA是一个专一识别质子的pH荧光分子探针。
     基于PET原理设计合成了BODIPY类荧光化合物BPb_1,在乙腈中其最大吸收波长(496 nm)和最大发射波长(505 nm)在可见区,荧光量子产率为0.013,加入过量Pb~(2+)后,pb~(2+)-BPb_1络合物的荧光量子产率增大到0.693。其它常见金属离子和阴离子在乙腈中对BPb_1检测Pb~(2+)没有明显的干扰。荧光增强是由于pb~(2+)和受体的络合阻断了探针分子中由受体到荧光母体的光诱导电子转移(PET)。
     设计合成了两个罗丹明类Cu~(2+)荧光增强型分子探针RB2和RG2。在Tris-HCl中性缓冲液中,RB2和RG2在常见金属离子中(Na~+,K~+,Mg~(2+),Ca~(2+),Ba~(2+),Mn~(2+),Cd~(2+),Cr~(3+),Co~(2+),Ni~(2+),Ag~+,Pb~(2+),Zn~(2+),Fe~(3+),Fe~(2+),Hg~(2+))和常见阴离子(Ac~-,Cl~-,NO_3~-,H_2PO_4~-,PO_4~(3-),SO_4~(2-))中能够专一性地识别Cu~(2+),具有很高的灵敏度,RB2至少可以检测到1 nM Cu~(2+);RG2至少可以检测到0.1 nM Cu~(2+)。加入Cu~(2+)后,RB2和RG2的荧光强度分别增大约195倍和309倍。RB2、RG2对pH不敏感,可以在较宽的pH范围(包括重要的生理pH范围)内对Cu~(2+)高灵敏地识别。RB2、RG2分别和Cu~(2+)作用后,溶液的颜色和荧光发生明显地变化。
     合成了罗丹明类荧光化合物RB1和RG1。RG1对pH的响应范围是pH 4.51-0.96。随着酸度的增加(pH 4.51-0.96),RG1的吸光度和荧光强度将逐渐增大,pH降到0.96时,其荧光强度增大了约69倍,而且RG1对常见金属离子和阴离子都没有响应,所以RG1是一个高灵敏、可以专一识别质子的pH荧光分子探针。
The advantages of molecular fluorescent probes for sensing can be summarized: high sensitivity of detection down to the single molecule, "on-off' switchability, subnanometer spatial resolution and submillisecond temporal resolution, observation in situ, remote sensing by using optical fibres, et al. The boron dipyrromethene (BODIPY) dyes and Rhodamine dyes have excellent photophysics and photochemistry properties such as high molar extinction coefficient, high stability against light and chemical reactions, and high fluorescence quantum yields, etc. Therefore, the studies on fluorescence molecular probes based on BODIPY dyes and Rhodamine dyes are attracting many people's attentions.
     pH fluorescent probes (M1-M6) based on BODIPY dyes have been designed and synthesized. M5 has the response signal from pH 5.36-3.66. The other compounds among them are the near-neutral pH fluorescent probes. M1-M6 are non-metal ion and non-anion sensitive. At the same time, it was found that the increase of number of substitutes, the increase of aliphatic chain length and the introduction of aromatic group on the nitrogen atom linked methene at site 8 of BODIPY dyes can reduce the pK_a of them. The main reason is the protonation of this nitrogen atom will lead to greater steric strain. The affinity of a proton to this nitrogen atom becomes more difficult. It is very significant for the design of this kind of pH fluorescent probes that the various substitutes on the nitrogen atom linked methene at site 8 of BODIPY dyes.
     The BODIPY fluorescent pH probe BDTA based on PET has been designed and synthesized. The probe has much narrow pH-sensitive windows (pH 2.00-0.65). In addition, BDTA is non-metal ion and non-anion sensitive. Therefore, BDTA is a highly sensitive and selective pH fluorescent probe.
     The BODIPY fluorescent compound BPb_1 based on PET has been designed and synthesized. The absorption (496 nm) and emission (505 nm) wavelengths are in visible range in acetonitrile. The fluorescence quantum yields of the lead-free and lead-bound states of BPb_1 in acetonitrile are 0.013 and 0.693, respectively. Other metal ions and anions have no obvious interference for BPb_1 to detect Pb~(2+) in acetonitrile. The fluorescence enhancement is based on the blocking of photo-induced electron transfer in BPb_1 by the selective coordination of Pb~(2+) with the receptor in the probe molecule.
     Cu~(2+) fluorescence enhancement probes RB2 and RG2 based on rhodamine dyes have been designed and synthesized. RB2 and RG2 exhibit Cu~(2+)-only sensitive among metal ions such as Na~+ K~+, Mg~(2+), Ca~(2+), Ba~(2+), Mn~(2+), Cd~(2+), Cr~(3+), Co~(2+), Ni~(2+), Ag~+, Pb~(2+), Zn~(2+), Fe~(3+), Fe~(2+), Hg~(2+) and anions such as Ac~-, Cl~-, NO_3~-, H_2PO_4~-, PO_4~(3-), SO_4~(2-). They have extremely high sensitivity for Cu~(2+). RB2 and RG2 would detect at least 1 nM and 0.1 nM of Cu~(2+),respectively. Upon the addition of Cu~(2+), the fluorescence enhancement factors of RB2 and RG2 are ca. 195-fold and 309-fold, respectively. RB2 and RG2 are pH-insensitive Cu~(2+) fluorescent probes, which would detect Cu~(2+) effectively in a relatively wide range of pH including the significant physiological region. After the reaction between RB2 and Cu~(2+) or between RG2 and Cu~(2+), the colour and fluorescence of solution have very obvious changes.
     The rhodamine fluorescent compounds RB1 and RG1 have been synthesized. RG1 has the response signal from pH 4.51-0.96. The absorbance and the fluorescent emission intensity of RG1 increase continuously when the solution became more acidic from pH 4.51 to 0.96. When pH was decreased to 0.96, the fluorescence enhancement factor of RG1 is 69-fold. In addition, RG1 is non-metal ion and non-anion sensitive. Thus, RG1 is a pH fluorescent probe which has highly sensitivity and selectivity for protons.
引文
[1] Lehn J M. Supramolecular chemistry: receptors, catalysts and carriers. Science, 1985,227: 849-856.
    [2] Cram D J, Cram J M. Host-Guest Chemistry. Science, 1974,183: 803-809.
    
    [3] Pedersen C J. Cyclic polyethers and their complexes with metal salts. Journal of the American Chemical Society, 1967, 89 (10): 2495-2496.
    
    [4] Balzani V, DeCola L. Supramolecular Chemistry. The Netherlands: Kluwer Academic Publishers, 1992.
    
    [5] de Silva A P, Gunaratne H Q N, Gunnlaugsson T et al. Signaling recognition events with fluorescent sensors and switches. Chemical Reviews, 1997,97 (5): 1515-1566.
    
    [6] Czarnik A W. Fluorescent Chemosensors for Ion and Molecule Recognition. Washington: ACS, 1992.
    
    [7] Zhang X A, Lovejoy K S, Jasanoff A et al. Water-soluble porphyrins imaging platform for MM zinc sensing. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104 (26): 10780-10785.
    
    [8] Yuan M S, Liu Z Q, Fang Q. Donor-and-acceptor substituted truxenes as multifunctional fluorescent probes. Journal of Organic Chemistry, 2007,72 (21): 7915-7922.
    
    [9] Nakagawa O, Ono S, Li Z et al. Specific fluorescent probe for 8-oxoguanosine. Angewandte Chemie-International Edition, 2007,46 (24): 4500-4503.
    
    [10] Maeda H, Yamamoto K, Kohno I et al. Design of a practical fluorescent probe for superoxide based on protection - Deprotection chemistry of fluoresceins with benzenesulfonyl protecting groups. Chemistry-a European Journal, 2007,13 (7): 1946-1954.
    
    [11] Valeur B. Molecular Fluorescence Principles and Applications. Weinheim: Wiley-VCH, 2002.
    
    [12] Gunnlaugsson T, Ali H D P, Glynn M et al. Fluorescent photoinduced electron transfer (PET) sensors for anions; From design to potential application. Journal of Fluorescence, 2005,15 (3): 287-299.
    
    [13] Luo H Y, Jiang J H, Zhang X B et al. Synthesis of porphyrin-appended terpyridine as a chemosensor for cadmium based on fluorescent enhancement. Talanta, 2007,72 (2): 575-581.
    
    [14] Feng L H, Chen Z B. Screening mercury (II) with selective fluorescent chemosensor. Sensors and Actuators B-Chemical, 2007, 122 (2): 600-604.
    
    [15] Thiagarajan V, Ramamurthy P, Thirumalai D et al. A Novel Colorimetric and Fluorescent Chemosensor for Anions Involving PET and ICT Pathways. Organic Letters, 2005,7 (4): 657-660.
    
    [16] Belser P, De Cola L, Hartl F et al. Photochromic Switches Incorporated in Bridging Ligands: A New Tool to Modulate Energy-Transfer Processes. Advanced Functional Materials, 2006,16 (2): 195 - 208.
    
    [17] Magri D C, Brown G J, McClean G D et al. Communicating Chemical Congregation: A Molecular AND Logic Gate with Three Chemical Inputs as a "Lab-on-a-Molecule" Prototype Journal of the American Chemical Society, 2006,128 (15): 4950-4951.
    
    [18] Sautter A, Kaletas B K, Schmid D G et al. Ultrafast Energy-Electron Transfer Cascade in a Multichromophoric Light-Harvesting Molecular Square. Journal of the American Chemical Society, 2005, 127 (18): 6719-6729.
    
    [19] de Silva A P. Fluorescent signaling crown ethers: 'switching on' of fluorescence by alkali metal ion recognition and binding in situ. Chemical Communications, 1986: 1709-1710.
    
    [20] Wu Y, Peng X, Guo B et al. Boron dipyrromethene fluorophore based fluorescence sensor for the selective imaging of Zn(II) in living cells. Organic & Biomolecular Chemistry, 2005,3 (8): 1387-1392.
    [21] Gunnlaugsson T, Lee T C, Parkesh R. Highly selective fluorescent chemosensors for cadmium in water. Tetrahedron, 2004,60: 11239-11249.
    
    [22] Turfan B, Engin U A. Modulation of Boradiazaindacene Emission by Cation-Mediated Oxidative PET. Organic Letters, 2002,4 (17): 2857-2859.
    
    [23] Novaira M, Biasutti M A, Silber J J et al. New insights on the photophysical behavior of PRODAN in anionic and cationic reverse micelles: From which state or states does it emit? Journal of Physical Chemistry B, 2007,111 (4): 748-759.
    
    [24] Citterio D, Takeda J, Kosugi M et al. pH-independent fluorescent chemosensor for highly selective lithium ion sensing. Analytical Chemistry, 2007,79 (3): 1237-1242.
    
    [25] Wang J B, Qian X H, Qian J H et al. Micelle-induced versatile performance of amphiphilic intramolecular charge-transfer fluorescent molecular sensors. Chemistry-a European Journal, 2007,13 (26): 7543-7552.
    
    [26] Peng X J, Du J J, Fan J L et al. A selective fluorescent sensor for imaging Cd~(2+) in living cells. Journal of the American Chemical Society, 2007,129 (6): 1500-1501.
    
    [27] Fery-Forgues S, Bourson J, Dallery L et al. NMR and optical spectroscopy studies of cation binding on chromophores and fluorophores linked to monoaza-15-crown-5. New Journal of Chemistry, 1990, 14: 617-623.
    
    [28] Grabowski Z R, Rotkiewicz K, Rettig W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev, 2003, 103: 3899-4031.
    
    [29] Lippert E, Luder W, Boos H. Fluoreszenzspektrum und Franck-Condon-Prinzip in Losungen Aromatischer Verbindungen, in: Advances in Molecular spectroscopy. England: Oxford Pergamon Press, 1962.
    
    [30] Jonker S A, Van Dijk S I, Goubitz K et al. Solid-state structure and spectroscopy of chromoionophoric acridinium derivatives. Molecular Crystals and Liquid Crystals, 1990,183: 273-282.
    
    [31] Zhao Y G, Lin Z H, Liao H P et al. A highly selective fluorescent chemosensor for Al~(3+) derivated from 8-hydroxyquinoline. Inorganic Chemistry Communications, 2006,9 (9): 966-968.
    
    [32] Kim J S, Choi M G, Song K C et al. Ratiometric determination of Hg~(2+) ions based on simple molecular motifs of pyrene and dioxaoctanediamide. Organic Letters, 2007,9 (6): 1129-1132.
    
    [33] Machi L, Santacruz H, Sanchez M et al. Bichromophoric naphthalene derivatives of ethylenediaminetetraacetate: Fluorescence from intramolecular excimer, protonation and complexation with Zn~(2+) and Cd~(2+). Supramolecular Chemistry, 2006,18 (7): 561-569.
    
    [34] Kameta N, Hiratani K. Synthesis of supramolecular boron complex with anthryl groups exhibiting specific optical response for chloride ion. Tetrahedron Letters, 2006,47 (28): 4947-4950.
    
    [35] Bouas-Laurent H, Castellan A, Daney M et al. Cation-directed photochemistry of an anthraceno-crown ether. Journal of the American Chemical Society, 1986,108: 315-317.
    
    [36] Ben Othman A, Lee J W, Wu J S et al. Calix[4]arene-based, Hg~(2+)-induced intramolecular fluorescence resonance energy transfer chemosensor. Journal of Organic Chemistry, 2007,72 (20): 7634-7640.
    
    [37] Lee M H, Quang D T, Jung H S et al. Ion-induced FRET on-off in fluorescent calix[4]arene. Journal of Organic Chemistry, 2007,72 (11): 4242-4245.
    
    [38] Valeur B, Pouget J, Bourson J et al. Tuning of photoinduced energy transfer in a bichromophoric coumarin supermolecule by cation binding. Journal of Physical Chemistry, 1992,96: 6545-6549.
    [39] Valeur B, Pouget J, Bourson J. Photoinduced electronic energy transfer in a supramolecular complex between a coumarin bichromophoric molecule and lead(II). Journal of Luminescence, 1992,52: 345-347.
    
    [40] Swanson R, Raghavendra M P, Zhang W Q et al. Serine and cysteine proteases are translocated to similar extents upon formation of covalent complexes with serpins - Fluorescence perturbation and fluorescence resonance energy transfer mapping of the protease binding site in CrmA complexes with granzyme B and caspase-1. Journal of Biological Chemistry, 2007,282 (4): 2305-2313.
    
    [41] Ko S, Grant, S A. Development of a novel FRET method for detection of Listeria or Salmonella. Sensors and Actuators B-Chemical, 2003,96 (1-2): 372-378.
    
    [42] Laurence T A, Kong X X, Jager M et al. Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins. Proceedings of the National Academy of Sciences of the United States of America, 2005,102 (48): 17348-17353.
    
    [43] Zelphati O, Szoka F C. Mechanism of oligonucleotide release from cationic liposomes. Proceedings of the National Academy of Sciences of the United States of America, 1993,93: 11493-11501.
    
    [44] Ashok A D, Maxime D, Jocelyn R. et al. Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Forster distance dependence and subpopulations. Proceedings of the National Academy of Sciences of the United States of America, 1999,96: 3670-3677.
    
    [45] Laws W R, Brand L. Analysis of two-state excited-state reaction. The fluorescence decay of 2-naphthol. Journal of Physical Chemistry, 1979,83: 795-802.
    
    [46] Mordon S, Devoisselle J M, Soulie S. Fluorescence spectroscopy of Ph in vivo using a dual-emission fluorophore (C-SNAFL-1). J. Photochem. Photobiol., B., 1995,28: 19-23.
    
    [47] Tanaka K, Kumagai T, Aoki H et al. Application of 2-(3,5,6-Trifluoro-2-hydroxy-4-methoxy- phenyl)benzoxazole and -benzothiazole to Fluorescent Probes Sensing pH and Metal Cations. Journal of Organic Chemistry, 2001,66 (22): 7328-7333.
    
    [48] Henary M M, Fahrni C J. Excited State Intramolecular Proton Transfer and Metal Ion Complexation of 2-(2(?)-Hydroxyphenyl)benzazoles in Aqueous Solution. Journal of Physical Chemistry A, 2002, 106: 5210-5220.
    
    [49] Vazquez S R, Rodriguez M C R, Mosquera M et al. Excited-state intramolecular proton transfer in 2-(3 '-hydroxy-2 '-pyridyl)benzoxazole. Evidence of coupled proton and charge transfer in the excited state of some o-hydroxyarylbenzazoles. Journal of Physical Chemistry A, 2007,111 (10): 1814-1826.
    
    [50] Yushchenko D A, Shvadchak V V, Klymchenko A S et al. 2-Aryl-3-hydroxyquinolones, a new class of dyes with solvent dependent dual emission due to excited state intramolecular proton transfer. New Journal of Chemistry, 2006,30 (5): 774-781.
    
    [51] Rodembusch F S, Campo L F, Rigacci A et al. . A new ESIPT fluorescent dye-doped silica aerogel. Macromolecular Symposium, 2005,229: 188-193.
    
    [52] Klymchenko A S, Mely Y, Demchenko A P et al. Simultaneous probing of hydration and polarity of lipid bilayers with 3-hydroxyflavone fluorescent dyes. Biochimica Et Biophysica Acta-Biomembranes, 2004, 1665 (1-2): 6-19.
    
    [53] Kim S, Seo J, Jung H K et al. White luminescence from polymer thin films containing excited-state intramolecular proton-transfer dyes. Advanced Materials, 2005,17: 2077-2082.
    
    [54] Ressalan S, Iyer C S P. Absorption and fluorescence spectroscopy of 3-hydroxy-3-phenyl-1-o- carboxyphenyltriazene and its copper(II), nickel(II) and zinc(II) complexes: a novel fluorescence sensor. Journal of Luminescence, 2005,111 (3): 121-129.
    
    
    
    [55] Peng X J, Wu Y K, Fan J L et al. Colorimetric and ratiometric fluorescence sensing of fluoride:Tuning selectivity in proton transfer. Journal of Organic Chemistry, 2005,70 (25): 10524-10531.
    
    [56] Wu Y K, Peng X J, Fan J L et al. Fluorescence sensing of anions based on inhibition of excited-stateintramolecular proton transfer. Journal of Organic Chemistry, 2007,72 (1): 62-70.
    
    [57] Peng X J, Song F L, Lu E et al. Heptamethine cyanine dyes with a large stokes shift and strongfluorescence: A paradigm for excited-state intramolecular charge transfer. Journal of the AmericanChemical Society, 2005,127 (12): 4170-4171.
    
    [58] Zhang J, Campbell R E, Ting A Y et al. Creating New Fluorescent Probes for Cell Biology. NatureReviews Molecular Cell Biology, 2002,3: 906-918.
    
    [59] Guo B C, Peng X J, Cui A J et al. Synthesis and spectral properties of new boron dipyrromethene dyes.Dyes and Pigments, 2007,73 (2): 206-210.
    
    [60] Cui A J, Peng X J, Fan J L et al. Synthesis, spectral properties and photostability of novelboron-dipyrromethene dyes. Journal of Photochemistry and Photobiology a-Chemistry, 2007, 186 (1):85-92.
    
    [61] Chen J, Burghart A, Wan C W et al. Synthesis and spectroscopic properties of 2-ketopyrrole-BF2complexes: a new class of fluorescent dye. Tetrahedron Letters, 2000,41 (14): 2303-2307.
    
    [62] Yu Y H, Descalzo A B, Shen Z et al. Mono- and di(dimethylamino) styryl-substitutedborondipyrromethene and borondiindomethene dyes with intense near-infrared fluorescence. Chemistry-anAsian Journal, 2006,1 (1-2): 176-187.
    
    [63] Ziessel R, Goze C, Ulrich G. Design and synthesis of alkyne-substituted boron in dipyrrometheneframeworks. Synthesis-Stuttgart, 2007,6: 936-949.
    
    [64] 赵文峰,陈朗星,何锡文.杯芳烃荧光识别试剂研究进展.化学试剂,2006,5:269-273.
    
    [65] Bu J H, Zheng Q Y, Chen C F et al. New fluorescence-quenching process through resumption of PETprocess induced by complexation of alkali metal ion. Organic Letters, 2004,6 (19): 3301-3303.
    
    [66] Cha N R, Moon S Y, Chang S K. New ON-OFF type Ca~(2+)-selective fluoroionophore havingboron-dipyrromethene fluorophores. Tetrahedron Letters, 2003,44 (45): 8265-8268.
    
    [67] Li S Y, Zheng Q Y, Chen C F et al. Fluorescent probes of D-(+)-gluconic acid delta-lactone based onbinary hosts of chiral calix[5]arene. Tetrahedron-Asymmetry, 2005,16 (16): 2816-2820.
    
    [68] Choi J K, Kim S H, Yoon J et al. A PCT-based, pyrene-armed calix[4]crown fluoroionophore. Journalof Organic Chemistry, 2006,71 (21): 8011-8015.
    
    [69] 樊江莉.二(2-吡啶甲基)胺为识别基团的Zn~(2+)荧光分子探针的研究.博士学位论文,大连理工大学,大连,2005.
    
    [70] Jiang P J, Guo Z J. Fluorescent detection of zinc in biological systems: recent development on thedesign of chemosensors and biosensors. Coordination Chemistry Reviews, 2004,248 (1-2): 205-229.
    
    [71] Goldsmith C R, Lippard S J. Analogues of zinpyr-1 provide insight into the mechanism of zinc sensing.Inorganic Chemistry, 2006,45 (16): 6474-6478.
    
    [72] Xu Z C, Xiao Y, Qian X H et al. Ratiometric and selective fluorescent sensor for Cu-II based oninternal charge transfer (ICT). Organic Letters, 2005,7 (5): 889-892.
    
    [73] Guo X F, Qian X H, Jia L H. A highly selective and sensitive fluorescent chemosensor for Hg~(2+) inneutral buffer aqueous solution. Journal of the American Chemical Society, 2004,126 (8): 2272-2273.
    
    [74] Wu C T. Crown Ether Chemistry. Beijing: Academic Press, 1992.
    
    [75] Gokel G W, Leevy W M, Weber M E. Crown ethers: Sensors for ions and molecular scaffolds formaterials and biological models. Chemical Reviews (Washington, D. C), 2004,104 (5): 2723-2750.
    [76] Yapar G, Erk C. A study of the metal complexing of naphthalene-2,3-crown ethers using fluorescence spectroscopy: Part III. Dyes and Pigments, 2001,48 (3): 173-177.
    
    [77] Blakemore J D, Chitta R D, Souza F. Synthesis and study of crown ether-appended boron dipyrrin chemosensors for cation detection. Tetrahedron Letters, 2007,48 (11): 1977-1982.
    
    [78] Baruah M, Qin W W, Vallee R A L et al. A highly potassium-selective ratiometric fluorescent indicator based on BODIPY azacrown ether excitable with visible light. Organic Letters, 2005, 7 (20): 4377-4380.
    
    [79] Chen C T, Huang W P. A highly selective fluorescent chemosensor for lead ions. Journal of the American Chemical Society, 2002,124 (22): 6246-6247.
    
    [80] Rurack K, Kollmannsberger M, Resch-Genger U et al. A selective and sensitive fluoroionophore for Hg-II, Ag-I, and Cu-II with virtually decoupled fluorophore and receptor units. Journal of the American Chemical Society, 2000,122 (5): 968-969.
    
    [81] Kim S H, Song K C, Ahn S et al. Hg~(2+)-selective fluoroionophoric behavior of pyrene appended diazatetrathia-crown ether. Tetrahedron Letters, 2006,47 (4): 497-500.
    
    [82] Bag B, Bharadwaj P K. Attachment of electron-withdrawing 2,4-dinitrobenzene groups to a cryptand-based receptor for Cu(II)/H~+-specific exciplex and monomer emissions. Organic Letters, 2005, 7 (8): 1573-1576.
    
    [83] Sadhu K K, Bag B, Bharadwaj PK. A multi-receptor fluorescence signaling system exhibiting enhancement selectively in presence of Na(I) and T1(I) ions. Journal of Photochemistry and Photobiology a-Chemistry, 2007,185 (2-3): 231-238.
    
    [84] Amendola V, Fabbrizzi L, Foti F et al. Light-emitting molecular devices based on transition metals. Coordination Chemistry Reviews, 2006,250 (3-4): 273-299.
    
    [85] Fabbrizzi L, Licchelli M, Pallavicini P et al. Fluorescent sensors for transition metals based on electron-transfer and energy-transfer mechanisms. Chemistry-a European Journal, 1996,2(1): 75-82.
    
    [86] Fabbrizzi L, Licchelli M, Pallavicini P et al. An Anthracene-Based Fluorescent Sensor for Transition-Metal Ions. Angewandte Chemie-International Edition in English, 1994,33 (19): 1975-1977.
    
    [87] Ikeda H, Sugiyama T, Ueno A. New chemosensor for larger guests based on modified cyclodextrin bearing seven hydrophobic chains each with a hydrophilic end group. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2007,57 (1-4): 83-87.
    
    [88] Hayashita T, Yamauchi A, Tong A J et al. Design of supramolecular cyclodextrin complex sensors for ion and molecule recognition in water. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2004, 50(1): 87-94.
    
    [89] Chung Y M, Raman B, Ahn K H. Phenol-containing bis(oxazolines): synthesis and fluorescence sensing of amines. Tetrahedron, 2006,62 (50): 11645-11651.
    
    [90] Li J, Lu Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. Journal of the American Chemical Society, 2000,122 (42): 10466-10467.
    
    [91] Pearce D A, Walkup G, KImperiali B. Peptidyl chemosensors incorporating a FRET mechanism for detection of Ni(II). Bioorganic & Medicinal Chemistry Letters, 1998, 8 (15): 1963-1968.
    
    [92] White B R, Holcombe J A. Fluorescent peptide sensor for the selective detection of Cu~(2+). Talanta, 2007,71 (5): 2015-2020.
    
    [93] Deo S, Godwin H A. A selective, ratiometric fluorescent sensor for Pb~(2+). Journal of the American Chemical Society, 2000,122(1): 174-175.
    [94] Zapata F, Caballero A, Espinosa A et al. A Simple but Effective Ferrocene Derivative as a Redox, Colorimetric, and Fluorescent Receptor for Highly Selective Recognition of Zn~(2+) Ions Org. Lett., 2007, 9 (12): 2385-2388.
    
    [95] Katerinopoulos H E, Foukaraki E. Polycarboxylate fluorescent indicators as ion concentration probes in biological systems. Current Medicinal Chemistry, 2002,9 (2): 275-306.
    
    [96] Bergonzi R, Fabbrizzi L, Licchelli M et al. Molecular switches of fluorescence operating through metal centred redox couples. Coordination Chemistry Reviews, 1998,170: 31-46.
    
    [97] Prodi L, Bolletta F, Montalti M et al. Luminescent chemosensors for transition metal ions. Coordination Chemistry Reviews, 2000,205: 59-83.
    
    [98] Rurack K. Flipping the light switch 'ON' - the design of sensor molecules that show cation-induced fluorescence enhancement with heavy and transition metal ions. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2001,57 (11): 2161-2195.
    
    [99] Fuh M R S, Burgess L W, Hirschfeld T et al. Single fibre optic fluorescence pH probe. Analyst, 1987, 112:1159-1163.
    
    [100] Safavi A, Abdollahi H. Optical sensor for high pH values. Analytica Chimica Acta, 1998,367 (1-3): 167-173.
    
    [101] Begu S, Mordon S, Desmettre T et al. Fluorescence imaging method for in vivo pH monitoring during liposomes uptake in rat liver using a pH-sensitive fluorescent dye. Journal of Biomedical Optics, 2005,10 (2): -.
    
    [102] Sanchez-Armass S, Sennoune S R, Maiti D et al. Spectral imaging microscopy demonstrates cytoplasmic pH oscillations in glial cells. American Journal of Physiology-Cell Physiology, 2006, 290 (2): C524-C538.
    
    [103] Alvarez-Leefmans F J, Herrera-Perez J J, Marquez M S et al. Simultaneous measurement of water volume and pH in single cells using BCECF and fluorescence imaging microscopy. Biophysical Journal, 2006,90 (2): 608-618.
    
    [104] Tang B, Liu X, Xu K H et al. A dual near-infrared pH fluorescent probe and its application in imaging of HepG2 cells. Chemical Communications, 2007, (36): 3726-3728.
    
    [105] Liang E, Liu P C, Dinh S. Use of a pH-sensitive fluorescent probe for measuring intracellular pH of Caco-2 cells. International Journal of Pharmaceutics, 2007,338 (1-2): 104-109.
    
    [106] Holoubek A, Vecer J, Sigler K. Monitoring of the proton electrochemical gradient in reconstituted vesicles: Quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes. Journal of Fluorescence, 2007,17 (2): 201-213.
    
    [107] Cui D W, Qian X H, Liu F Y et al. Novel fluorescent pH sensors based on intramolecular hydrogen bonding ability of naphthalimide. Organic Letters, 2004,6 (16): 2757-2760.
    
    [108] Callan J F, de Silva A P, Ferguson J et al. Fluorescent photoionic devices with two receptors and two switching mechanisms: applications to pH sensors and implications for metal ion detection. Tetrahedron, 2004,60(49): 11125-11131.
    
    [109] Qin W W, Baruah M, Stefan A et al. Photophysical properties of BODIPY-derived hydroxyaryl fluorescent pH probes in solution. Chemphyschem, 2005,6 (11): 2343-2351.
    
    [110] Valuk V R, Duportail G, Pivovarenko V G. A wide-range fluorescent pH-indicator based on 3-hydroxyflavone structure. Journal of Photochemistry and Photobiology a-Chemistry, 2005, 175 (2-3): 226-231.
    
    
    
    [111] Boens N, Qin W W, Basaric N et al. Photophysics of the fluorescent pH indicator BCECF. Journal ofPhysical Chemistry A, 2006,110 (30): 9334-9343.
    
    [112] Vasylevska A S, Karasyov A A, Borisov S M et al. Novel coumarin-based fluorescent pH indicators,probes and membranes covering a broad pH range. Analytical and Bioanalytical Chemistry, 2007, 387 (6):2131-2141.
    
    [113] Suzuki I, Ui M, Yamauchi A. Pyrene-appended alpha-cyclodextrin as a fluorescent pH proberesponding to a wide range. Analytical Sciences, 2006,22 (5): 655-657.
    
    [114] 崔爱军.新型BODIPY类荧光染料的合成及性能研究.博士学位论文,大连理工大学,大连,2006.
    
    [115] 郭斌臣.BODIPY荧光染料的合成、光谱性能研究及在生物探针中的应用.硕士学位论文,大连理工大学,大连,2005.
    
    [116] Bhattacharyam S, Snehalatha K, Kumar V P. Synthesis of new Cu(II)-chelating ligand amphiphilesand their esterolytic properties in cationic micelles. Journal of Organic Chemistry, 2003,68 (7): 2741-2747.
    
    [117] Software packages SMRT and SAINT, Siemens Analytical X-Ray Instruments Inc., Madison, WI,1996.
    
    [118] SHELXTL, Version 5.1, Siemens Industrial Automation, Inc. 1997.
    
    [119] Glenn A C, James N D. Measurement of photoluminescence quantum yields. Review Journal ofPhysical Chemistry, 1971,75 (8): 991-1024.
    
    [120] Hirano T, Kikuchi K, Urano Y et al. Improvement and biological applications of fluorescent probesfor zinc, ZnAFs. Journal of the American Chemical Society, 2002,124 (23): 6555-6562.
    
    [121] Brown R S, Hingerty B E, Dewan J C et al. Pb(II)-catalysed cleavage of the sugar-phosphatebackbone of yeast tRNA~(Phe)-implications for lead toxicity and self-splicing RNA. Nature (London), 1983,303: 543-546.
    
    [122] Jaffe E K, Volin M, Myers C B et al. 5-Chloro[1,4-13C]levulinic acid modification of mammalianand bacterial porphobilinogen synthase suggests an active site containing two Zn(II) Biochemistry, 1994,33 (38): 11554-11562.
    
    [123] Christensen J M, Kristiansen J. Handbook on Metals in Clinical Chemistry. New York: MarcelDekker, Inc., 1994.
    
    [124] Godwin H A. The biological chemistry of lead. Current Opinion in Chemical Biology, 2001, 5 (2):223-227.
    
    [125] Deo S, Fowler D, Godwin H A. Searching for selective Pb~(2+) sensors. Abstracts of Papers of theAmerican Chemical Society, 2000,219: U400-U400.
    
    [126] Deo S, Godwin H A. The design of a ratioable fluorescent Pb(II) probe. Journal of InorganicBiochemistry, 1999,74 (1-4).
    
    [127] Chae M Y, Yoon J Y, Czarnik A W. Chelation-enhanced fluorescence chemosensing of Pb(II), aninherently quenching metal ion. Journal of Molecular Recognition, 1996,9 (4): 297-303.
    
    [128] Alvarado R J, Rosenberg J M, Andreu A et al. Structural insights into the coordination and extractionof Pb(II) by disulfonamide ligands derived from o-phenylenediamine. Inorganic Chemistry, 2005, 44 (22):7951-7959.
    
    [129] Chang I H, Tulock J J, Liu J W et al. Miniaturized lead sensor based on lead-specific DNAzyme in amanocapillary interconnected microfluidic device. Environmental Science & Technology, 2005, 39 (10):3756-3761.
    [130] Chen P, Greenberg B, Taghavi S et al. An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: Development of a fluorescent lead(II) probe. Angewandte Chemie-International Edition, 2005,44 (18): 2715-2719.
    
    [131] Deo S, Higgins D A, Parsek M R et al. Lead induces production of pyoverdine in P-aeruginosa. Abstracts of Papers of the American Chemical Society, 2001,222: U443-U443.
    
    [132] Hayashita T, Qing D, Bartsch R A et al. Lead ion selective signal amplification by a supramolecular podand fluoroionophore/surfactant complex sensor in water. Supramolecular Chemistry, 2005, 17 (1-2): 141-146.
    
    [133] Hayashita T, Qing D, Minagawa M et al. Highly selective recognition of lead ion in water by a podand fluoroionophore/gamma-cyclodextrin complex sensor. Chemical Communications, 2003, (17): 2160-2161.
    
    [134] He Q W, Miller E W, Wong A P et al. A selective fluorescent sensor for detecting lead in living cells. Journal of the American Chemical Society, 2006,128 (29): 9316-9317.
    
    [135] Kavallieratos K, Rosenberg J M, Chen W Z et al. Fluorescent sensing and selective Pb(II) extraction by a dansylamide ion-exchanger. Journal of the American Chemical Society, 2005,127 (18): 6514-6515.
    
    [136] Kim I B, Dunkhorst A, Gilbert J et al. Sensing of lead ions by a carboxylate-substituted PPE: Multivalency effects. Macromolecules, 2005,38 (11): 4560-4562.
    
    [137] Kim S K, Lee J K, Lim J M et al. Pb~(2+) sensing chemo-sensor: Thiacalix[4]crown-based lumino-ionophore. Bulletin of the Korean Chemical Society, 2004,25 (8): 1247-1250.
    
    [138] Kim S K, Lee S H, Lee J Y et al. An excimer-based, binuclear, on-off switchable calix[4]crown chemosensor. Journal of the American Chemical Society, 2004,126 (50): 16499-16506.
    
    [139] Kwon J Y, Jang Y J, Lee Y J et al. A highly selective fluorescent chemosensor for Pb~(2+). Journal of the American Chemical Society, 2005,127 (28): 10107-10111.
    
    [140] Metivier R, Leray I, Valeur B. A highly sensitive and selective fluorescent molecular sensor for Pb(II) based on a calix[4]arene bearing four dansyl groups. Chemical Communications, 2003, (8): 996-997.
    
    [141] Qi X, Jun E J, Xu L et al. New BODIPY derivatives as OFF-ON fluorescent chemosensor and fluorescent chemodosimeter for Cu~(2+): Cooperative selectivity enhancement toward Cu~(2+). Journal of Organic Chemistry, 2006,71 (7): 2881-2884.
    
    [142] Sun M, Shangguan D, Ma H M et al. Simple Pb-II fluorescent probe based on Pb-II-catalyzed hydrolysis of phosphodiester. Biopolymers, 2003,72 (6): 413-420.
    
    [143] Wu F Y, Bae S W, Hong J I. A selective fluorescent sensor for Pb(II) in water. Tetrahedron Letters, 2006,47 (50): 8851-8854.
    
    [144] Xia W S, Schmehl R H, Li C J et al. Chemosensors for lead(II) and alkali metal ions based on self-assembling fluorescence enhancement (SAFE). Journal of Physical Chemistry B, 2002, 106 (4): 833-843.
    
    [145] Zhang Y, Xiang W C, Yang R H et al. Highly selective sensing of lead ion based on alpha-, beta-, gamma-, and delta-tetrakis(3,5-dibromo-2-hydroxylphenyl)porphyrin beta-CD inclusion complex. Journal of Photochemistry and Photobiology a-Chemistry, 2005,173 (3): 264-270.
    
    [146] Ghering A B, Jenkins L M M, Schenck B L et al. Spectroscopic and functional determination of the interaction of Pb~(2+) with GATA proteins. Journal of the American Chemical Society, 2005, 127 (11): 3751-3759.
    
    [147] Godwin H A, Deo S, Fowler D M. Selective, ratiometric fluorescent sensor for Pb~(2+). Abstracts of Papers of the American Chemical Society, 2000,219: U873-U873.
    [148] Barceloux D G. Copper. Journal of Toxicology-Clinical Toxicology, 1999,37 (2): 217-230.
    
    [149] Tapiero H, Townsend D MTew K D. Trace elements in human physiology and pathology. Copper. Biomedicine & Pharmacotherapy, 2003,57 (9): 386-398.
    
    [150] Huffman D L, OHalloran T V. Function, structure, and mechanism of intracellular copper trafficking proteins. Annual Review of Biochemistry, 2001,70: 677-701.
    
    [151] Field L S, Luk E, Culotta V C. Copper chaperones: Personal escorts for metal ions. Journal of Bioenergetics and Biomembranes, 2002,34 (5): 373-379.
    
    [152] Mercer J F B. The molecular basis of copper-transport diseases. Trends in Molecular Medicine, 2001, 7 (2): 64-69.
    
    [153] Harrison M D, Dameron C T. Molecular mechanisms of copper metabolism and the role of the Menkes disease protein. Journal of Biochemical and Molecular Toxicology, 1999,13 (2): 93-106.
    
    [154] Strausak D, Mercer J F B, Dieter H H et al. Copper in disorders with neurological symptoms: Alzheimer's, Menkes, and Wilson diseases. Brain Research Bulletin, 2001,55 (2): 175-185.
    
    [155] Waggoner D J, Bartnikas T B, Gitlin J D. The role of copper in neurodegenerative disease. Neurobiology of Disease, 1999,6 (4): 221-230.
    
    [156] Pufahl R A, Singer C P, Peariso K L et al. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science, 1997,278 (5339): 853-856.
    
    [157] Dujols V, Ford F, Czarnik A W. A long-wavelength fluorescent chemodosimeter selective for Cu(II) ion in water. Journal of the American Chemical Society, 1997,119 (31): 7386-7387.
    
    [158] Sasaki D Y, Shnek D R, Pack D W et al. Metal-Induced Dispersion of Lipid Aggregates - a Simple, Selective, and Sensitive Fluorescent Metal-Ion Sensor. Angewandte Chemie-International Edition in English, 1995,34 (8): 905-907.
    
    [159] Torrado A, Walkup G K, Imperiali B. Exploiting polypeptide motifs for the design of selective Cu(II) ion chemosensors. Journal of the American Chemical Society, 1998,120 (3): 609-610.
    
    [160] Bolletta F, Costa I, Fabbrizzi L et al. A [Ru-II(bipy)(3)]-[1,9-diamino-3,7-diazanonane-4,6-dione] two-component system, as an efficient ON-OFF luminescent chemosensor for Ni~(2+) and Cu~(2+) in water, based on an ET (energy transfer) mechanism. Journal of the Chemical Society-Dalton Transactions, 1999, (9): 1381-1385.
    
    [161] Grandini P, Mancin F, Tecilla P et al. Exploiting the self-assembly strategy for the design of selective Cu-II ion chemosensors. Angewandte Chemie-International Edition, 1999,38 (20): 3061-3064.
    
    [162] Klein G, Kaufmann D, Schurch S et al. A fluorescent metal sensor based on macrocyclic chelation. Chemical Communications, 2001, (6): 561-562.
    
    [163] Zheng Y J, Huo Q, Kele P et al. A new fluorescent chemosensor for copper ions based on tripeptide glycyl-histidyl-lysine (GHK). Organic Letters, 2001,3 (21): 3277-3280.
    
    [164] Boiocchi M, Fabbrizzi L, Licchelli M et al. A two-channel molecular dosimeter for the optical detection of copper(II). Chemical Communications, 2003, (15): 1812-1813.
    
    [165] Zheng Y J, Cao X H, Orbulescu J et al. Peptidyl fluorescent chemosensors for the detection of divalent copper. Analytical Chemistry, 2003,75 (7): 1706-1712.
    
    [166] Zheng Y, Orbulescu J, Ji X et al. Development of fluorescent film sensors for the detection of divalent copper. Journal of the American Chemical Society, 2003,125 (9): 2680-2686.
    
    [167] Roy B C, Chandra B, Hromas D et al. Synthesis of new, pyrene-containing, metal-chelating lipids and sensing of cupric ions. Organic Letters, 2003, 5 (1): 11-14.
    
    
    
    [168] Kaur S, Kumar S. Photoactive chemosensors 4: a Cu~(2+) protein cavity mimicking fluorescentchemosensor for selective Cu~(2+) recognition. Tetrahedron Letters, 2004,45 (26): 5081-5085.
    
    [169] Mei Y J, Bentley P A, Wang W. A selective and sensitive chemosensor for Cu~(2+) based on8-hydroxyquinoline. Tetrahedron Letters, 2006,47 (14): 2447-2449.
    
    [170] Zhang X B, Peng J, He C L et al. A highly selective fluorescent sensor for Cu~(2+) based on 2-(2'-hydroxyphenyl)benzoxazole in a poly(vinyl chloride) matrix. Analytica Chimica Acta, 2006, 567 (2):189-195.
    
    [171] Comba P, Kramer R, Mokhir A et al. Synthesis of new phenanthroline-based heteroditopic ligands -Highly efficient and selective fluorescence sensors for copper(II) ions. European Journal of InorganicChemistry, 2006, (21): 4442-4448.
    
    [172] Kim S H, Kim J S, Park S M et al. Hg~(2+)-selective OFF-ON and Cu~(2+)-selective ON-OFF typefluoroionophore based upon cyclam. Organic Letters, 2006,8 (3): 371-374.
    
    [173] Oter O, Ertekin K, Kirilmis C et al. Spectral characterization of a newly synthesized fluorescentsemicarbazone derivative and its usage as a selective fiber optic sensor for copper(II). Analytica ChimicaActa, 2007,584 (2): 308-314.
    
    [174] Yang J S, Lin C S, Hwang C Y. Cu~(2+)-induced blue shift of the pyrene excimer emission: A newsignal transduction mode of pyrene probes. Organic Letters, 2001,3 (6): 889-892.
    
    [175] Kaur S, Kumar S. Photoactive chemosensors 3: a unique case of fluorescence enhancement withCu(II). Chemical Communications, 2002, (23): 2840-2841.
    
    [176] Wu Q Y, Anslyn E V. Catalytic signal amplification using a heck reaction. An example in thefluorescence sensing off Cu(II). Journal of the American Chemical Society, 2004,126 (45): 14682-14683.
    
    [177] Royzen M, Dai Z H, Canary J W. Ratiometric displacement approach to Cu(II) sensing byfluorescence. Journal of the American Chemical Society, 2005,127 (6): 1612-1613.
    
    [178] Wen Z C, Yang R, He H et al. A highly selective charge transfer fluoroionophore for Cu~(2+). ChemicalCommunications, 2006, (1): 106-108.
    
    [179] Shin K S, Kim Y H, Paek K K et al. Characterization of an integrated, fluorescence-detection hybriddevice with photodiode and organic light-emitting diode. Ieee Electron Device Letters, 2006, 27 (9):746-748.
    
    [180] Martinez R, Zapata F, Caballero A et al. 2-aza-1,3-butadiene derivatives featuring an anthracene orpyrene unit: Highly selective colorimetric and fluorescent signaling of Cu~(2+) cation. Organic Letters, 2006, 8(15): 3235-3238.
    
    [181] Xiang Y, Tong A J, Jin P Y et al. New fluorescent rhodamine hydrazone chemosensor for Cu(II) withhigh selectivity and sensitivity. Organic Letters, 2006,8 (13): 2863-2866.
    
    [182] Si Z J, Shao Y, Li C X et al. Synthesis and fluorescence study of sodium-2-(4 '-dimethyl-aminocinnamicacyl)-3,3-(1 ',3 '-alkylenedithio) acrylate. Journal of Luminescence, 2007,124 (2): 365-369.
    
    [183] Mei L, Xiang Y, Li N et al. A new fluorescent probe of rhodamine B derivative for the detection ofcopper ion. Talanta, 2007,72 (5): 1717-1722
    
    [184] Haugland R P. Handbook of Fluorescent Probes and Research Chemicals. Oregon: Molecular Probes,Inc., 2002.
    
    [185] Evans M J, Cravatt B F. Mechanism-based profiling of enzyme families. Chemical Reviews, 2006,106(8): 3279-3301.
    
    [186] 马立人,蒋中华.生物芯片.北京:化学工业出版社,2003.
    [187] Xiang Y, Tong A J. A new rhodamine-based chemosensor exhibiting selective Fe-III-amplified fluorescence. Organic Letters, 2006,8 (8): 1549-1552.
    
    [188] Zheng H, Qian Z H, Xu L et al. Switching the recognition preference of rhodamine B spirolactam by replacing one atom: Design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution. Organic Letters, 2006, 8 (5): 859-861.
    
    [189] Ko S K, Yang Y K, Tae J et al. In vivo monitoring of mercury ions using a rhodamine-based molecular probe. Journal of the American Chemical Society, 2006,128 (43): 14150-14155.
    
    [190] Yang Y K, Yook K J, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg~(2+) ions in aqueous media. Journal of the American Chemical Society, 2005,127 (48): 16760-16761.
    
    [191] Zhang M, Gao Y H, Li M Y et al. A selective turn-on fluorescent sensor for Felll and application to bioimaging. Tetrahedron Letters, 2007,48 (21): 3709-3712.
    
    [192] Lee M H, Wu J-S, Lee J W et al. Highly Sensitive and Selective Chemosensor for Hg~(2+) Based on the Rhodamine Fluorophore. Organic Letters, 2007,9 (13): 2501 - 2504.
    
    [193] Wu D, Huang W, Duan C et al. Highly Sensitive Fluorescent Probe for Selective Detection of Hg~(2+) in DMF Aqueous Media. Inorganic Chemistry, 2007,46 (5): 1538-1540.
    
    [194] Pearson R G. Hard and Soft Acids and Bases Journal of the American Chemical Society, 1963, 85 (22): 3533-3539.
    
    [195] Weber G, Teale F W J. Determination of the absolute quantum yield of fluorescent solutions. Transactions of the Faraday Society, 1957,53: 646-655.
    
    [196] Fischer M, Georges J. Fluorescence quantum yield of rhodamine 6G in ethanol as a function of concentration using thermal lens spectrometry. Chemical Physics Letters, 1996,260:115-118.
    
    [197] Wu J S, Hwang I C, Kim K S et al. Rhodamine-based Hg~(2+)-selective chemodosimeter in aqueous solution: Fluorescent OFF-ON. Organic Letters, 2007,9 (5): 907-910.
    
    [198] Benesi H A, Hildebrand H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. Journal of the American Chemical Society, 1949,71 (8): 2703-2707.
    
    [199] Ramette R W, Sandell E B. Rhodamine B Equilibria. Journal of the American Chemical Society, 1956,78:4872-4878.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700