氧化剂设计改善内燃机燃烧的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着汽车保有量的不断增加和排放法规的日益严格,进一步降低内燃机排放是当前能源与环境领域的一个重要课题。本文从改善燃烧降低排放的目标出发,开展了内燃机氧化剂设计的研究。在对不同氧化剂环境中内燃机气体燃料LPG和液体燃料轻柴油稳态燃烧火焰特性研究基础上,本文重点研究了LPG发动机和柴油机冷起动以及柴油机稳态运行时使用组合进气的燃烧和性能。
     首先构建了杯式燃烧装置。基于该燃烧装置,研究了气体燃料LPG和液体燃料轻柴油在不同氧化剂环境下的稳态燃烧火焰特性。对LPG,研究了氧化剂组分对其部分预混合火焰和扩散火焰的影响,并对LPG扩散火焰进行了数值模拟研究。对LPG部分预混合火焰,当O2/N2氧化剂总流量不变时,扩散火焰长度和亮度随O2浓度下降先增加后减少,火焰根部与燃烧杯口的距离增大,直至火焰熄灭。对LPG扩散火焰,O2流量保持不变时,随N2流量的增加,火焰高度增加,而火焰可见长度先增加后降低,亮度减弱;火焰最高温度下降,而且火焰高温区减小。当N2流量过大时,火焰熄灭。LPG扩散火焰的数值模拟表明,随O2/N2氧化剂氧浓度提高,燃烧区域缩小并向燃烧杯杯口集中,同时火焰高温层变厚且高温区域集中。对轻柴油,首先考察了液面燃烧时扩散火焰和黑烟随氧化剂氧浓度增加的变化,然后重点研究了氧化剂组分和流量对以灯芯方式燃烧时的扩散火焰的影响。研究表明,柴油的液面燃烧火焰和灯芯火焰都包括两部分:刷子形的上部火焰和圆锥形的下部火焰。对柴油液面燃烧,O2/N2氧化剂总流量不变时,增加氧浓度后扩散火焰高度增加。氧浓度较低时,黑烟较多;氧浓度增大到某范围内,黑烟消失;氧浓度继续增加,则又产生黑烟。而对柴油灯芯火焰,高度的变化趋势是先增加后降低。无论是LPG燃烧还是柴油燃烧,比较N2,CO2对火焰的影响更显著。
     分别构建了基于膜法富氧技术的富氧进气LPG发动机和柴油机冷起动研究系统。对LPG发动机,基于循环控制方法研究了富氧进气冷起动首循环的燃烧排放,并比较了不同氧浓度进气时冷起动/暖机和热怠速阶段的运行行为。对柴油机,重点研究了最低自行起动温度时进气氧浓度对燃烧和性能的影响。研究表明,无论是LPG发动机还是柴油机,富氧进气的使用均能够提高发动机的起动速度。同时,随着进气氧浓度的增加,排气烟度、HC和CO排放显著降低,但NOx排放增加。LPG发动机冷起动首循环缸内燃烧分析表明,各种循环燃料量下,使用富氧进气均使缸内峰值压力增加,对应出现时刻提前,同时使缸内燃烧放热更为集中,最大放热率出现时刻提前。柴油机冷起动缸内燃烧分析表明,与常规进气相比,富氧进气后着火时刻明显提前,缸内压力升高。
     构建了柴油机组合进气供给系统。在供油时刻不变的条件下,研究了柴油机富氧进气和常规进气添加惰性气体时的燃烧排放特性。结果表明,富氧进气后排气烟度、HC和CO排放显著降低而NOx排放增加明显。常规进气添加Ar、N2和CO_2时排气烟度均上升而NOx排放均下降。相同Ar、N2和CO_2添加量,使用CO_2后烟度增加幅度最小而NOx排放下降幅度最大。针对富氧进气和常规进气添加惰性气体后的燃烧排放特点,研究了O2/CO_2/N2组合进气时柴油机燃烧排放特性,得到了实现柴油机排气烟度和NOx排放同时降低的优化组分进气,并对柴油机使用优化组分进气进行了研究。研究表明,柴油机使用O2/CO_2/N2优化组分进气,NOx排放可降至原机排放的40%,而排气烟度的下降可达50%以上,而保持指示热效率下降很小。柴油机使用优化组分进气时,随进气中O2浓度和CO_2浓度同时增加,绝热指数和多变指数逐渐变小,滞燃期延长,平均指示压力降低。排气烟度和NOx排放随优化组分进气中O2浓度和CO_2浓度同时增加均降低,但HC和CO排放变化不大。对柴油机在两种富氧燃烧方式—进气富氧和燃料含氧时的燃烧排放特性进行了比较。进气氧浓度选择22.1%;使用DMC添加比例10%的DMC/柴油混合燃料作为含氧混合燃料。结果表明,与使用含氧混合燃料时相比,在供油时刻不变情况下,富氧进气时燃烧持续期长,指示热效率低,排气烟度低而NOx排放高。HC和CO排放均较使用含氧混合燃料时的低。柴油机采用富氧进气方式时,排气再循环具有更高的容忍度。
     利用化学反应动力学与KIVA3V耦合对柴油机采用优化组分进气时的燃烧和排放进行了数值模拟,并对进气中CO_2与O2影响柴油机燃烧和排放的作用机理进行分析。结果表明,随优化组分进气中O2浓度和CO_2浓度的同时增加,缸内温度、NO和O原子浓度逐渐降低,且高温、高浓度区域缩小。就降低NO效果而言,进气CO_2浓度较低时,热作用效果较小,而CO_2浓度增大到15%后,热作用的贡献起主导作用。与使用CO_2置换N2比较,CO_2直接稀释常规进气时缸内温度、NO、O2和OH浓度的下降趋势更为明显。O2/N2进气氧浓度分别为21%、25%的缸内燃烧过程数值模拟显示,进气氧浓度提高后,缸内O2量增加,OH浓度上升,同时O浓度上升,OH和O原子的高浓度区域增加。
With the increase of vehicle population and the stringency of emission regulation, one key problem in energy and environmental fields is to decrease emissions from internal combustion (IC) engines. In order to improve combustion and decrease emissions, this paper studies oxidizer design of IC engines. Based on the researches on the characteristics of steady-state combustion flame of LPG and lightweight diesel fuel which are mainly used for IC engines as gas and liquid fuel in different oxidizer environment, the paper emphatically studys the oxygen-enriched combustion and performance of LPG engine during cold-phase and diesel engine during both cold-phase and steady-state with composite intake air.
     A cup burner equipment was designed and built. With the burner, the characteristics of steady-state combustion flame of LPG and lightweight diesel fuel in different oxidizer environment were studied. For LPG, the effects of oxidizer composition on LPG partial premixing and diffusion flame were observed. When the flowrate of O2/N2 oxidizer is fixed, with the decrease of O2 concentration, the length and brightness of the diffusion flame first increase and then decrease, the distance between the bottom of the visible flame and the rim of the combustion cup increases till the flame disappears. When the flowrate of O2/N2 oxidizer is fixed, with the increase of N2 flowrate, the height of LPG diffusion flame increases, the visible length firstly increases and then decreases, the brightness gradually weakens, peak flame temperature drops and the high temperature area reduces. Through the numerical simulation of LPG diffusion flame, it is shown that with the increase of oxygen concentration of O2/N2 oxidizer, the combustion area reduces and its center moves to the rim of the cup. At the same time, the high temperature layer becomes thicker and the area of high temperature centralizes. For lightweight diesel, the effects of oxygen concentration of oxidizer on the diffusion flame and smoke of fluid level combustion were investigated and the effects of composition and flowrate of oxidizer on the flame of wick combustion were emphatically studied. The results show that the diesel diffusion flame of both fluid level combustion and wick combustion can be divided into two main parts: the lower taper flame and the upper brush-shaped flame. For diesel fluid level combustion, with constant O2/N2 oxidizer flowrate, the increase of oxygen concentration in oxidizer makes the height of diffusion flame increases. when the oxygen concentration is low, the smoke is much; when the oxygen concentration rises, the smoke disappears and the further increase of oxygen concentration makes smoke re-appear. For wick combustion, with the increase of oxygen concentration, the height of flame first increases to the peak value and then drops. Compared with N2, CO_2 has more evident effect on the combustion of both LPG and diesel.
     The intake air oxygen-enrichment systems for cold-start study of LPG engine and diesel engine were built based on gas membrane seperation technology. For LPG engine, the characteristics of combustion and emission in first cycle were studied based on cycle-controlled method and the running behaviors during start/warm-up and hot idle stages with different oxygen concentration intake air were compared. For the diesel engine, the effects of oxygen concentration in intake air at borderline temperature on combustion and emissions were emphatically studied. The results show that for both LPG engine and diesel engine, OEA makes start speed rise. At the same time, with the increase of oxygen concentration in intake air, soot, HC and CO emissions significantly decrease while NOx emissions increase. Through the analyses of in-cylinder combustion in first cycle of LPG engine during cold start, it shows that with OEA, the peak of in-cylinder pressure increases and the corresponding phase advances. At the same time, the heat release becomes quicker and the phase corresponding to the maximum heat release rate advances too. The analyses of in-cylinder combustion of diesel engine during cold start show that with OEA, the ignition timing obviously advances and the in-cylinder pressure rises compared with ambient air.
     A system which can supply composite intake air was built. With the same fuel supply timing, the characteristics of combustion and emission were studied when the diesel engine was supplied with oxygen-enriched intake air (OEA) and the intake air diluted with inert gas Ar、N2 and CO_2. The results show that with OEA, the soot, HC and CO emissions all decrease significantly while NOx emissions increase obviously. When the ambient air is diluted with Ar, N2 or CO_2, the soot emissions increase while NOx emissions decrease. With the same addition amount into intake air, the use of CO_2 leads to the smallest increase of soot and largest decrease of NOx emissions. Based on the obvious differences of OEA and inert gas on combustion, the characteristics of combustion and emission of diesel engine with composite intake air including O2, CO_2 and N2 were studied and obtained the composition-optimized intake air with which the soot and NOx emissions can be reduced simultaneously. Then composition-optimized intake air was applied to diesel engine for further study. The results show that with the above composition-optimized intake air, the NOx and soot emissions were reduced by 40% and 50%, respectively, compared with ambient air. At the same time, the indicated thermal efficiency just dropped a little bit.
     When the composition-optimized intake air is supplied to the diesel engine, with the simultaneous increase of O2 and CO_2 concentration in intake air, the adiabatic and polytropic exponent gradually decrease, ignition delay lengthens and mean indicated pressure drops. Soot and NOx emissions both reduce and HC and CO emissions scarcely vary.
     The characteristics of combustion and emission of the diesel engine using OEA was compared to that using oxygenated blend fuel. For OEA, the oxygen concentration was 22.1%. The oxygenated blend fuel included 10%DMC and 90%diesel. The fuel supply timing was fixed at 28℃A. The research results show that compared to oxygenated blend fuel, OEA makes longer combustion duration and lower indicated thermal efficiency and soot emissions as well as higher NOx emissions. With OEA, the HC and CO emissions are lower than those with oxygenated blend fuel and the diesel engine can tolerate more amount of EGR.
     The in-cylinder combustion and emissions with composite-optimized intake air were simulated using KIVA3V code coupled with the turbulence chemistry interaction model. At the same time, the effects of CO_2 and O2 in intake air on combustion and emission were analyzed. The results show that, with the simultaneous increase of O2 and CO_2 concentrations in composite-optimized intake air, in-cylinder temperature, NO and O atom concentrations all decrease and the areas of high temperature and concentration reduce. When the CO_2 concentration in intake air is relatively low, thermal effect on reducing NO is weak. But after the CO_2 concentration is more than 15%, thermal effect becomes the mail factor for NO. Compared with the replacement of N2 with CO_2, the decrease of in-cylinder temperature, NO, O2 and OH concentration is more obvious than CO_2 is directly added into intake air. The in-cylinder combustions of diesel engine were respectively simulated with 21% and 25% oxygen concentration intake air. With the increase of oxygen concentration, the in-cylinder O2 amount increase, OH and O concentration rises. The area of the high OH and O concentration expand too.
引文
[1] Zhiyuan Hu. Environment and economic life cycle assessment of cassave ethanol used as automotive fuel in Guangxi province of China. The 14th Internatinal Symposium on Alcohol Fuels, November, 2002, Tailand
    [2] 中国汽车工业协会. 中国汽车工业产销快讯. 2007 年第 5 期
    [3] 史昭熙, 李德桃. 关于建立和完善我国汽车排放法规若干问题的探讨和建议. 内燃机学报, 1996, 14(2):111~118
    [4] 周龙保. 内燃机学. 机械工业出版社, 1999(6)
    [5] 李孝禄. 二冲程发动机预混合压缩着火燃烧的研究[博士论文]. 上海交通大学,2002
    [6] 申宝武. 排放法规变化对重负荷柴油机油规格标准的影响. 国际石油经济,2006年8月
    [7] 李兴虎. 汽车排气污染与控制. 机械工业出版社, 1999
    [8] 王建昕, 傅立新, 黎维彬. 汽车排气污染治理及催化转化器. 化学工业出版社, 2000
    [9] 蒋德明. 内燃机燃烧与排放学. 西安交通大学出版社, 2001(7)
    [10] 新井纪男. 燃烧生成物的发生与抑制技术.北京科学出版社, 2001
    [11] Guntran A. Lechner. Feasibility and limitations of premixed diesel combustion in multi-cylinder engines[D]. University of Michigan, 2003
    [12] 刘巽俊. 内燃机的排放与控制. 机械工业出版社, 2003(10)
    [13] 童澄教. 内燃机排放与净化. 上海交通大学出版社, 1993
    [14] 何学良, 李疏松. 内燃机学. 机械工业出版社, 1990
    [15] Hattori F, Takeda K, Yaegashi T, et al. Analysis of fuel and combustion behavior during cold starting of an SI engine. JSAE 9735844
    [16] Hochmuth J K, Anderson D R, et al. Cold start hydrocarbon emissions control. SAE Paper 950410
    [17] Bielaczyc, P. and Merkisz, J. (1999). Euro III/Euro IV emissions: study of cold-start and warm-up phases with a SI (spark ignition) engine. SAE Paper No. 1999-01-1073
    [18] Bielaczyc P, Merkisz J. Exhaust emission from passenger cars during engine cold start and warm-up. SAE Paper 970740
    [19] Tang, X. An artificial UEGO sensor for engine cold start—Methodology, design, and performance. SAE Paper 2000-01-0541
    [20] Isherwood, K. D., Linna, J. and Loftus, P. Using on-board fuel reforming by partial oxidation to improve SI engine cold-start performance and emissions. SAE Paper 980939
    [21] Shen, H., Shamim, T. and Sengupta, S. An investigation of catalytic converter performances during cold starts. SAE Paper 1999-01-3473
    [22] 李理光,王振锁,邓宝清,等. 基于可控循环着火的电控汽油机冷起动性能研究. 汽车工程, 2004, 26(4): 417~42
    [23] Bielaczyc P and Merkisz J. Euro III/Euro IV emissions- study of cold-start and warm-up phases with an SI (spark ignition) engine. SAE Paper 1999-01-1073
    [24] Roberts C E and Stanglmaier R H. Investigation of intake timing effects on the cold-start behavior of a spark-ignition engine. SAE Paper 1999-01-3622
    [25] Kevin Callaghan, Stuart Nemser, Willian Johanson. Oxygen enriching membranes for reduced cold start emissions. SAE Paper 1999-10-1232
    [26] Rizzoin G et al. IC engine air/fuel ratio feedback control during cold start. SAE Paper 961022
    [27] Igor I Neyachenko. Method of A/F control during SI engine cold start. SAE Paper 982521
    [28] Aquino C F. Transient A/F control characteristics of the 5 Liter central fuel injected engine. SAE Paper 810494
    [29] 黄佐华, 庞俊国,潘克煜等. 冷起动和怠速时火花点燃式发动机缸内未燃碳氢生成过程的研究, 燃烧科学与技术, 1997 年第 4 期:406-411
    [30] 黄佐华, 苗海燕, 周龙保等. 火花点火发动机燃用含氧燃料的冷起动和怠速时未燃碳氢排放影响的实验研究. 小型内燃机, 1998 年第 5 期, 1-4
    [31] Ramesh B Poola, Henry K Ng, et al. Utilizing intake-air oxygen-enrichment technology to reduce cold-phase emissions. SAE Paper 952420, 1995
    [32] Sekar R R, Poola R B. Demonstration of oxygen-enriched combustion system on a light-dutyvehicle to reduce cold-start emission. ANL/ES/CP 92916; CONF-970639-2
    [33] J. H. Johnson et al. A Review of Diesel Particulate Control Technology and Emissions Effects – 1992 Horning Memorial Award Lecture. SAE Paper 940233, 1994
    [34] O. A. Ledecke et al. Diesel Exhaust Particulate Control System Development, SAE Paper 830085, 1983
    [35] 宋 均. 二甲醚发动机预混合燃烧数值模拟与实验研究[博士论文]. 上海交通大学, 2003
    [36] Eojik K M. 2000 年后的汽车柴油机(1). 国外内燃机. 1998, n5, p1~10
    [37] 吴君华,黄震,乔信起等. 车用增压二甲醚发动机燃烧和排放特性的试验研究. 内燃机学报,2006 年第 3 期
    [38] 黄震,乔信起,张亮等.中国能源安全与环境保护之路——二甲醚. 2003 年国际 DME 论坛,中国上海 2003
    [39] 姚命发,许斯都,胡春明.二甲醚燃烧过程及其优化的数学模拟研究.燃烧科学与技术,2001年第 3 期
    [40] 王贺武,周龙保,蒋德明,黄佐华.直喷式柴油机燃用二甲醚排放特性的研究.内燃机学报,2000 年第 1 期
    [41] 蒋德明. 内燃机研究的新进展. 柴油机,2003 年第 1 期
    [42] Lindl, B. and Schmitz, H. G. Cold-start equipment for diesel direct-injection engines. SAE Paper 1999-01-1244, 1999
    [43] Gustavsson, T. and Cederberg, H. O. Unique cold start method used on Volvo's new 12L unit injector diesel engine. SAE Paper 940109, 1994.
    [44] Bielaczyc, P., Merkisz, J. and Pielecha, J. Exhaust Emissions from Diesel Engine during Cold Start in Low Temperature Conditions. World Automotive Congress FISITA, F2000H213, Seoul 2000.
    [45] Su, y., Liu, Z.C., Han, Y.Q., et al. Combustion of direct injection diesel engine under start conditions [A]. Proceedings of the 2nd International Symposium on Clean and High-Efficiency Combustion in Engines, July 2002, Tianjin:463-467
    [46] 苏岩,刘忠长,朱昌吉. 燃烧科学与技术[J].2006年4月,第13卷第2期:126-130
    [47] Meurer S, Urlaub A, Development and operational results of the MAN FM combustion system. SAE Paper 690255
    [48] Haslett RA, Monaghan ML, McFadden, Stratified charge engines, SAE Paper 76075
    [49] 尚秀镜, 刘友钧. 射流燃烧室在车用汽油机上的应用研究. 内燃机学报, 1998(3)
    [50] Alperstein M, Schafer GH, Villforth FJ, III, Texaco’s strati fied charge engine multifuel, efficient, clean, and practical, SAE Paper 740563
    [51] Scussei AJ, Simko AO, Wade WR, The Ford PROCO engine update, SAE Paper 780699
    [52] Satoshi Kato, Shigeru Onishi, New Mixture Formation Techno logy of Direct Fuel Injection Stratified Charge SI Engine (OSKA) Test Result with Gasoline Fuel, SAE Paper 881241
    [53] Date T, Yagi S, Research and development of the Honda CVCC engine, SAE Paper 740605
    [54] Harada J, Tomita T, Mizuno H, etc., Development of a direct injection gasoline engine, SAE Paper 974054
    [54] Kume T, Iwamoto Y, Lida K, etc., Combustion Control Technologies for Direct Injection SI Engines, SAE Paper 960606
    [56] John E. Dec. A conceptual model of DI diesel combustion based on laser-sheet imaging. SAE Paper 970873
    [57] John E. Dec, Christoph Espey. Chemiluminescence imaging of auto ignition in a DI diesel engine. SAE Paper 982685. [58 Patrick F. Flynn, Russell P. Durrett, Gary L. Hunter, Axel O. zur Loye, O. C. Akinyemi, John E. Dec, Charles K. Westbrook. Diesel combustion: An integrated view combining laser diagnostics, chemical kinetics, and empirical validation. SAE Paper 1999-01-0509
    [59] 蒋德明. 要充分重视内燃机技术在最近所取得的突破性进展. 内燃机, 1998(3)
    [60] 黄 震. 内燃机燃烧与排放控制讲义. 上海交通大学, 2002
    [61] Onishi, S., Jo, S. H., Shoda, K., etc. Actived thermo-atmosphere combustion (ATAC) a new combustion process for internal combustion engines. SAE 790501
    [62] Noguchi, M., Tanaka, T., Takeuchi, Y. A study on gasoline engine combustion by observation of intermediate reactive products during combustion. SAE 790840
    [63] Najt, P. M., Foster, D. E. Compression-ignited homogeneous charge combustion. SAE 830264
    [64] Ashley, Steven. A radical way to burn. Mechanical Engineering; New York; Aug 1996; Vol.118, Iss.8
    [65] 傅维镳,张永廉,王清安. 燃烧学. 高等教育出版社,1989年04月第1版
    [66] 张松寿. 工程燃烧学. 上海交通大学出版社,1987年12月第一版
    [67] Heywood, J. B. Internal combustion engine fundamentals. 1988, McGraw-Hill Book Company, New York
    [68] 欧文.格拉斯曼著,赵惠富,张宝诚译. 燃烧学. 科学出版社, 1983年9月第一版
    [69] 谢兴华. 燃烧理论. 中国矿业大学出版社
    [70] 同济大学, 重庆建筑工程学院,哈尔滨建筑工程学院,北京建筑工程学院. 燃气燃烧与应用. 中国建筑工业出版社,1988年7月第二版
    [71] Henry K Ng, Raj R Sekar, Steve W. Kraft et al. The potential benefits of intake air oxygen enrichment in spark ignition engine powered vehicle. SAE Paper 932803
    [72] Ramesh B Poola, Raj Sekar, Henry K Ng et al. The effects of oxygen-enriched intake air on ffv exhaust emissions using M85. SAE Paper 961171
    [73] Ramesh B Poola, Henry K Ng, Raj R Sekar et al. Utilizing intake-air oxygen-enrichment technology to reduce cold-phase emissions. SAE Paper 952420
    [74] Raj Sekar and Ramesh B Poola. Demonstration of oxygen-enriched combustion system on a light-duty vehicle to reduce cold-start emissions. ANL/ESCP-92914
    [75] Assanis D N, Poola R B, Sekar R, Cataldi G R. Study of using oxygen-enriched combustion air for locomotive diesel engines. Journal of engineering for gas turbines and power, January 2001,Vol.123/157
    [76] 时钧, 袁权, 高从堦. 膜技术手册. 北京: 化学工业出版社, 2001: 529~531
    [77] Ramesh B Poola, Kevin C Stork and, Sekar et al. Variable Air Composition with Polymer Membrane – A New Low Emissions Tool. SAE Paper 980178, 1998
    [78] 肖广飞, 乔信起, 黄震, 陈宗蓬等. 膜法富氧技术在内燃机上应用的研究进展.农业机械学报, 2007 年第 38 卷第 2 期:P183~188
    [79] 王振锁, 李理光, 宫长明等. 基于循环控制的 LPG 电喷发动机冷起动初探. 内燃机学报, 2004 年 7 月 22 (4): 337-343
    [80] 刘志敏. 电控喷射 LPG 摩托车燃烧与排放控制策略研究[博士学位论文]. 上海交通大学,2005
    [81] Karim G A, Ward G. The examination of the combustion processes in a compression-ignition engine by changing the partial pressure of oxygen in the intake charge. SAE Paper 680767, 1968
    [82] Lida N, Yasutoshi Suzuki, Takeshi Sato, et al. Effects of intake oxygen concentration on the characterstics of particulate emissions from a D.I. diesel Engine. SAE Paper 861233, 1986
    [83] Lida N, Sato G T. Temperature and mixing effects on NOx and particulates. SAE Paper 880424, 1988
    [84] Watson H C, Gaynor E, Rigby G R. Oxygenated-enrichment-a method for reduced environmental impact and improved economics. I-Mech-E Seminar, 1990, Vol. 19-20
    [85] Ghojel J, Hilliard J C, Levendis J A. Effects of oxygen-enrichment on the performance of IDI diesel engines. SAE Paper 830245, 1983
    [86] Desai R R, Gaynor E. Waton H C. Standard diesel fuels premium performance using oxygen-enriched air in diesel engines. SEA Paper 932806, 1993
    [87] Harry C, Watson, Eric E Milkins, et al. A new look at oxygen enrichment— the diesel engine. SAE Paper 900344, 1990
    [88] Marr W W, Sekar R R, et al. Oxygen-enriched diesel engine experiments with a low- grade fuel. SAE Paper 932805, 1993
    [89] Sekar R R, Marr W W, et al. Cylinder pressure analysis of a diesel engine using oxygen-enriched air and emulsified fuels. SAE Paper 901565, 1990
    [90] Kashimir S. Virk, Uygur Kokturk, Craig R. Barteks. Effects of oxygen-enriched air on diesel engine exhaust emissions and engine performance. SAE Paper 931004
    [91] Stork K. Poola R. Membrane-based air composition control for light-duty diesel vehicles, PhaseⅠ. ANL/ESD/TM-144, October 1998
    [92] 吴吉湘,P. 维尔贝尔格,P. 茨伦卡等人. 应用高速内窥摄影和火焰温度测量法对富氧燃烧过程的研究. 内燃机学报,1990年第八卷第四期
    [93] 左承基,李海海,徐天玉等人. 富氧燃烧对柴油机排放特性的影响. 小型内燃机与摩托车,2003 年(第 32 卷) 第 5 期
    [94] 左承基,李海海,徐天玉等人, 柴油机富氧燃烧排放特性的试验研究. 热科学与技术, 2003年 3 月第 2 卷第 1 期
    [95] 田恩泽,靳宇男. 纯氧高效发动机. 中国国家专利,CN1936311
    [96] 高文中. 臭氧有助于提高柴油发动机的抗爆性. 石家庄铁道学院学报, 第 5 卷 第四期 1992 年 12 月
    [97] 尹仕仁, 韩立燕. 臭氧在内燃机中的应用. 内燃机. 1994 年第一期
    [98] 白敏丽, 朱国朝, 李河等. 臭氧强化内燃机燃烧研究. 内燃机工程, 1999 年第四期
    [99] 白敏丽, 李河. 大连理工大学学报. 1997 年 11 月第 37 卷第 6 期
    [100] 伏军, 王玉昆, 周殿春. 机电产品开发与创新. 2006 年 1 月 第 19 卷第 1 期
    [101] Nasser S H, Morris S and James S. A Novel Fuel Efficient and Emission Abatement Technique for Internal Combustion Engines. SAE Paper 982561
    [102] Valdimir M. Gas phase reaction of hydrogen peroxide and hydrogen peroxide/ methanol mixtures with air pollutanta[C]. [s.l.]: The Combustion Institute, 1996: 212522132
    [103] Carolin Born, Norbert Peters. Reduction of soot emission at a di diesel engine by additional injection of hydrogen peroxide[J]. MTZ, 1998, 59:50
    [104] C. Born and N. Peters. Reduction of soot emission at a DI diesel engine by additional injection of hydrogen peroxide during combustion. SAE 982676, 1998
    [105] B. Franz, T. Eckhardt, T. Kauffeldt and P. Roth. H2O2 addition to diesel engine exhaust gas and its effect on particles. Aerosol Sci. Vol. 31, 415-426, 2000
    [106] Erica Trapel, Pascal Ifeacho and Paul Roth. Injection of Hydrogen Peroxide into the Combustion Chamber of Diesel Engine: Effects on the Exhaust Gas Behavior. SAE Paper 2004-01-2925
    [107] 方显忠,刘巽俊,阎淑芳. 通过喷射过氧化氢降低直喷式柴油机排放的研究.内燃机学报. 第 21 卷(2003)第 3 期 [108 王宪成, 赵金才, 孙坦. 过氧化氢改善柴油机燃烧的试验研究. 装甲兵工程学院学报,2006 年 10 月 第 20 卷第 5 期
    [109] 王宪成, 高希彦, 王益军. 过氧化氢改善柴油机燃烧研究. 大连理工大学学报,第 44 卷第 4 期: 510-513
    [110] 王华定. 添加过氧化氢改善柴油机排放喷射系统研究. 中国水运 07 卷第 03 期
    [111] Zheng Ming, Graham T R, Hawley J G. Diesel engine exhaust gas recirculation—a review on advanced and novel concepts. Energy Conversion and Management 45, (2004) 883~900
    [112] Bowen C. An experimental investigation into the use of exhaust gas recirculation for Diesel engine NOx control. PhD Thesis, University of Calgary, 1998
    [113] S. R?pke, G. W. Schweimer, and T. S. Strauss. NOx Formation in Diesel Engines for Various Fuels and Intake Gases SAE 950213
    [114] Ishida A, Nishimura A, UranishiM, et al. Development of ECOS -DDF natural gas engine formedium duty trucks—exhaust gas emission reduction against base Diesel engine. JSAE Paper, 20005001
    [115] Hawley J G,Wallace F J, CoxA, et al. Reduction of steady - state NOx levels from an automotive Diesel engine using op timized VGT/EGR schedules. SAE Paper, 1999-01-0835
    [116] Mogi H, Tajima K, Hosoya M, et al. The reduction of Diesel engine emissions by using the oxidation catalysts on Japan Diesel 13 mode cycle. SAE Paper, 1999-01–047
    [117] Jianwen Li, Jae Ou Chae, S.B.Park et al. Effect of Intake Composition on Combustion and Emission Characteristics of DI Diesel Engine at High Intake Pressure, SAE Paper No. 970322
    [118] N.Ladommatos , S.M.Abdelhalim, H.Zhao et al. The dilution, chemical, and thermal effects of exhaust gas recirculation on diesel engine emissions—part 1: Effect of reducing inlet charge oxygen. SAE 961165
    [119] 姚春德, 刘增勇, 何邦全. 进气氮气含量对柴油机混合气形成与燃烧过程的影响, 燃烧科学与技术, 2002 年第 8 卷第 3 期
    [120] 姚春德,高昌卿,刘增勇. 进气中氮气的体积分数对柴油机着火与燃烧影响的研究. 热科学与技术. 2002 年第 1 卷第 2 期
    [121] 姚春德, 刘增勇, 孙家峰等. 进气加入 CO2 对直喷式柴油机燃烧的影响. 工程热物理学报, 2003 年第 24 卷第 4 期
    [122] 孙家峰, 姚春德,何邦全等. 进气含有高浓度 CO2 的柴油机的燃烧特性. 燃烧科学与技术, 2002 年第 8 卷第 4 期
    [123] 石田正弦. 通过进气道喷水降低柴油机 NOx 排放. 国外内燃机车, 1999 (1) : 36~42
    [124] 吕林, 姚光荣和温苗苗. 利用水降低柴油机NOx排放研究. 武汉理工大学学报(交通科学与工程版), 2004年第28卷第2期
    [125] 王忠俊, 田期明, 姚光荣. 进气道喷水降低 NOx 排放研究. 武汉理工大学学报(交通科学与工程版), 2004 年 8 月第 28 卷第 4 期
    [126] Machacon H T C, Shiga Seiichi, et al. Further investigation into the feasibility of controlling the diesel combustion by intake gas composition variation. Proceedings of Japanese 13th Symposium on Internal Combustion Engine, 1996 July
    [127] 章俊良, 黄震, Shiga Seiichi等. EGR与富氧进气控制柴油机排放的机理探讨. 内燃机学报, 1998年第4期
    [128] 吕崇德主编. 热工参数测量与处理. 清华大学出版社, 2001.
    [129] 周怀春等. 炉膛火焰温度场图像处理试验研究中国电机工程学报.1995 年第 5 期
    [130] 王飞, 薛飞等.运用彩色 CCD 双色信息测量燃烧火焰的温度场发电设备.1998 年第 6 期.
    [131] 肖进. 溶气燃油射流雾化与燃烧机理研究[博士学位论文]. 上海交通大学,2004
    [132] McGrattan KB, Baum HR, Rehm RG. Fire dynamics simulator (version 3) technical reference guide. National Institute of Science and Technology, NIST6783, 2002.
    [133] McGrattan KB, Forney GP, Prasad K, Floyd JE, and Hostikka S. Fire dynamics simulator (version 3) user’s guide. National Institute of Science and Technology, NIST6784, 2002.
    [134] Forney GP, McGrattan KB. User’s Guide for Smokeview Version 2.0 - A tool for visualizing fire dynamics simulation data. National Institute of Science and Technology, NIST6761, 2001.
    [135] Westbrook, CK, Dryer, FL. Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames. Combustion Science and Technology, 1981, 27:31-43.
    [136] Deng, B.Q., Li, L. G. and Xiao, Z. C. LPG pressure regulator. Utility Patent of P.R.C. ZL03211793.0, 2003.6
    [137] Gong Li, Liguang Li, Xinqi Qiao, Guangfei Xiao, and Dongping Qiu, Oxygen-enriched combustion of the first cycle during cold start in a liquefied petroleum gas spark-ignition engine, Journal of Automobile Engineering, 2006, 220(9):1265-1274
    [138] Choi, M., Sun, H., Lee, C. (2000). The study of HC emission characteristics and combustion stability with spark timing retard at cold start in gasoline engine vehicle. SAE Paper No. 2000-01-1082..
    [139] Russ, S., Thiel, M. and Lavoie, G. (1999). SI engine operation with retarded ignition: Part 2-HC emissions and oxidation. SAE Paper No. 1999-01-350
    [140] Phatak, R. and Nakamura, T. Cold startability of open-chamber direct-injection diesel engines – part I: measurement technique and effects of compression ratio. SAE Paper 831335, 1983
    [141] Lippert, A. M., Stanton, D. W., Reitz, R. D., et al. Investigating the effect of spray targeting and impingement on diesel engine cold start. SAE Paper 2000-01-0269, 2000
    [142] Yassine, M. K., Tagomori, M. K., Henein, N. A., et al. White smoke emissions under cold starting of diesel engines. SAE Paper 960249, 1996
    [143] Han, Z. H., Henein, N., Nitu, B., et al. Diesel engine cold-start combustion instability and control strategy. SAE Paper 2001-01-1237, 2001
    [144] Cheng, K.Y., Shayler, P. J. and Murphy, M. The influence of blow-by on indicated work output from a diesel engine under cold start conditions. Proceedings of the Institution of Mechanical Engineers - Part D - Journal of Automobile Engineering . Mar 2004, Vol. 218 Issue 3:333-340
    [145] Han, Z. H., Henein, N., Nitu, B., et al. Diesel engine cold-start combustion instability and control strategy. SAE Paper 2001-01-1237, 2001
    [146] 张光德, 黄 震, 张武高等. 含氧添加剂DMC对柴油机燃烧与排放特性的影响. 燃烧科学与技术, 2002年第5期
    [147] Chemical properties handbooks, Carl L. Yaws. McGraw-Hill Handbooks, 世界图书出版社.
    [148] 童景山, 李敬, 流体热物理性质的计算, 清华大学出版社,1982 年
    [149] Vargaftik H B. Handbook of Physical Properties of Liquids and Gases: Pure Substances and Mixtures, 1996 3rd Edn, Near York Hemisphere Pub. Corp. 1975 IV -73
    [150] Huang Zhen, Wang Dezhong, Zhou Xiaopin, et al. A new concept for reducing diesel enhaust emissions-exhaust gas recirculation within the spray(EGRWS). 97CTEC Paper
    [151] 沈维道, 郑佩芝, 蒋淡安. 工程热力学. 高等教育出版社, 1983 年第二版
    [152] 解茂昭. 内燃机计算燃烧学. 大连理工大学出版社, 1995 年第一版
    [153] V. I. Golovitchev, F. Tao, J. Chomiak. Numerical evaluation of soot formation control at diesel-like conditions by reducing fuel Injection timing. SAE Paper 1999-01-3552
    [154] V. I. Golovitchev, Niklas Nordin. Detailed chemistry spray combustion model for Kiva code, the International Multidimensional Engine Modeling User’s Group Meeting, Detroit, USA, 2001; V.
    [155] M. Frenklach and H.Wang. Detailed mechanism and modeling of soot particle formation. Soot formation in Combustion Springer, Verlag Berlin 1994
    [156] S. J. Harris. Surface growth and soot particle reactivity. Combustion Science and Technology, 1990(72).
    [157] S. J. Harris and A M Weiner. A picture of soot particle inception. 22th Symposium (International) on Combustion, the Combustion Institute, Pittsburgh PA 1988.
    [158] S.J.Harris and A.M.Weiner Surface growth of soot particles in premixed ethylene/air flames Combustion Science and Technology 31 1983.
    [159] M.Frenklach Reaction mechanism of soot formation in flames Physical Chemistry Chemical Physics 4 2002
    [160] J.Zeldovich The oxidation of nitrogen in combustion and explosions Acta Physicochimica U.R.S.S. 21 1946

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700