缸内直喷汽油机HCCI燃烧瞬态过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽油均质充量压缩着火(HCCI)燃烧能显著改善发动机燃油经济性、大幅度降低NOx排放,但存在着燃烧控制困难,负荷范围有限以及瞬态工况不易控制等问题。利用汽油多段缸内喷射实现HCCI燃烧,并将发动机整个工况平面划分为几个分别以HCCI燃烧模式和火花点火(SI)燃烧模式工作的工况区以各取所长,现已成为被普遍看好的技术发展方向。本文围绕这种双模式发动机的瞬态工况控制策略进行研究,包括HCCI模式区内的工况变换控制问题和HCCI/SI模式间转换的控制问题。
     为了实现HCCI模式和SI模式的迅速平稳转换,采取了同步改变配气相位和多段喷油策略的技术路线,设计了一种能够切换配气相位的电-液式错位双凸轮机构,以及相应的汽油喷射与凸轮切换的电控系统,建成了一台双模式原理性试验样机。
     在该原理性试验样机上,对发动机排放特性和示功图进行了实时多循环测试,分析了影响HCCI瞬态过程的各种因素,提出了相应的优化控制策略,以及SI/HCCI模式转换的协同控制准则。试验结果表明,基于GDI的HCCI模式对负荷变化响应快速,且可通过调整喷油策略优化;HCCI对转速变化不敏感,燃烧稳定性好;模式转换时,由HCCI向SI转换较容易,由SI向HCCI转换难度较大;通过动态调整转换过程中的喷油开始时刻、火花点火时刻、节气门开度等参数,可以优化转换过程。经优化后的完整转换过程能在10个循环内平滑可靠地完成,没有异常燃烧现象发生,此结果表明本文提出的模式转换和瞬态过程的控制思路是可行的。
     为深入分析瞬态工况的规律并优化其控制策略,在Chemkin源代码程序基础上开发了能反映分层均质混合气特征的双区详细化学反应动力学发动机缸内燃烧模型,并将该双区模型和整机循环模拟软件BOOST耦合,构建了HCCI发动机工作过程循环模型。利用该模型对燃烧模式转换过程进行了模拟解析,研究了喷油时刻、喷油比例等控制参数对转换过程的影响,为HCCI发动机瞬态工况试验研究提供了指导和理论支持。
Homogeneous Charge Compression Ignition (HCCI) combustion has advantages of low fuel consumption and ultra low NOx emission. However, the challenges from the autoignition control difficulty and narrow operation region limit the practical application of this technology. A hybrid combustion mode which combines SI mode and HCCI mode in separated working regions was regarded as a promising technology for HCCI engines. The purpose of this dissertation is to study the control strategies of transient process, including engine performance behavior process within HCCI region and mode switch process between HCCI and SI.
     A technical solution of changing the cam profile and injection strategy simultaneously was adopted to realize the rapid and smooth switch between SI mode and HCCI mode. An electrohydraulic two-stage cam profile mechanism was designed and produced, including the fuel injection and cam profile electronic control system. An SI/HCCI hybrid engine prototype was established.
     On the prototype test bench, the factors which influence the HCCI transient process were analyzed based on the test results of engine emission and pressure traces. The optimized strategies and its general criteria of mode switch control were proposed. The test results show that the load change in HCCI mode is rapidly responded, and can be optimized by adjusting injection strategy; the HCCI combustion is insensitive to the engine speed change, and the combustion phase can be adjusted rapidly and smoothly by changing the injection ratio; the mode switch from HCCI to SI was easy, while the switch from SI to HCCI was difficult with combustion fluctuation; by adjusting the key factors within the switch process, such as injection mass, injection timing, spark timing, throttle opening, and so on, the switch process was optimized; the switch process was completed in 10 engine cycles, rapidly, reliably and smoothly, without any abnormal combustion such as knocking and misfiring.
     A dual-zone detailed chemical kinetics engine model which features stratified homogeneous mixture was developed based on the Chemkin source code. An engine cycle simulation model was established by coupling the dual-zone model and software BOOST. The engine mode was utilized to simulate the switch process. Controlling parameters such as injection ratio and injection timing was evaluated. The results provide a good explanation for the experiments.
引文
[1] Fuquan Zhao, Thomas W Asmus, Demmis N Assanis, et al. Homogenecous Charge Compression Ignition (HCCI) Engines. SAE PT-94, 2003.
    [2] Onishi S, Hong S, Katsuli S. Active thermo-atmosphere combustion (ATAC)-a new combustion process for internal combustion engines. SAE 790501.
    [3] A Fuerhapter, W F Piock, G K Fraidl. CSI - controlled Auto Ignition - the best solution for the fuel consumption - versus emission trade-off? SAE 2003-01-0754.
    [4] Darlene Fritz. GM moves closer to market with HCCI. Automotive engineering international, 2007, Vol 2: 22~24.
    [5] CSI 四冲程发动机离我们还有多远? [EB/OL]. (2005-03-24) [2007-03-22]. http://www.ai-chinese.com/article.php?id=1883.
    [6] 王志. 基于缸内直喷的汽油 HCCI 燃烧数值模拟与试验研究[博士学位论文]. 北京: 清华大学, 2005.
    [7] 王燕军. 基于两次喷射的汽油缸内直喷式燃烧系统的研究[博士学位论文]. 北京: 清华大学, 2004.
    [8] Noguchi M. A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion. SAE 790840.
    [9] 胡国栋. 柴油机燃烧研究的展望. 大连工学院学报, 1982, Vol 21(4): 71-80.
    [10] Najt P M, Foster D E. Compression-Ignited Homogeneous Charge Combustion. SAE 830264.
    [11] Thring R H. Homogeneous charge compression-ignition(HCCI) engines. SAE 892068.
    [12] Hans-Otto Herrmann, Rüdiger Herweg, Günter Karl. Regelungskonzepte in Ottomotoren mit homogen-kompressionsgezündeter Verbrennung// Congress ?Haus der Technik“ Controlled Auto Ignition, Essen, Oktober 2005.
    [13] Nebojsa Milovanovic, Jamie Turner, Dave Blundell, et al. Requirements for the valve train in CAI gasoline engines// Congress ?Haus der Technik“ Controlled Auto Ignition, Essen, Oktober 2005.
    [14] Goran Haraldsson, Per Tunest?l, Bengt Johansson. Transient Control of a Multi Cylinder HCCI Engine During a Drive Cycle. SAE 2005-01-0153.
    [15] Shiro Yamaoka, Atsushi Shimada, Hiromu Kakuya, et al. HCCI Betrieb in einem Mehrzylinder Ottomotor mit variablem Ventiltrie// Congress ?Haus der Technik“ Controlled Auto Ignition, Essen, Oktober 2005.
    [16] Fredrik Agrell. Transient Control of HCCI Through Combined Intake and Exhaust Valve Actuation. SAE 2003-01-3172.
    [17] Hongming Xu, Simon Rudolph, Zhi Liu. An Investigation into the Operating Mode Transitions of a Homogeneous Charge Compression Ignition Engine Using EGR Trapping. SAE 2004-01-1911.
    [18] Fredrik Agrell. Control of HCCI During Engine Transients by Aid of Variable Valve Timings Through the Use of Model Based Non-Linear Compensation. SAE 2005-01-0131.
    [19] Petter Strandh, Johan Bengtsson, Rolf Johansson, et al. Variable Valve Actuation for Timing Control of a Homogeneous Charge Compression Ignition Engine. SAE 2005-01-0147.
    [20] Nebojsa Milovanovic, Dave Blundell, Stephen Gedge. SI-HCCI-SI Mode Transition at Different Engine Operating Conditions. SAE 2005-01-0156.
    [21] Yoshishige Ohyama. Engine Modeling of HCCI Transient Operations. SAE 2005-01-0158.
    [22] Nebojsa Milovanovic, Dave Blundell, Stephen Gedge. Cam Profile Switching and Phasing Strategy vs Fully Variable Valve Train Strategy for Transitions between Spark Ignition and Controlled Auto Ignition Modes. SAE 2005-01-0776.
    [23] Fredrik Agrell. Transient Control of HCCI Combustion by aid of Variable Valve Timing Through the Use of a Engine State Corrected CA50-Controller Combined with an In-Cylinder State Estimator Estimating Lambda. SAE 2005-01-2128.
    [24] Halim Santoso, Jeff Matthews, Wai Cheng. Characteristics of HCCI Engine Operating in the Negative-Valve-Overlap Mode. SAE 2005-01-2133.
    [25] Carl Wilhelmsson, Andreas Vressner, Per Tunest?l. Combustion Chamber Wall Temperature Measurement and Modeling During Transient HCCI Operation. SAE 2005-01-3731.
    [26] R Leithgoeb, F Henzinger, A Fuerhapter. Optimization of New Advanced Combustion Systems Using Real-Time Combustion Control. SAE 2003-01-1053.
    [27] Dimistis Panousakis, Andreas Gazis, Jill Patterson, et al. Using Ion-current Sensing to Interpret Gasoline HCCI Combustion Processes. SAE 2006-01-0024.
    [28] Hua Zhao, Tom Ma, X Jiang, et al. Combined Experimental and Modelling Studies on CAI Combustion Engines// Congress ?Haus der Technik“ Controlled Auto Ignition, Essen, Oktober 2005.
    [29] Zhi Wang, Jian-Xin Wang, Shi-Jin Shuai. Numerical Simulation of HCCI Engine with Multi-stage Gasoline Direct Injection Using 3D-CFD with Detailed Chemistry. SAE 2004-01-0563.
    [30] Li Cao, Hua Zhao, Xi Jiang. Numerical Study of Effects of Fuel Injection Timings on CAI/HCCI Combustion in a Four-Stroke GDI Engine. SAE 2005-01-0144.
    [31] Roy Ogink. Applications and Results of a User-Defined, Detailed-Chemistry HCCI Combustion Model in the AVL BOOST Cycle Simulation Code// Int. User Meeting 2003, AVL, Graz, Austria, October 2003.
    [32] Roy Ogink. Computer Modeling of HCCI Combustion[Ph. D.]. G?teborg: Chalmers University of Technology, 2004.
    [33] Nebojsa Milovanovic, Rui Chen. Influence of the Variable Valve Timing Strategy on the Control of a Homogeneous Charge Compression (HCCI) Engine. SAE 2004-01-1899.
    [34] Frank Beyrau, Alfred Leipertz. Laseroptische Messung von Temperatur und AGR-Rate in einem Ottomotor im HCCI-Betrieb// Congress ?Haus der Technik“ Controlled Auto Ignition, Essen, Oktober 2005.
    [35] Adam Loch, Christian Jelitto, Jürgen Willand. Einfluss von Ladungstemperatur und AGRRate auf die Kompressionszündung in einem Ottomotor// Congress ?Haus der Technik“ Controlled Auto Ignition, Essen, Oktober 2005.
    [36] M Richter, J Engstr M. The influence of charge inhomogeneity on the HCCI combustion process. SAE 2000-01-2868.
    [37] Anders Hultqvist. Reacting Boundary Layers in a Homogeneous Charge Compression Ignition (HCCI) Engine. SAE 2001-01-1032.
    [38] Anders Hultqvist, Magnus Christensen, Bengt Johansson. The HCCI Combustion Process in a Single Cycle - Speed Fuel Tracer LIF and Chemiluminescence Imaging. SAE 2002-01-0424.
    [39] Robert Collin, Jenny Nygren, Mattias Richter. Simultaneous OH- and Formaldehyde-LIF Measurements in an HCCI Engine. SAE 2003-01-3218.
    [40] Richard Steeper, Shane De Zilwa. Co-Evaporative Tracer-PRF Mixtures for LIF Measurements in Optical HCCI Engines. SAE 2005-01-0111.
    [41] M Weinrotter, E Wintner. Optical Diagnostics of Laser-Induced and Spark Plug-Assisted HCCI Combustion. SAE 2005-01-0129.
    [42] Shane De Zilwa, Richard Steeper. Predicting NOx Emission from HCCI Engines Using LIF Imaging. SAE 2006-01-0025.
    [43] Mitsuru Konno. Ignition Mechanisms of HCCI Combustion Process Fueled with Methane/DME Composite Fuel. SAE 2005-01-0182.
    [44] Kiyoshi Kawasaki, Akihiro Takegoshi, Koji Yamane. Combustion Improvement and Conrol for a Natural Gas HCCI Engine by the Internal EGR by Means of Intake-valve Pilot opening. SAE 2006-01-0208.
    [45] Magnus Christensen, Anders Hultqvist, Bengt Johansson. Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio. SAE 1999-01-3679.
    [46] Zhili Chen, Mitsuru Konno. Experimental Study of CI Natural-Gas/DME Homogeneous Charge Engine. SAE 2000-01-0329.
    [47] Norimass Iida, Tetsuya Igarashi. Auto-Ignition and Combustion of n-Butane and DME/Air Mixtures in a Homogeneous Charge Compression Ignition Engine. SAE 2000-01-1832.
    [48] Scott B Fiveland, Rey Agama. Experimental and Simulated Results Detailing the Sensitivity of Natural Gas HCCI Engines to Fuel Composition. SAE 2001-01-3609.
    [49] Salvador M Aceves, Daniel L Flowers, Francisco Espinosa-Loza. Analysis of Premixed Charge Compression Ignition Combustion with a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model. SAE 2005-01-0115.
    [50] Kong S C, Marriott C D, Reitz R D. Modeling and Experiments of HCCI Engine Combustion Using Detailed Chemical Kinetics with Multidimensional CFD. SAE 2001-01-1026.
    [51] Jan-Ola Olsson, Olof Erlandsson. Experiments and Simulation of a Six-Cylinder Homogeneous Charge Compression Ignition (HCCI) Engine. SAE 2000-01-2867.
    [52] Stockinger V M, Schapertons H, Peter K. Versuche an einem gemischansaugenden verbrennungsmotor mit selbstzunding. MTZ, 1992, Vol 53(2).
    [53] Kathi Epping, Salvador Aceves. The Potential of HCCI Combustion for High Efficiency and Low Emissions. SAE 2002-01-1923.
    [54] Yoichi J, Masahiko A. A low pressure pneumatic direct injection two-stroke engine by activated radical combustion. SAE 980757.
    [55] Magnus Christensen, Anders Hultqvist, Bengt Johansson. Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio. SAE 1999-01-3679.
    [56] Jari Hyvonen. Operating Conditions Using Spark Assisted HCCI Combustion During Combustion Mode Transfer to SI in a Multi-Cylinder VCR-HCCI Engine. SAE 2005-01-0109.
    [57] Nebojsa Milovanovic, Dave Blundell, Richard Pearson, et al. Enlarging the Operational Range of a Gasoline HCCI Engine By Controlling the Coolant Temperature. SAE 2005-01-0157.
    [58] Magnus Christensen. Supercharged Homogeneous Charge Compression Ignition (HCCI) with Exhaust Gas Recirculation and Pilot Fuel. SAE 2000-01-1835.
    [59] Haraldsson G. HCCI combustion phasing in a multi cylinder engine using variable compression ratio. SAE 2002-01-2858.
    [60] Les grands enjeux–du taux variable[EB/CD].Lyon, France: MCE-5 Development SA[2006][2007-01-29].
    [61] The News[EB/OL]. (2006-12) [2007-01-28]. http://www.gomecsys.com/theNews.asp.
    [62] Christensen M, Johansson B, Amnéus P. Supercharged Homogeneous Charge Compression Ignition. SAE 980787.
    [63] Olsson J. A turbo charged dual fuel HCCI engine. SAE 2001-01-1896.
    [64] Amit Bhave, Markus Kraft. Evaluating the EGR-AFR Operating Range of a HCCI Engine. SAE 2005-01-0161.
    [65] Stefan Pischinger, Jochen Dilthey, Oliver Lang, et al. Kontrollierte Selbstzündung beim Ottomotor - Potential der Direkteinspritzung// Congress ?Haus der Technik“, Essen, 2004.11.
    [66] A Fuerhapter, E Unger, W F Piock. The new AVL CSI engine~HCCI operation on a multicylinder gasoline engine. SAE 2004-01-0551.
    [67] Tomonori Urushihara, Koji Hiraya, Akihiko Kakuhou, et al. Expansion of HCCI Operating Region by the Combination of Direct Fuel Injection, Negative Valve Overlap and Internal Fuel Reformation. SAE 2003-01-0749.
    [68] G Gnanam, M Johnson, A Sobiesiak, et al. HCCI Combustion With Internal Fuel Reforming, Varied Levels of EGR and Charge Preheat - A Computational Study. SAE 2005-01-0140.
    [69] Zhi Wang, Jian-Xin Wang, Shi-Jin Shuai, et al. Effects of Spark Ignition and Stratified Charge on Gasoline HCCI Combustion with Direct Injection. SAE 2005-01-0137.
    [70] Bruce G Bunting. Combustion, Control, and Fuel Effects in a Spark Assisted HCCI Engine Equipped with Variable Valve Timing. SAE 2006-01-0872.
    [71] Heng-Fei Jiang, Jian-Xin Wang, Shi-Jin Shuai. Visualization and Performance Analysis of Gasoline Homogeneous Charge Induced Ignition by Diesel. SAE 2005-01-0136.
    [72] Kazuhisa Inagaki, Ingemar Denbratt. Duel-Fuel PCI Combustion Controlled by In-Cylinder Stratification of Ignitability. SAE 2006-01-0028.
    [73] Magnus Sj?berg, Lars-Olof Edling, Torbj?rn Eliassen. GDI HCCI: Effects of Injection Timing and Air Swirl on Fuel Stratification, Combustion and Emissions Formation. SAE 2002-01-0106.
    [74] John E Dec, Magnus Sjoberg. A Parametric Study of HCCI Combustion -the Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection. SAE 2003-01-0752.
    [75] John E Dec. Isolating the Effects of Fuel Chemistry on Combustion Phasing in an HCCI Engine and Potential of Fuel Stratification for Ignition Control. SAE 2004-01-0557.
    [76] Kengo Kumano, Norimasa Iida. Analysis of the Effect of Charge Inhomogeneity on HCCI combustion by Chemiluminescence Measurement. SAE 2004-01-1902.
    [77] Richard Standing, Navin Kalian, Tom Ma. Effects of Injection Timing and Valve Timings on CAI Operation in a Multi-Cylinder DI Gasoline Engine. SAE 2005-01-0132.
    [78] B Leach, H Zhao, Y Li. Control of CAI Combustion Through Injection Timing in a GDI Engine With an Air- Assisted Injector. SAE 2005-01-0134.
    [79] Yufeng Li, Hua Zhao, Nikolaos Brouzos, et al. Effect of Injection Timing on Mixture and CAI Combustion in a GDI Engine with an Air-Assisted Injector. SAE 2006-01-0206.
    [80] Tian Guohong, Wang Zhi, Wang Jianxin, et al. HCCI Combustion Control by Injection Strategy with Negative Valve Overlap in a GDI Engine. SAE 2006-01-0415.
    [81] Li Cao, Hua Zhao, Xi Jiang, et al. Investigation into the Effect of Injection Timing on Stoichiometric and Lean CAR Operations in a 4-Stroke GDI Engine. SAE 2006-01-0417.
    [82] Magnus Sj?berg, John E Dec. Smoothing HCCI Heat-Rekease Rates Using Partial Stratification with Two-Stage Ignistion Fuels. SAE 2006-01-0629.
    [83] Jeff Matthews, Halim Santoso, Wai K Cheng. Load Control for an HCCI Engine. SAE 2005-01-0150.
    [84] Hua Zhao, Jian Li, Tom Ma, et al. Performance and Analysis of a 4-Stroke Multi-Cylinder Gasoline Engine with CAI Combustion. SAE 2002-01-0420.
    [85] Lucien Koopmans, Hans Stroem, Staffan Lundgren, et al. Demonstrating a SI-HCCI-SI Mode Change on a Volvo 5-cylinder Electronic Valve Control Engine. SAE 2003-01-0753.
    [86] Halim Santoso, Jeff Matthews, Wai K Cheng. Managing SI/HCCI Dual-Mode Engine Operation. SAE 2005-01-0162.
    [87] 张岩, 谢辉, 周能辉, 等. HCCI/SI 双模式发动机燃烧模式过渡策略的研究//CSICE2006-079, 天津, 2006-10.
    [88] Aristotelis Babajimopoulos, Dennis N Assanis. An Approach for Modeling the Effects of Gas Exchange Processes on HCCI Combustion and Its Application in Evaluating Variable Valve Timing Control Strategies. SAE 2002-01-2829.
    [89] Magnus Sj?berg, John E Dec. Potential of Thermal Stratification and Combustion Retard for Reducing Pressure-Rise Rates in HCCI Engines, Based on Multi-Zone Modeling and Experiments. SAE 2005-01-0113.
    [90] Igor Orlandini, André Kulzer, Frank Weberbauer, et al. Simulation of Self Ignition in HCCI and Partial HCCI Engines Using a Reduced Order Model. SAE 2005-01-0159.
    [91] N P Komninos, D T Hountalas, D A Kouremenos. Description of in-Cylinder Combustion Processes in HCCI Engines Using a Multi-Zone Model. SAE 2005-01-0171.
    [92] Hongming Xu, Michael Liu, Shadi Gharahbaghi. Modelling of HCCI Engines: Comparison of Single-zone, Multi-zone and Test Data. SAE 2005-01-2123.
    [93] Rahul Jhavar, Christopher J Rutland. Using Large Eddy Simulation to Study Mixing Effects in Early Injection Diesel Engine Combustion. SAE 2006-01-0871.
    [94] Kevin Swan, Mahdi Shahbakhti, Charles Robert Koch. Predicting Start of Combustion of Combustion Using a Modified Knock Integral Method for an HCCI Engine. SAE 2006-01-1086.
    [95] Kyoungjoon Chang, Aristotelis Babajimopoulos, George A Lavoie, et al. Analysis of Load and Speed Transitions in an HCCI Engine Using 1-D Cycle Simulation and Thermal Networks. SAE 2006-01-1087.
    [96] CHEMKIN-III: A FORTRAN CHEMICAL KINETICS PACKAGE FOR THE ANALYSIS OF GASPHASE CHEMICAL AND PLASMA KINETICS. CA 94551-0969: Sandia National Laboratories Livermore.
    [97] Gordon S, McBride B J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions: Rocket Performance, Incident and Reflected Shocks and Chapman-Jouguet Detonations. NASA SP-273, 1971.
    [98] 贾明. 均质压燃(HCCI)发动机着火与燃烧过程的理论与数值研究[博士学位论文]. 大连: 大连理工大学, 2006.
    [99] Maigaard P, Mauss F, M Kraft. Homogeneous Charge Compression Ignition Engine: A Simulation Study on the Effects of Inhomogeneities// Spring Technical Conference, ASME, 2000, Vol 34-2: No. 2000-ICE-2275.
    [100] M Kraft. Investigation of Combustion Emissions in a Homogeneous Charge Compression Injection Engine: Measurements and a New Computational Model. Proc. Of the Combustion Institute, 2000, Vol 28: 1195-1201.
    [101] Bhave A. Modelling a Dual-Fuelled Multi-Cylinder HCCI Engine Using a PDF Based Engine Cycle Simulator. SAE 2004-01-0561.
    [102] Agrell F. Integrated Simulation and Engine Test of Closed Loop HCCI Control by Aid of Variable Valve Timings. SAE 2003-01-0748.
    [103] Ogink R, Golovitchev V. Gasoline HCCI Modeling: Computer Program Combining Detailed Chemistry and Gas Exchange Processes. SAE 2001-01-3614.
    [104] AVL BOOST, Version 5.0, User Guide. Octorber, 2006.
    [105] Song-Charng Kong, Craig D Marriott, Christopher J Rutland. Experiments and CFD Modeling of Direct Injection Gasoline HCCI Engine Combustion. SAE 2002-01-1925.
    [106] Zhi Wang, Shi-Jin Shuai, Jian-Xin Wang. Modeling of HCCI Combustion: from 0D to 3D. SAE 2006-01-1364.
    [107] K J Douglas, N Milovanovic, J W G Turner. Fuel Economy Improvement Using Combined CAI and Cylinder Deactivation (CDA) - An Initial Study. SAE 2005-01-0110.
    [108] 秦静. 可控自燃汽油机燃烧过程及其控制的研究[博士学位论文]. 天津: 天津大学, 2006.
    [109] Sebastian Hensel, Werner Sauter, Amin Velji, et al. Analyse der zyklischen Schwankungen bei homogen kompressionsgezündeter Verbrennung (HCCI)// Congress ?Haus der Technik“ Controlled Auto Ignition, Essen, Oktober 2005.
    [110] Jari Hyvonen. Balancing Cylinder-to Cylinder Variations in a Multi-Cylinder VCR-HCCI Engine. SAE 2004-01-1897.
    [111] H Persson, R Pfeiffer, A Hultqvist, et al. Cylinder-to-Cylinder and Cycle-to-Cycle Variations at HCCI Operation With Trapped Residuals. SAE 2005-01-0130.
    [112] Robert M Wagner, K Dean Edwards, C Stuart Daw, et al. On the Nature of Cyclic Dispersion in Spark Assisted HCCI Combustion. SAE 2006-01-0418.
    [113] 程勇. 电喷汽油机工作过程非稳态特性测试分析[博士后出站报告]. 北京: 清华大学, 2002.
    [114] G Wochini. A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine. SAE 670931.
    [115] Marco Chiodi, Michael Bargende. Improvement of Engine Heat-Transfer Calculation in the Three-Dimensional Simulation Using a Phenomenological Heat-Transfer Model. SAE 2001-01-3601.
    [116] Amar Patel, Song-Charng Kong, Rolf D Reitz. Development and Validation of a Reduced Reaction Mechanism for HCCI Engine Simulations. SAE 2004-01-0558.
    [117] Lucien Koopmans, Roy Ogink, Ingemar Denbratt. Direct Gasoline Injection in the Negative Valve Overlap of a Homogeneous Charge Compresson Ignition Engine. SAE 2003-01-1854.
    [118] Per Risberg, David Johansson, Johan Andrae, et al. The Influence of NO on the Combustion Phasing in an HCCI Engine. SAE 2006-01-0416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700