吉林省主要类型土壤中正构烷烃分布特征及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤是复杂的自然体,是地球生态环境的重要组成部分。原生矿物质是土壤各种化学元素的最初来源,它们构成土壤矿物质的大部分。但是,在土壤中最活跃的部分却是次生矿物和有机物质,土壤有机质是土壤固相部分的重要组成成分,尽管土壤有机质的含量只占土壤总量的很小一部分,但它对土壤形成、土壤肥力、环境保护及农林业可持续发展等方面都有着极其重要的作用和意义。
     现代土壤中的正构烷烃和类异戊二烯化合物—姥鲛烷、植烷具有环境指示作用,其在不同土壤剖面的含量、碳数分布范围和地球化学参数的不同反映了土壤成熟度、氧化-还原性质和有机质来源的差异。本文通过分析吉林省不同类型土壤剖面中正构烷烃的分布,探讨土壤类型及地带性因素对土壤正构烷烃分布的影响,进一步分析土壤发育和演化规律;分析不同剖面土壤成土条件,有机质的演化程度和正构烷烃来源,推断古环境土壤有机质形成的植被因素,为恢复吉林省古环境提供参考,为保护和改良土壤提供科学的依据。
     吉林省位于四季分明的寒温带,地形特点是东南高,西北低,东部,中部和西部土壤呈地带性分布,在典型地带性土壤中星散分布着非地带性土壤。吉林省拥有高产玉米和水稻耕地,也保留着完整的长白山原始森林,土壤类型多样,地质特征典型,因此,不同类型土壤正构烷烃分布特征鲜明。
     本论文采用气相色谱法分析了吉林省19种类型土壤(45亚类)的不同剖面土壤样品133件,典型植物样品8件,主要研究成果如下:
     (1)系统分析了吉林省不同类型土壤姥鲛烷、植烷和正构烷烃含量。利用正构烷烃和类异戊二烯化合物-姥鲛烷、植烷分布特征的环境指示作用探讨不同类型土壤有机质环境地球化学变化规律。
     (2)分析了吉林省东部垂直地带性土壤和水平地带性土壤正构烷烃的分布特征。东部土壤中正构烷烃多数富集于亚表层,土壤有机质主要来源于陆源高等生物,成熟度程度低,土壤处于强还原性环境。此外,长白山区垂直地带性土壤CPI1值随着海拔高度规律分布,东部土壤没有明显水平地带性分布规律。
     (3)分析了吉林省中部地带性土壤正构烷烃的分布特征。OEP平均值分别为2.37、1.79、2.39,CPI2分别为2.71、2.12、1.59,长链碳正构烷烃奇偶优势明显,数据显示土壤的有机质主要源于高等植物,成熟度相对较低。Pr/Ph在0.64~1.17,揭示了中部地带性土壤处于弱氧化-还原性环境。
     (4)分析了吉林省西部地带性土壤正构烷烃的分布特征。西部土壤正构烷烃主要源于高等植物,成熟度相对较高。西部土壤CPI2分布具有经度地带性特征,随着经度的降低西部土壤有机质成熟度增高。L/H数值也随着黑钙土壤分布向西延展而降低,反映出西部土壤性质变化的经度地带性因素。
     (5)探讨了吉林省典型地带性土壤正构烷烃分布规律。地球化学参数OEP、CPI2和Pr/Ph变化特征反映出吉林省主要土壤地带性分布规律。沿着经度的降低方向,土壤地球化学参数OEP和CPI2呈下降趋势,Pr/Ph呈上升趋势。
     (6)分析了吉林省非地带性土壤正构烷烃的分布特征。吉林省非地带性土壤正构烷烃分布差异很大,土壤类型及土壤分布地带性因素影响不同。非地带性土壤正构烷烃来源具有多样性,有机质成熟度普遍很低,土壤氧化-还原性质由土壤类型和成土附加过程决定。
     (7)分析了吉林省典型植物的正构烷烃的分布特征。同一种植物生长在不同地带,正构烷烃分布截然不同。东部山区杂草正构烷烃主峰碳为nC31,西部草原杂草主峰碳为nC29。西部草本植物奇偶优势指数,碳优势指数,明显低于东部草本植物相应数值,只有短链与长链碳数比完全相同。
     (8)探讨了土壤正构烷烃的来源与生长植被的关系。吉林省代表性植被与其覆盖下的土壤中正构烷烃分布并不一致。正构烷烃丰度差值显示土壤有机质输入是生物和时间因素的函数,土壤表层正构烷烃分布特征不同程度显示出当前优势植被的影响。不同土壤剖面正构烷烃来源存在明显差异,说明吉林省古环境植被与现代不同,反映出土壤表面植被的更迭和人类农业生产的影响。
Soil is a complax natural body and an important part of human ecologicalenvironment. Primary mineral is the initial source of various chemical elements in soiland they constitute most of soil minerals. The most active part in soil, however, is thesecondary minerals and organic matter. Soil organic matter is an important constituentof the soil solid phase part and it has a much important function and significance onsoil formation, soil fertility, environmental protection, sustainable development ofagriculture and forestry though it is just a very little part of soil.
     In modern soil, n-alkanes and isoprenoid compounds, including pristane andphytane, can indicate the changing environment. The different content, carbon numberrange and geochemical parameters of them in different soil profile reflects thediversity of the soil maturity, redox properties and the organic matter’s source. Byanalysing the n-alkanes distribution in soil profile of different type in Jilin Province,we inquire into the affection of the n-alkanes distribution from the soil types and thezonal factors. We also analyse the laws of soil development and evolution, the soilforming condition of the profile, the evolution dgree of organic matter and the sourcesof n-alkanes. Then we deduce what is the circumstances of vegetation that makes thesoil organic matter forming in ancient environment. All those are aimed to getreference for recovering the ancient environment in Jilin Province and providescientific basis of protecting and improving the soil.
     Jilin province is located in the cold temperate zone and all four seasons areclearly defined here. The terrain characteristic is higher in the Southeast, lower in theNorthwest. The soil in the east, middle and west is distributed zonally and the azonalsoil scatteres in the typical zonal soil. There is high-yield farmland of corn and rice inJilin Province and the virgin forest in Changbai Mountain is kept completely. So, thesoil types are multiple, the geological characteristics is typical and thus thedistribution characterization of n-alkanes in different types of soil is evident.
     In this paper, There are133samples of different soil profiles from19types ofsoil (45subcategories) and8samples of typical plants. The main research results are:
     (1) Systematically analysing the content of n-alkanes and isoprenoid compounds,including pristane and phytane, in different types of soil in Jilin Province. Discussingthe environmental geochemistry changing rules of different types of soil organicmatter by using the environmental indicator of the distribution characteristics ofn-alkanes and isoprenoid compounds, including pristane and phytane.
     (2) Analysing the distribution characterization of n-alkanes in vertical zonal soiland horizontal zonal soil in Eastern Jilin. Most n-alkanes in the soil from the East areenriched in subsurface stratum. The soil organic matter in the East are mainly fromterrestrial higher organisms and their maturity is low, the soil in the East is in strongreducing conditions. In addition, the CPI1figure of vertical zonal soil in ChangbaiMountain distributes regularly with the altitude changing. There is no evidenthorizontal zonality distribution rule of the eastern soil.
     (3) Analysing the distribution characterization of n-alkanes in zonal soil inMiddle Jilin. The average figures of OEP are respectively2.37,1.79,2.39, CPI2arerespectively2.71,2.12,1.59. The odd even predominance of long chain n-alkanes isobvious. The data shows that the higher plants are the main source of soil organicmatter and their maturity is relatively low. The Pr/Ph ranging from0.64to1.17reveals that the zonal soil in the Middle is in weak Oxidation-reduction conditions.
     (4) Analysing the distribution characterization of n-alkanes in zonal soil inWestern Jilin. The higher plants are the main source of n-alkanes in zonal soil inWestern Jilin and their maturity is relatively high. The distribution of CPI2in the soilin the West has longitudinal zonal characteristics and with the decreasing of longitude,the maturity of the soil organic matter in the West increases. The figure of L/Hdecreases with the extension to the west of the chernozem. All those reflect thelongitude zonality factors which affect the changing nature of the soil in the west.
     (5) Discussing the distribution rules of n-alkanes in zonal soil in Jilin Province.The transformation characteristic of geochemical parameters OEP, CPI2, and Pr/Phreflects the zonal distribution rule of the main soil in Jilin Province. With thedecreasing of longitude, the soil geochemical parameters OEP and CPI2appear adownward trend and Pr/Ph, rising.
     (6) Analysing the distribution characterization of the non-zonal soil n-alkanes inJilin Province. The distribution of the non-zonal soil n-alkanes has great difference.The soil types and the zonal factors of soil distribution gives different effection. The source of non-zonal soil n-alkanes are various and the maturity of soil organic matteris generally very low. The soil redox properties are decided by the type of the soil andthe soil-forming additive process.
     (7) Analysing the distribution characterization of the typical plants n-alkanes inJilin Province. The same plant in different areas has the entirely different n-alkanesdistribution. The main peak carbon of n-alkanes of the weeds in the eastern mountainsis nC31, and the main peak carbon of n-alkanes of the weeds in the western grasslandsis nC29. The indexes of odd even predominance and carbon advantage of herbaceousplants in the west are obviously lower than those in the east, only the short chaincarbon ratio is all the same with the long chain.
     (8) Discussing the relationship between the source of the soil n-alkanes and thegrowing vegetative cover. In Jilin Province, distribution of n-alkanes in representativevegetative cover is differ from that in soil under the cover. The abundance differenceof n-alkanes shows that soil organic matter input is a function of biological and thetime factors. The distribution characteristics of n-alkanes in topsoil reveal that theyare affected by the dominant vegetation at present in different degree. There areobvious diversities about the source of n-alkanes among different soil profiles. Thatinfers the differences between the plants in ancient environment and those in moderntimes at the same time reflects the alternation of the plants on the soil and theaffection from the farming activities of human being.
引文
[1]陈德兴,邵器行.环境地球化学研究现状与发展[J].地学前缘,1996,3(1-2):119-125.
    [2]Pearson A, Mc-Nichol A P, Benitez-Nelson B C, et al. Origins of lipid biomarkersin Santa Monica Basin surface sediment: Acase study using compound-specificΔ14Canalysis [J].Geochimica et Cosmochimica Acta,2001,65:3123-3137.
    [3]Hilkert A W, Douthitt C B, Schluter H J, et al. Isotope ratio monitoring gaschromatography/mass spectrometry of D/H by high temperature conversion isotoperatio mass spectrometry [J]. Rapid Communication of Mass Spectrometry,1999,13:1226-1230.
    [4]Kienast M, Steinke S, Stattegger K et al. Synchronous tropical South China SeaSST change and Greenland warming during deglaciation [J]. Science,2001,291:2132-2134.
    [5]Huang Y, Street-Perrott F A, Metcalfe S E, et al. Climate change as the dominantcontrol on glacial-interglacial variations in C3and C4plant abundance [J].Science,2001,293:1647-1651.
    [6]Ficken K J, Barber K E, Eglinton G. Lipid biomarker,δ13C and plant macrofossilstratigraphy of a Scottish montane peat bog over the last two millennia[J].OrganicGeochemistry,1998,28:217-237.
    [7]Conte M H, Weber J C. Plant biomarkers in aerosols record isotopic discriminationof terrestrial photosynthesis [J]. Nature,2002,417:639-641.
    [8]Morselli L, Setti L, Iannuccilli A, et al. Supercritical fluid extraction for thedetermination of petroleum hydrocarbons in soil [J]. Journal of Chromatography A,1999,845:357-363.
    [9]肖尊安.再论海尔蒙特的柳树实验[J].生物学通报,2011,46(3):16-19.
    [10] Allchin Reassessing Van Helmont. Reassessing history [J]. Bioscene,1993,19(2):3-5.
    [11]Hershey D R. Misconceptions about Helmont’s Willow Experiment [J]. PlantScience Bulletin,2003,49(3):78-84.
    [12]张勇,庞学勇,包维楷等.土壤有机质及其研究方法综述[J].世界科技研究与发展,2005,27(5):72-79.
    [13]Daniel M White, Sarah Garland D, Chienlu Ping, et al. Characterizing soilorganic matter quality in arctic soil by cover type and depth [J]. Cold Regions Scienceand Technology,2004,38:63-73.
    [14]Hofman J, Dusek L. Biochemical analysis of soil organic matter and microbialbiomasscomposition a pilot study [J]. European Journal of Soil Biology,2003,39:217-224.
    [15] Jose A Gonzalez Perez, Francisco J Gonzalez Vila, Gonzalo Almen dros, et al.The effect of fire on soil organic matter2a review [J]. Environment International,2004,30:855-870.
    [16]Loit Reintam, Elmar Kaar, Igna Rooma. Development of soil organic matterunder pine on quarry detritus of open2cast oil2shale mining [J]. Forest Ecology andManagement,2002,171:191-198.
    [17] Brien N D, Attiwill P M, Weston C J. Stability of soil organic matter inEucalyptus regnans forests and Pinus radiata plantations in south eastern Australia [J].Forest Ecology and Management,2003,185:249-261.
    [18]熊毅,李庆逵.中国土壤[M].北京:科学出版社,1987:390-417.
    [19]徐跃,张世聪.哀牢山北段土壤腐殖质组成的垂直分布和腐殖质特性的研究[J].生态学杂志,1989,8(2):5-9.
    [20]彭新华,李元沅,赵其国.我国中亚热带山地土壤有机质研究[J].山地学报,2001,19(6):489-496.
    [21]Hassan M M, Majumder A H. Distribution of organicm atter in somerepresentative forest soils of Bangladesh [J]. Indian Journal of Forestry,1990,13:281-287.
    [22]张俊华,常庆瑞,贾科利等.黄土高原植被恢复对土壤肥力质量的影响[J].水土保持学报,2003,17(4):38-41.
    [23]陈庆强,沈承德,孙彦敏等.鼎湖山土壤有机质深度分布的剖面演化机制[J].土壤学报,2005,42(1):1-8.
    [24] Brubaker S C, Jones A J, Lewis D T, et al. Soil properties associated with slopepositions [J]. Soil Science Society of American Journal,1993,57:235-239.
    [25]Sinoneit B R T, Sheng G Y, Fu JM, et al.Molecularmarker of extractable organicmatter in aerosols from urban areas of China [J].Atomosphere Envirorment,1991,25A:2111-2129.
    [26] Liu W G,Huang Y S,AN Z S,et al. Summer monsoon intensity controlsC4/C3plant abundance during the last35ka in the Chinese loess plateau:Carbonisotope evidence from bulk organic matter and individual leaf waxes[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2005,220(3-4):243-254.
    [27]HuangY S,Clemens S C,LiuWG,et al. Large-scale hydrological change drovethe late miocene C4plant expansion in the himalayan foreland and arabian peninsula[J]. Geology,2007,35(6):531-534.
    [28]Xie S C, Chen F H, Wang Z Y, et al. Lipid distributions in loess-paleosolsequences from Northwest China [J]. Organic Geochemistry,2003,34(8):1071-1079.
    [29]刘卫国,张普,孙有斌等.黄土高原中部7~2Ma期间古植被变化的分子化石证据-以赵家川剖面为例[J].第四纪研究,2008,28(5):806-811.
    [30]Eglinton G,Hamilton R J.The distribution of alkanes[M].New York:AcademicPress,1963:187-217.
    [31]Hedberg H D. Significance of high-wax oils with respect to genesis of petroleum[J]. Am. Assoc. Petrol. Geol. Bull,1968,52(5):736-750.
    [32]Tegelaar E W, de Leeuw J W, Derenne S, et al. A reappraisal of kerogen formation[J]. Geochim. Cosmochim. Acta,1989,53:3103-3106.
    [33]Grimalt J O, Torras E, Albaiges J. Bacterial reworking of sedimentary lipidsduring sample storage [J].Organic Geochemistry,1988,13:741-746.
    [34]Nishimura M, Baker E W. Possible origin of n-alkanes with a remarkableeven-to-odd predominance in recent marine sediments [J]. Geochim, Cosmochim.Acta,1986,50:299-305.
    [35]傅家漠,盛国英.分子有机地球化学与古气候古环境研究[J].第四纪研究,1992,12(4):306-320.
    [36]Ritts B D, Hanson A D, Zinniker D, et al. Lower-middle Jurassic nonmarinesource rocks and petroleum systems of the Northern Qaidam Basin, northest China[J].AAPG Bull,1999,83:1980-2005.
    [37]Grimalt J, Albaiges J. Sources and occurrence of C12-C22n-alkane distributionswith evern carbon-number preference in dedimentary environment [J]. Geochim,Cosmochim. Acta,1987,51:1379-1384.
    [38]王志远,刘占红,易轶等.不同气候和植被区现代土壤类脂物分子特征及其意义[J].土壤学报,2003,40(6):967-970.
    [39]Lichtfouse E, Berthier G, Houot S. Stable carbon isotopeevidence for themicrobial origin of C14-C18n-alkanoic acids in soils [J]. Org an ic Geochem istry,1995,23:849-852.
    [40]雷国良,张虎才,杨明生等.干旱-半干旱区兰州兴隆山现代森林典型植被和土壤中类脂物分子特征及其意义[J].第四纪研究,2009,29(1):159-165.
    [41] WANG Yongli, FANG Xiaomin, BAI Yan, et al. Distribution of lipids in modernsoils from various regions with continuous climate (moisture-heat) change in Chinaand their climate significance [J]. Science in China (Ser iesD),2007,37(3):386-396.
    [42]郑艳红,周卫健,谢树成等.正构烷烃分子化石与孢粉记录的指示意义对比:以华南地区为例[J].科学通报,2009,54:1749-1755.
    [43] ZHOU Weijian, LU Xuefeng, WU Zhengkun, et al. Peat record reflecting Holo-cene climatic change in the Zoige Plateau and AMS radiocarbon dating[J]. ChineseScience Bulletin,2002,47(1):66-70.
    [44]萧家仪,吕海波,周卫健等.末次盛冰期以来江西大湖孢粉植被与环境演变[J].中国科学D辑,地球科学,2007,37:789-797.
    [45]Kracht O, Gleixner G. Isotope analysis of pyrolysis prod-ucts from Sphagnumpeat and dissolved organic matter from bog water [J]. Organic Geochemistry,2000,31:645-654.
    [46]蒋庆丰,沈吉,刘兴起等.西风区全新世以来湖泊沉积记录的高分辨率古气候演化[J].科学通报,2007,52:1042-1049.
    [47]杨明生,张虎才,李斌.生物标志化合物在环境载体中的研究及进展[J].南昌大学学报,2010,32(3):205-213.
    [48]谢树成,梁斌,郭建秋等.生物标志化合物与相关的全球变化[J].第四纪研究,2003,23(5):521-529.
    [49]Corrigan D, Kloos C O, Connor C S, et al.Alkanes from four species ofSphagnum moss [J].Phytochemistry,1973,12(1):213-214.
    [50]Zhang H C, Yang M S, Zhang W X, et al. Molecular fossil and paleovegetationrecords of paleosol S4and adjacent loess layers in the luochuan loess section.NWChina [J].Science in China Series D:Earth Sciences,2008,51(3):321-330.
    [51]Simoneit B R T. The organic chemistry of marine sediments [J]. In: REILYJP,CHESTER R,eds. Chemical Oeeanography,Vol.7. London: Aeademic Press,1978,233-311.
    [52]Simoneit B R T. Organic matter of the troposphere-V: applieation of moleeularmarker analysis to biogenic emissions into the troposphere for source reeoneiliations[J]. Atmospheric Chemistrys,1989,8:251-275.
    [53]Simoneit B R T. Molecular indicators (biomarkers) of past life[C].The AnatomicalRecord,2002,186-195.
    [54]Simoneit B R T. Biomarkers as geochemical indicators of life [J]. Advances inSpace Researeh,2004,33:1255-1261.
    [55]Simoneit B R T, Mazuret M. Organic matter of the troposphere-11. Naturebackground of biogenic lipid matter in aerosols over the rural western United States[J]. Atmosphere Environment,1982,16:2139-2159.
    [56]Gagosian R B, Peltzer E T. The inportance of atmospheric input of terrestrialorganic material to deep sea sedinerts[J]. Organic Geochemistry,1986,10(4/6):661-669.
    [57]Eglinton G, Hamilton R J. Leaf epicuticular waxes [J]. Science,1967,156:1322-1335.
    [58]Rieley G, Collier R J, Jones D M, et al. Sources of sedimentary lipide deducedfrom stable carbon isotope analyses of individual n-alkanes[J]. Nature,1991,352:425-427.
    [59]Chikaraishi Y, Naraoka H. δ13C and δD relationships among threen-alkylcompound classes (n-alkanoic acid, n-alkane and n-alkanol) of terrestrial higherplants[J]. Organic Geochemistry,2007,38:198-215.
    [60]Poynter J G, Farrimond P, Robinson N, et al. Aeolian-derived higher plant lipidsin the marine sedimentary record: links with paleoclimate[C]. In: Leinen M, SarntheinM, eds. Paleoclimatology and Paleometeorology: Modern and Past Patterns of GlobalAtmospheric Transport. Dordrecht (Kluwer A cademic), Hingham, Mass,1989,435-462.
    [61]Cranwell P A. Chain-length distribution of n-alkanes from lake sediments inrelation to post glacial environmental change [J]. Freshwater Biology,1973,3:259-265.
    [62]Meyers P A. Applications of organic geochemistry to paleolimnologicalreconstructions: a summary of examples from the Laurentain Great Lakes [J]. OrganicGeochemistry,2003,34:261-289.
    [63]Duan Y, Song J M, Cui M Z, et al. Organic geochemical studies of sinkingparticulate material in China sea area-I. Organic matter fluxes and distributionalfeatures of hydrocarbon compounds and fatty acids [J]. Science in China (Series D),1998,41:208-214.
    [64]Pancost R D, Boot C S. The palaeoclimatic utility of terrestrial biomarkers inmarine sediments [J]. Marine Chemistry,2004,92:239-261.
    [65]Collister J W, Huang Y, Eglinton G. Assessment of terrestrial input into marinesediments during glacial/interglacial sequences in the northeastern Atlantic bycompound specific isotopic analysis of biological markers[C]. In: Oygard K, ed.Organic Geochemistry). Falch Hurtigtrykk,1993,430-433.
    [66]Ohkouchi N, Kawamura K, Taira A. Molecular paleoclimatology: reconstructionof climate variabilities in the late Quaternary [J]. Organic Geochemistry,1997,27:173-183.
    [67]Volkman J K, Farrington J W, Gagosian R B, et al. Lipid composition of coastalmarine sediments from the Peru upwelling region[C]. In: Bjorφy M, et al., ed.Advances in Organic Geochemistry1981. New York: Wiley,1983,228-240.
    [68]Cranwell P A, Eblinton G, Robinson N. Lipids of aquatic organisms as potentialcontributors to lacustrine sediments [J]. Organic Geochemistry,1987,11:513-527.
    [69]Duan Y. Organic geochemistry of recent marine sediment from Nansha Sea,China [J]. Organic Geochemistry,2000,31:159-167.
    [70]Rommerskirchen F, Eglinton G, Dupont L, et al. A north to south transect ofHolocene southeast Atlantic continental margin sediments: relationship betweenaerosol transport and compound-specific δ13C land plant biomarker and pollen records[J]. Geochemistry Geophysics Geosystems,2003,4:1101.
    [71]郭方琴.松嫩平原湖滩-湖泊系统有机污染物源解析及对比研究[D].兰州,兰州大学,环境科学学院,2009.
    [72]林叶彬.金川泥炭地正烷烃和姥鲛烷分布特征与环境演变关系研究[D].长春,东北师范大学,自然地理学,2006.
    [73]徐涛.不同环境样品生物标志化合物的气候环境意义[D].兰州,兰州大学,地质学,2008.
    [74]Colombo J C, Pelletier E, Broehu C, et al. Determination of hydroearbon soureesusing n-alkane and Polycyclic aromatic hydroearbon distribution indexes [J].Casestudy: Riode La Plata Estuary. Argentina. Environ.Sei.Teehnol1989,23:888-894.
    [75]Eglinton G, Hamilton R J. The distribution of alkanes [C]. In: T.Swain (editor).Chemical P; ant Taxonomy, Academic Press,1963, P,187-208.
    [76]Han J, Calvin M. Occurrenee of nC22-nC25isoPrenoids in Bell Creek crudeoil[J].Gcochim. Cosrooehim. Acta,1969,33:733-742.
    [77]Dembieki, Meimschein. Possilble ecological and environrnent significance of thePredomlnance of even-carbon number nC20-nC30n-alkanes [J].Geochim CosmochimAeta,1976,40:203-208.
    [78]Ficken K J, Li B, Swain D L, et al. An n-alkane Proxy for the sedimentary inputof submerged floating freshwater aquatic macrophytes [J]. Org Geoehemistry,2000,31:745-749.
    [79]Isobe K O, Zakaria M P, Chiem N H, et al. Distribution of linear alkylbenzenes(LABs) in riverine and coastal environments in South and Southeast Asia[J].WaterReseareh,2004,38:2449-2459.
    [80]Eganhouse R P, Blumfield D L, Kaplan I R. Long-chain alkylbenzenes asmolecular tracers of domestic wastes in the marine environment[J]. EnvironmentalSeienee and Technology,1983,17(9):523-530.
    [81]Eglinton G, Gonzales A G, Hamilton R J, et al. Hydrocarbon constituents of thewax coatings of Plant leaves: a taxonomic Survey [J]. Photoehemistry,1962,1:89-102.
    [82]Didyk B M, Simoneit B R, Brassell S C, et al. Orgnic geochemical indicators ofPaleoenvironmental conditions of sedimentation [J]. Nature,1978,272,216-222.
    [83]Decaprio A P. Coming of the age for environment health and risk assessment [J].EnvironmentalSeienee and Technology, Biomarkers:1989,31:1837-1848.
    [84]Fraser M P, Cass G R, Simoneit B R T. Particulate organic compounds emitterfrom motorvehicle exhaust and in the urban atmosphere [J]. Atmosphere Environment,1999,33:715-724.
    [85]Goodwin N S, Mann A L, Patienee R L. Structure and significance ofC304-methylsteranes in lacustrine shales and oils[J].Org. Geoehem,1988,12:495-506.
    [86]Heftmann E. Biochemistry of plant steroids [J]. Annu.Rev. Plant Physiol,1963,14:225-248.
    [87]丁竹红,谢标,王晓蓉.生物标志物及其在环境中的应用[J].农业环境保护,2002,21(5):465-467.
    [88]Meyers P A, Keuehi N T. Fatty acids and hydrocarbons in surficial sediments ofLake Huron [J].Organic Geoehemistry,1978, l:127-138.
    [89]傅家漠,盛国英,许家友等.应用生物标志物参数判识古环境[J].地球化学,1991,(1):l-12.
    [90]Jaffe R, Cabrera A, Carrero H, et al. Organic compounds and heavy metals in theatmosphere of the city of CaraeasVenezuela-I:Atmospheric Particles [J].Water,Air andSoil Pollution,1993,71:293.
    [91]张枝焕,陶澎,吴水平等.天津地区表层土壤和河流沉积物中正构烷烃化合物的成因分析[J].地球与环境,2005,33(l):15-22.
    [92]窦廷焕,高菊芬. Pr/Ph与煤化程度的关系及成煤环境意义[J].煤田地质与勘探,1995,24(1):19-21.
    [93]Peters K E, Moldowan J M,(Translated byJIANG Naihuang, et al). TheBiomarker Guide [M]. Beijing: Petroluem Industry Press,1995.
    [94]梅博文,刘希江.我国原油中异戊间二烯烃的分布及其与地质环境的关系[J].石油与天然气地质,1980,1(2):99-115.
    [95]Didyk B M, Simoneit B R, Brassell S C, et al. Oranic geochemical indicators ofPaleoenvironmental conditions of sedimentation [J]. Nature,1978,272:216-222.
    [96]傅家漠等.中国主要含油气盆地沉积类型的有机地球化学特征,有机地球化学论文集[C].中国科学院地球化学研究所编,北京,科学出版社,1986:1-16.
    [97]陈海树.沉积岩有机物中姥纹烷、植烷比值在过成熟阶段的变化特征,有机地球化学论文集[C].中国科学院地球化学研究所编,北京:科学出版社,1986:101-107.
    [98]刘宝泉等.类异戊二烯烷烃的演化特征及植醇生成类异戊二烯烃的又一新模式,有机地球化学论文集[C].中国科学院地球化学研究所编,北京:科学出版社,1956,90-100.
    [99]杜世通.油藏地球物理异常目标的顶测[R].“七五”国家重点科技项目成果报告,1990.
    [100]Walte D H, Waples D.Uber die Bevorzugung geradzahliger n-alkane in sedimentgesteinen [J]. Naturwissensehaften,1973,60:516-517.
    [101]邓宏文,钱凯.沉积地球化学与环境分析[M].兰州:甘肃科学技术出版社,1993,46-67.
    [102]李任伟,李哲,王志珍等.分子化石指标在中国东部盆地古环境分析中的应用[J].沉积学报,1988,6(4):108-119.
    [103]Peters K E, Walters C C, Moldowan J M. The Biomarker Guide: I. Biomarkersand Isotopes in the Environment and Human History [M]. Cambridge: CambridgeUniversity Press,2005.
    [104]Robson J N, Rowland S J. Synthesis, chromatographic and spectralcharacterization of2,6,11,15-tetramethylhexadecane (crocetane) and2,6,9,13-tetramethyltetradecane: Reference acyclic isoprenoids for geochemical studies [J].Org Geochem,1993,20(7):1093-1098.
    [105]Barber C J, Bastow T P, Grice K, et al. Analysis of crocetane in crude oils andsediments: Novel stationary phases for use in GC-MS [J].Org Geochem,2001,32(5):765-769.
    [106]Greenwood P F, Summons R E. GC-MS detection and significance of crocetaneand pentamethylicosane in sediments and crude oils[J].Org Geochem,2003,34(8):1211-1222.
    [107]Maslen E, Grice K, Gale J D, et al. Crocetane: A potential marker of photic zoneeuxinia in thermally mature sediments and crude oils of Devonian age [J]. OrgGeochem,2009,40(1):1-11.
    [108]Barber C J, Bastow T P, Grice K, et al. Analysis of crocetane in crude oils andsediments: Novel stationary phases for use in GC-MS [J].Org Geochem,2001,32(5):765-769.
    [109]Barber C J, Grice K, Bastow T P, et al. The identification of crocetane inAustralian crude oils [J].Org Geochem,2001,32(7):943-947.
    [110]Greenwood P F, Summons R E. GC-MS detection and significance of crocetaneand pentamethylicosane in sediments and crude oils [J].Org Geochem,2003,34(8):1211-1222.
    [111]Maslen E, Grice K, Gale J D, et al. Crocetane:A potential marker of photic zoneeuxinia in thermally mature sediments and crude oils of Devonian age [J]. OrgGeochem,2009,40(1):1-11.
    [112]徐冠军,帅燕华,王培荣等.姥鲛烷、植烷立体异构体的色谱分离及地球化学意义[J].地球化学,2010,39(5):491-496.
    [113]地调局.吉林省地质概况[J/OL].(2008-09-23). http//old.cgs.gov.cn/ZTfuwu/TZzhinan/dizhiziyuan/guonei/jilin/806_3909.htm.
    [114]黄汲清.中国大地构造及其演化1:400万中国大地构造图简要说明书[M].科学出版社,980.
    [115]刘国良,张永换.初谈吉林北部槽区华力西晚期运动与印支运动[J].吉林地质,1985,4:24-32.
    [116]孙殿卿,崔盛芹.略论中国的主要地壳运动,国际交流地质学术论文集第一期[C].北京:中国工业出版社,1981.
    [117]张大立,石殿志.东北地区新华夏系与构造运动[J].吉林地质,1982,2:25-32.
    [118]关德范.新华夏系第二沉积带油、气形成的地质条件[J].大庆石油学院学报,1977,2:7-21.
    [119]崔斗列.吉林省新构运动的基本特征[J].吉林地质,1983,3:14-31.
    [120]刘尔义.吉林省龙岗火山群地质构造特征研究[J].中国区域地质,1990,2,158-165.
    [121]徐德兵,白志达,张秉良等.吉林龙岗火山碎屑基浪堆积特征与成因机理[J].沉积学报,2005,23(1):60-67.
    [122]张成梁,张普林,傅大治.长白山火山喷发物的堆积类型及火山活动机理[J].吉林地质,1992,2:37-46.
    [123]李秀军.吉林省农业发展态势、问题及对策[J].农业系统科学与综合研究,2008,24(3):344-349.
    [124]吉林统计局.吉林统计年鉴[M].北京:中国统计出版社,2006.
    [125]张庆田.吉林农业综合开发优势产业发展探索[M].北京:北京科学出版社,2003.
    [126]吉林省林业资源概况[J/OL].(2006-03-21).http//wenku.baidu.com/view/d94a0f5a804d2b160b4ec06d.htm.
    [127]吉林省工业基础雄厚[J/OL].(2011-07-31).http//wenku.baidu.com/view/d5072b2d453610661ed9f42c.htm.
    [128]吉林省矿业资源简介[J/OL].(2011-10-20). http//wenku.baidu.com/view/dfb871bd97f192279e973.htm.
    [129]Dodd R S, et al.Habital-related adaptive properties of plant cuticular lipids [J].Evolution,2002,54(4):1438-1444.
    [130]Zhang H C,Yang M S,Zhang W X,et al. Molecular fossil and paleovegetationrecords of paleosol S4and adjacent loess layers in the luochuan loess section.NWChina[J].Science in China Series D:Earth Sciences,2008,51(3):321-330.
    [131]范璞,王有孝,荣光华等.华北陆台上一个大型沉积盆地古生界油气的形成与演变[J].地球化学,1980,6(2):148-160.
    [132]魏彩云,王汇彤,王慧等.快速溶剂抽提仪萃取岩石中氯仿沥青“A”方法探索[J].现代科学仪器,2009(2):96-98.
    [133]万大娟,李顺义,舒月红等.土壤和沉积物中1,2,4一三氯苯的超声波提取[J].中山大学学报:自然科学版,2005,44(3):102-104.
    [134]任松,陈卫卫,卜建平等.超声波提取在近海沉积物油类测定中的应用[J].海洋环境科学,2005,24(1):35-37.
    [135]Kornilova O, Rosell-Mel A. Application of microwaveassisted extraction to theanalysis of biomarker climate proxies in marine sediments [J]. Organic Geochemistry,2003,34(11):1517-1523.
    [136]牟世芬,刘克纳,阎炎等.加速溶剂萃取技术及其在环境分析中的应用[J].环境化学,1997,16(4):387-391.
    [137]王晓华,石丽明,刘美美等.古气候古环境研究中类脂化合物单体同位素分析[J].岩矿测试,2008,27(6):435-440.
    [138]张普,刘卫国.不同抽提方法比较黄土-古土壤类脂物中正构烷烃的分布特征[J].盐矿测试,2010,29(3):201-206.
    [139]梁斌,谢树成,顾延生等.安徽宣城更新世红土正构烷烃分布特征及其古植被意义[J].地球科学,2005,30:129-132.
    [140]王志远,喻建华,顾延生等.浙江长兴更新世红土中的分子化石及其古环境意义[J].海洋地质与第四纪地质,2002,22:97-102.
    [141]谢树成,易轶,刘育燕等.中国南方更新世网纹红土对全球气候变化的响应:分子化石记录[J].中国科学D辑:地球科学,2003,33:411-417.
    [142]王志远,谢树成,陈发虎.临夏塬堡黄土地层S1古土壤中的正构烷烃及其古植被意义[J].第四纪研究,2004,24:231-235.
    [143]Liu W G, Huang Y S, An Z S, et al. Summer monsoon intensity controls C4/C3plants abundance during the last35ka in the Chinese Loess Plateau: Carbon isotopeevidence from bulk organic matter and individual leaf waxes [J].PalaeogeogrPalaeoclimatol Palaeoecol,2005,220:243-254.
    [144]钟艳霞.末次冰期以来黄土高原西部地区环境变化的黄土有机地球化学记录研究[D].兰州,兰州大学,自然地理学,2008.
    [145]钟艳霞,陈发虎,安成邦等.陇西黄土高原秦安地区全新世植被的讨论[J].科学通报,2007,52:318-323.
    [146]杨明生,张虎才,雷国良等.洛川黄土剖面末次冰期间冰段弱古土壤(L1SS1)分子化石及其古植被与古环境[J].第四纪研究,2006,26:976-984.
    [147]张虎才,杨明生,张文翔等.洛川黄土剖面S4古土壤及相邻黄土层分子化石与植被变化[J].中国科学D辑:地球科学,2007,37:1634-1642.
    [148]饶志国,吴翼,朱照宇等.长链正构烷烃主峰碳数作为判别草本和木本植物指标的讨论:来自表土和现代植物的证据[J].科学通报,2011,6(10):774-780.
    [149]Schwark L, Zink K, Lechterbeck L. Reconstruction of postglacial to earlyHolocene vegetation history in terrestrial Central Europe via cuticular lipidbiomarkers and pollen records from lake sediments [J]. Geology,2002,30:463-466.
    [150]Hou J Z, D’AndreaW J, Mac Donald D, et al.Hydrogen isotopic variability inleaf waxes among terrestrial and aquatic plants around Blood Pond Massachusetts(USA)[J].Oranic Geochemistry,2007,38(6):977-984.
    [151]Sachse D, Radke J, Gleixner G. δD values of individual n-alkanes fromterrestrial plants along a climatic gradient-Implications for the sedimentary biomarkerrecord [J]. Org Geochem,2006,37:469-483.
    [152] Maffei M. Chemotaxonomic significance of leaf wax alkanes in the Gramineae[J]. Biochem Syst Ecol,1996,24:53-64.
    [153] Otto A, Simpson M J. Degradation and preservation of vascular plant-derivedbiomarkers in grassland and forest soils from Western Canada [J]. Biogeochemistry,
    [154]崔景伟,黄俊华,谢树成.湖北清江现代植物叶片正构烷烃和烯烃的季节性变化[J].科学通报,2008,53:1318-1323.
    [155]Bi X H, Sheng G Y, Liu X H, et al. Molecular and carbon and hydrogen isotopiccomposition of n-alkanes in plant leaf waxes [J]. Org Geochem,2005,36:1405-1417.
    [156]Chikaraishi Y, Naraoka H. Compound-specific δD-δ13C analyses of n-alkanesextracted from terrestrial and aquatic plants [J]. Phytochemistry,2003,63:361-371.
    [157]Chikaraishi Y, Naraoka H, Poulson S R. Carbon and hydrogen isotopicfractionation during lipid biosynthesis in a higher plant (Cryptomeria japonica)[J].Phytochemistry,2004,65:323-330.
    [158]Conte M H, Weber J C, Carlson P J, et al. Molecular and carbon isotopiccomposition of leaf wax in vegetation and aerosols in a northern prairie ecosystem [J].Oecologia,2003,135:67-77.
    [159] Gormann R, Schreiber L, Kolodziej H. Cuticular wax profiles of leaves of sometraditionally used African Bignoniaceae [J]. Z Naturforsch,2004,59:631-635.
    [160]Huang Y, Eglinton G, Ineson P, et al. Absence of carbon isotope fractionation ofindividual n-alkanes in a23-year field decomposition experiment with Callunavalgaris [J]. Org Geochem,1997,26:497-501.
    [161]Jansen B, Nierop K, Hageman J, et al. The straight-chain lipid biomarkercomposition of plant species responsible for the dominant biomass production alongtwo altitudinal transects in the Ecuadorian Andes [J]. Org Geochem,2006,37:1514-1536.
    [162]Krull E, Sachse D, Mügler I, et al. Compound-specific δ13C and δ2H analysesof plant and soil organic matter: A preliminary assessment of the effects of vegetationchange on ecosystem hydrology [J]. Soil Biol Biochem,2006,38:3211-3221.
    [163]李宝才,董玉莲,李超等.秋茄和榕树叶片中正构烷烃分布和单体化合物δ13C值及其光合作用[J].热带海洋学报,2003,22:62-69.
    [164]Liu W G, Huang Y S. Compound-specific D/H ratios and moleculardistributions of higher plant leaf waxes as novel paleoenvironmental indicators in theChinese Loess Plateau [J]. Org Geochem,2005,36:851-860.
    [165]Lockheart M J, Van Bergen P F, Evershed R P. Variations in the stable carbonisotope compositions of individual lipids from the leaves of modern angiosperms:Implications for the study of higher land plant-derived sedimentary organic matter [J].Org Geochem,1997,26:137-153.
    [166]Lockheart M J, Van Bergen P F, Evershed R P. Chemotaxonomic classificationof fossil leaves from the Miocene Clarkia lake deposit, Idaho, USA based on n-alkyllipid distributions and principal component analyses [J]. Org Geochem,2000,31:1223-1246.
    [167]Marseille F, Disnar J, Guillet B, et al. n-Alkanes and free fatty acids in humusand A1horizons of soils under beech, spruce and grass in the Massif-Central(Mont-Lozère), France[J]. Eur J Soil Sci,1999,50:433-441.
    [168]Mügler I, Sachse D, Werner M, et al. Effect of lake evaporation on δD values oflacustrine n-alkanes: A comparison of Nam Co (Tibetan Plateau) and Holzmaar(Germany)[J]. Org Geochem,2008,39:711-729.
    [169]Nichols J E, Booth R K, Jackson S T, et al. Paleohydrologic reconstructionbased on n-alkane distributions in ombrotrophic peat[J]. Org Geochem,2006,37:1505-1513.
    [170]Nott C J, Xie S C, Avsejs L A, et al. n-alkane distributions in ombrotrophicmires as indicators of vegetation change related to climatic variation[J]. Org Geochem,2000,31:231-235.
    [171]Rommerskirchen F, Plader A, Eglinton G, et al. Chemotaxonomic significanceof distribution and stable carbon isotopic composition of long-chain alkanes andalkan-1-ols in C4grass waxes[J]. Org Geochem,2006,37:1303-1332.
    [172]Sessions A L. Seasonal changes in D/H fractionation accompanying lipidbiosynthesis in Spartina alterniflora [J]. Geochim Cosmochim Acta,2006,70:2153-2162.
    [173]Wiesenberg G L B, Schmidt M W I, Schwark L. Plant and soil lipidmodifications under elevated atmospheric CO2conditions: I. Lipid distributionpatterns [J]. Org Geochem,2008,39:91-102.
    [174]Xie S C, Nott C J, Avsejs L A, et al. Molecular and isotopic stratigraphy inombrotrophic mire for paleoclimate reconstruction[J]. Geochim Cosmochim Acta,2004,68:2849-2862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700