5052铝合金与AZ31镁合金的搅拌摩擦焊接
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
搅拌摩擦焊接是一种固态连接技术,已成功应用于同种铝合金与镁合金的焊接。对于铝合金和镁合金的异种焊接,搅拌摩擦焊焊接过程温度低,不产生熔化现象,是实现铝合金和镁合金异种焊接的有效途径。搅拌摩擦焊过程中搅拌区得到细小的等轴晶组织,因此进一步了解搅拌摩擦焊过程晶粒组织变化规律十分有必要。本文对6 mm厚的5052铝合金和AZ31镁合金同种和异种搅拌摩擦焊接,考察了不同焊接参数对同种和异种焊缝组织和力学性能的影响,并采用急停和快速淬火的方法探讨了AZ31镁合金搅拌摩擦加工过程中晶粒长大的机制,得到如下主要结论:
     (1)研究了搅拌摩擦焊工艺参数对6 mm厚的5052铝合金板材接头组织和力学性能的影响。在150 mm/min的焊接速度下,旋转速度在600 rpm-1500 rpm的范围内,均得到了高质量的焊缝。在搅拌区产生了细小的等轴晶组织,最小晶粒尺寸为6.3μm。搅拌头的旋转速度越高,搅拌区的晶粒尺寸越大。硬度曲线呈“W”型,焊缝中心硬度与母材相当,在距焊缝中心大约3 mm的位置硬度最小值约为HV52左右。在旋转速度为600 rpm与焊接速度为150 mm/min焊接参数下得到的接头强度为236.2 MPa,延伸率为22.4%,分别达到母材的92.9%和96.1%。
     (2)研究了板厚为6mm的AZ31镁合金搅拌摩擦焊工艺,并对接头的断裂机制进行了考查。在转速为1000rpm,焊接速度为60 ~ 300mm/min条件下获得表面平整,无缺陷的焊缝。与母材相比,搅拌区的晶粒得到明显细化,随焊接速度增加,搅拌区的晶粒尺寸减小。搅拌区的硬度高于其他区域。焊接速度为150mm/min时,接头拉伸强度最高,达到母材的92.7%。断裂多发生在热影响区,热影响区晶粒粗大且分布不均,显微硬度最低,是焊接接头的薄弱环节。
     (3)采用急停和快速淬火技术获得了各个不同加工时间的焊缝组织,分析了焊缝搅拌区中心晶粒尺寸与加工时间的关系以及搅拌区晶粒大小的分布状态,研究表明:搅拌区发生动态再结晶,晶粒为非常细小的等轴晶组织。在0-5秒时,即接近匙孔区域,搅拌区平均晶粒尺寸大约为1.46μm,其中晶粒尺寸小于1μm的微细晶组织占80%左右。随着加工时间的延长,搅拌区晶粒不断长大,微细晶数量减少,大晶粒数目增加,到15 s时,晶粒尺寸小于1μm的微细晶组织占75%左右,25 s时,平均晶粒大小增大到2.06μm。再结晶初始阶段,晶粒长大迅速,在搅拌摩擦焊结束后,晶粒持续长大,直到最终得到稳定尺寸。
     (4)对6 mm厚5052铝合金与AZ31镁合金板材进行了异种搅拌摩擦焊接。讨论了异种搅拌摩擦焊接过程中出现的搅拌头磨损现象,研究了不同参数下异种焊缝的成形性能,并对600 rpm-40 mm/min条件下异种焊接接头的组织和力学性能进行分析,研究结果表明:采用低硬度搅拌头时,搅拌头易有含金属间合物Al12Mg17和Al3Mg2的粘附层产生,搅拌头磨损较严重,不能形成完整焊缝。提高搅拌头硬度时,异种焊缝在600 rpm-800 rpm和40 mm/min、60 mm/min的条件下外观成形良好,没有明显的裂纹产生。在600 rpm-40 mm/min条件下获得无宏观缺陷的焊缝。焊缝上部分为简单的交接,下部分两种金属却呈现了相互混合交接,并存在由Al合金带和Mg合金带组成的洋葱环结构。搅拌区组织发生动态再结晶,为细小的等轴晶,但Mg侧和Al侧搅拌区晶粒大小分布不均匀。Mg侧搅拌区Mg的平均晶粒大小约为5.4μm,Al侧搅拌区不同位置获得Mg的平均晶粒大小约为2.8μm。搅拌区得到Al的平均晶粒大小约为3μm。TEM、XRD分析得出搅拌区有金属间化合物Al12Mg17的存在。焊缝硬度分布波动大,硬度最大值存在于搅拌区,大约为母材硬度的2倍。拉伸断裂为脆性断裂,断裂位置位于硬度变化最大出,大约为焊缝前进侧距中心2.5 mm处。
Friction stir welding is a solid-state joining technique and has achieved the monolithic welds of aluminum and magnesium alloys. Friction stir welding is a potential candidate for the joining of dissimilar welds between aluminum alloys and magnesium alloys due to the lower processing temperature. Microstructural evolution was complicated and fine equixed grains were obtained in stir zone. Therefore, it is essential to reveal the mechanism of the grain growth during friction stir welding process. In this paper, microstructure and mechanical properties of the monolithic and dissimilar weld between 5052 aluminum alloy and AZ31 magnesium alloy produced by friction stir welding were studied. Microstructural evolution during friction stir processing of AZ31 magnesium alloy was observed with the employment of stop action and“rapid quench”technique. The main conclusions are summarized as follows.
     (1) Effects of friction stir welding parameters on the microstructure and mechanical properties of 5052 aluminum alloy joints were investigated. Sound welds were achieved under a range of rotation rate 600 rpm-1500 rpm at a constant welding speed 150 mm/min. Fine equiaxed grains were obtained in stir zone and the minimum grain size was 6.3μm. The grain size of stir zone increased with the rotation speed increasing. The profile of hardness distribution presented a“W”shape and the maximum value of stir zone was equal to the base metal. Furthermore, the minimum value of hardness, about 52 HV, located at a distance of 3 mm from the weld center on the advancing side. Joints with its tensile strength of 236.2 MPa and elongation of 22.4% were achieved with a rotation speed of 600 rpm and a welding speed of 150 mm/min, which were 92.9% and 96.1% of the base material, respectively.
     (2) Friction stir welding of AZ31 magnesium alloy plate with its thickness of 6 mm was studied, and the tensile fracture mechanism of FSW joints was investigated. At a constant rotation rate of 1000rpm, defect-free joints could be obtained under a range of welding speed 60~300mm/min. Coarse grains in base material were changed into fine equiaxed grains in stir zone after FSW. The grain size of stir zone decreased with the welding speed increasing. Micro-hardness measurement showed that the hardness of stir zone was higher than that of the other zones. Joints with its tensile strength of 92.7% of the base material were achieved under the welding speed of 150 mm/min. Heat affected zone was the weakest zone in the whole weld, due to the inhomogeneous distribution of coarse grains and the lowest hardness in the heat affected zone.
     (3) Stop action and“rapid quench”technique was adopted to understand the microstructural evolution during friction stir processing of AZ31 magnesium alloy. The relationship between the processing time and grain size was investigated. Analysis of microstructure revealed that grain refinement occurred and the DRX grain structure was obtained in the stir zone. The minimum average grain size in the whole weld was about 1.46μm, which located near the keyhole, and the proportion of fine grain smaller than 1μm was up to about 80%. The number density of fine grain decreased and grain became coarser along the centerline of weld from the keyhole. The proportion of fine grain was reduced to 75% in location of 15 second and the average grain size was up to 2.06μm in 25 second. The experimental results also showed that the process of grain growth would be continued after the stirring of the tool.
     (4) Dissimilar friction stir welding between 5052 Al alloy and AZ31 Mg alloy with the plate thickness of 6 mm was investigated. Abrasion of shoulder was found during dissimilar friction stir welding and materials composed with intermetallic compound of Al12Mg17 and Al3Mg2 were found to envelope the rotational pin. Dissimilar joints were produced under the rotational speed of 600 rpm-800 rpm with welding speed of 40 mm/min and 60 mm/min and no cracks were found in the appearance of the joints. Sound weld was obtained at 600 rpm rotation speed and 40 mm/min welding speed. A simple bond interface was formed on the top of joint and an intermixed structure existed in the bottom of the joint. Complex flow pattern characterized by intercalation lamellaes was formed in the stir zone. Structure of Mg alloy presented different refined grains in different region of stir zone. The average grain size of Mg alloy was 5.4μm in stir zone near the Mg side and the minimum was about 2.8μm in stir zone near the Al side. Aluminum alloy was also refined in stir zone and the average grain size was about 3μm. Analysis of TEM and XRD revealed that intermetallic compound of Al12Mg17 was formed in stir zone. Microhardness measurement of the dissimilar welds presented an uneven distribution due to the complicated microstructure of the weld, and the maximum value of microhardness in the stir zone was twice higher than that of the base materials. The tensile fracture position located at the advancing side (aluminum side), where the hardness distribution of weld showed a sharp decrease from the stir zone to 5052 base material.
引文
[1]彭彩虹,彭伟平,李培杰.退火工艺对AZ31镁合金组织与性能的影响[J].特种铸造及有色合金, 2006, 26(10): 661-663.
    [2] Aghion E., Bronfin B.. Magnesium Alloys Development Towards the 21st Century [J]. Materials Science Forum, 2000, 350-351: 19-28.
    [3]陈振华.变形镁合金[M].北京:化学工业出版社, 2005..
    [4]王渠东,丁文江.镁合金研究开发现状与展望[J].世界有色金属, 2004(7): 8-12.
    [5]周万盛,姚君山.铝及铝合金的焊接[M].机械工业出版社.北京, 2006
    [6]刘静安,谢永生.铝合金材料的应用与技术开发[J].冶金工业出版社。北京,2004. 49-50.
    [7]刘倩,单忠德.镁合金在汽车工业中的应用现状与发展趋势[J].铸造技术. 2007, 28(12): 1668-1671.
    [8]孙景林,郭静.镁合金在汽车轻量化方面的应用[J].轻金属. 2008, 7: 58-61
    [9]李君峰,齐彦庆,李万锋. Al-Mg合金MIG焊焊接缺陷及预防措施[J].化工机械. 2002, 29(3): 161-163.
    [10]佟建国,任学平.镁合金搅拌摩擦焊接技术的研究进展[J].轻合金加工技术. 2008, 36(7):5-9.
    [11]冯吉才,王亚荣,张忠典.镁合金焊接技术的研究现状及应用[J].中国有色金属学报. 2005, 15(2): 165-178
    [12] Thomas W.M., Nicholas E.D., Needham J.C., et al. G.B. Patent Application No.9125978.8 (December 1991).
    [13] Dawes CJ, Thomas WM. Friction stir process welds aluminum alloys [J]. Welding J 1996, 75(3): 41–5.
    [14] Frigaard O, Grong, Midling OT. A process model for friction stir welding of age hardening aluminium alloys [J]. Metall Mater Trans A. 2001, 32:1189–200.
    [15] Liu G, Murr LE, Niou C-S, et al. Microstructural aspects of the friction-stir welding of 6061-T6 aluminum [J]. Scripta Mater. 1997, 37(3):355–61.
    [16] Mahoney MW, Rhodes CG, Flintoff JG, et al. Properties of friction-stir-welded 7075 T651 aluminum [J]. Metall Mater Trans A. 1998, 29(7): 1955–64.
    [17] Rhodes CG, Mahoney MW, Bingel WH, et al. Effect of friction stir welding on microstructure of 7075 aluminum [J]. Scripta Mater. 1997, 36(1): 69–75.Al–Mg alloy [J]. Scripta Materialia. 2008, 58: 1082–1085
    [32]张田仓,郭德伦,陈沁刚,等.铝合金搅拌摩擦焊技术研究[J].机械工程学报, 2002, 38(2): 12-15
    [33]马广超,林三宝,宋建岭,等. 5052铝合金薄板搅拌摩擦焊工艺[J].焊接. 2008, 10:39-42
    [34]王希靖,阿荣,郭瑞杰,等. LF2铝合金搅拌摩擦焊接接头的组织与性能[J].中国有色金属学报. 2004, 14(10): 1705-1710.
    [35] Yutaka S. Sato, Yusuke Sugiura, Yohei Shoji, et al. Post-weld formability of friction stir welded Al alloy 5052 [J]. Materials Science & Engineering A, 2004, 369: 138-143
    [36] Yutaka S. Sato, Fumie Yamashita, Yusuke Sugiura, et al. FIB-assisted TEM study of an oxide array in the root of a friction stir welded aluminum alloy [J]. Scripta Mater. 2004, 50: 365-369
    [37] Peel M., Steuwer A., Preuss M., et al. Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminum AA5083 friction stir welds [J]. Acta Mater 51(2003):4791-4801
    [38] Yutaka S. Sato, Mitsunori Urata, Hiroyuki Kokawa, et al. Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys [J]. Materials Science and Engineering A. 2003, 354: 298-305
    [39] Zhou Caizhi, Yang Xinqi, Luan Guohong. Investigation of microstructures and fatigue properties of friction stir welded Al-Mg alloy [J]. Materials Chemistry and Physics. 2006, 98: 285-290
    [40] Liu G., Murr L.E., Niou C-S., et al. Microstructural aspects of the friction stir welding of 6061-T6 aluminum [J]. Scripta Materialia. 1997, 37(3): 355-361
    [41] Cabibbo M., McQueen H.J., Evangelista E., et al. Microstructure and mechanical property studies of AA6056 friction stir welded plate [J]. Materials Science and Engineering A. 2007, 460-461: 86-94
    [42] Sullivan A., Robson J.D.. Microstructural properties of friction stir welded and post-weld heat-treated 7449 aluminium alloy thick plate [J]. Materials Science and Engineering A. 2008, 478: 351–360
    [43] Hassan Kh. A.A., Norman A.F., Price D.A., et al. Stability of nugget zone grain structures in high strength Al alloy friction stir welds during solution treatment [J]. Acta Materialia. 2003, 51: 1923–1936
    [44] Lee W.B., Yeon Y.M., Jung S.B.. The improvement of mechanical properties offriction-stir-welded A356 Al alloy [J]. Materials Science and Engineering A. 2003, 355: 154-159
    [45] Ma, Z.Y., Sharma S.R., Mishra R.S.. Effect of friction stir processing on the microstructure of cast A356 aluminum [J]. Materials Science and Engineering A. 2006, 433: 269–278
    [46] Xie G.M., Ma Z.Y., Geng L.. Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper [J]. Scripta Materialia. 2007, 57(2): 73-76
    [47] Cemal Meran. The joint properties of brass plates by friction stir welding [J]. Materials & Design. 2006, 27(9): 719-726
    [48] Lee WB, Lee CY, Chang WS, et al. Microstructural investigation of friction stir welded pure titanium [J]. Materials Letters. 2005, 59: 3315–8.
    [49] Hidetoshi Fujii, Sun Yufeng, Hideaki Kato, et al. Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti joints [J]. Materials Science and Engineering A. 2010, 527(15): 3386-3391
    [50] Seung Hwan C. Park, Yutaka S. Sato, Hiroyuki Kokawa, et al. Rapid formation of the sigma phase in 304 stainless steel during friction stir welding [J]. Scripta Materialia. 2003, 49: 1175–1180
    [51] Cao X., Jahazi M.. Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy [J]. Materials and Design. 2009, 30: 2033-2042
    [52] Chang C.I., Lee C.J., Huang J.C.. Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys [J]. Scripta Materialia. 2004, 51: 509–514
    [53]张华,林三宝,吴林,等.镁合金AZ31搅拌摩擦焊接头的微观组织[J].中国有色金属学报. 2003, 13(6): 1510-1513.
    [54] Wang Xunhong, Wang kuaishe. Microstructure and propertied of friction stir butt-welded AZ31 magnesium alloy [J]. Materials Science and Engineering A. 2006, 431:114-117
    [55] Afrin N., Chen D. L., Cao X., et al. Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy [J]. Materials Science and Engineering A. 2008, 472: 179-186.
    [56] Cavaliere P., De Marco P.P..Superplastic behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die cast [J]. Journal of Materials ProcessingTechnology. 2007, 184: 77–83
    [57]张华,林三宝,吴林,等. AZ31镁合金搅拌摩擦焊接头力学性能[J].焊接学报. 2003, 24(5): 65-68
    [58] Seung Hwan C. Park, Yutaka S. Sato, Hiroyuki Kokawa. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test [J]. Scripta Materialia. 2003, 49: 161–166
    [59] Yang J., Xiao B.L., Wang D., et al. Effects of heat input on tensile properties and fracture behavior of friction stir welded Mg–3Al–1Zn alloy [J]. Materials Science and Engineering A. 2010, 527: 708–714
    [60] Abbasi Gharacheh M., Kokabi A.H., Daneshi G.H., et al. The influence of the ratio of“rotational speed / traverse speed”on mechanical propertied of AZ31 friction stir welds [J]. International Journal of Machine Tools & Manufacture 46(2006):1983-1987
    [61]谢广明,马宗义,耿林.搅拌摩擦焊接参数对ZK60镁合金接头显微组织和力学性能的影响[J].金属学报. 2008, 44(6): 665-670
    [62] Xie. G. M., Ma. Z. Y., Geng. L., et al. Microstructural evolution and mechanical properties of friction stir welded Mg-Zn-Y-Zr alloy [J]. Materials Science and Engineering A. 2007, 471: 63-68
    [63] Dobriyal R.P., Dhindawa B.K., Muthukumaranb S., et al. Microstructure and properties of friction stir butt-welded AE42 magnesium alloy [J]. Materials Science and Engineering A. 2008, 477: 243–249
    [64] Johnson R. Friction stir welding of magnesium alloys [J]. Materials Science Forum. 2003,419-422: 365-370
    [65] Esparza J. A., Davis W. C., Murr L. E. Microstructure property studies in friction stir welded thixomolded magnesium alloy AM60 [J]. Journal of Materials Science. 2003, 38: 941-952
    [66] Zhang Datong, Suzuki Mayumi, Maruyama Kouichi. Microstructural evolution of a heat-resistant magnesium alloy due to friction stir welding [J]. Scripta Materialia. 2005, 52: 899-903
    [67]刘中青,邸斌.异种材料的焊接[M].科学出版社, 1995,北京
    [68]何康生,曹雄夫.异种金属焊接[M].机械工业出版社, 1986,北京
    [69]李亚江,王娟,刘鹏.异种难焊材料的焊接及应用[M].化学工业出版社, 2004,北京
    [70]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].科学出版社, 2007,北京
    [71]王恒,刘黎明,柳绪静.镁铝异种材料TIG焊接接头扩散行为分析[J].焊接学报. 2005, 26(7): 5-8
    [72] Cavaliere P., De Santis A., Panella F., et al. Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding [J]. Materials and Design. 2009, 30: 609–616
    [73] Santella M.L., Engstrom T., Storjohann D., et al. Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356 [J]. Scripta Materialia. 2005, 53: 201–206
    [74] Li Ying, Murr L.E., McClure J.C.. Flow visualization and residual microstructures associated with the friction-stir welding of 2024 aluminum to 6061 aluminum [J]. Materials Science and Engineering A. 1999, 271: 213–223
    [75] Scialpi A., De Giorgi M., De Filippis L.A.C., et al. Mechanical analysis of ultra-thin friction stir welding joined sheets with dissimilar and similar materials [J]. Materials and Design. 2008, 29: 928–936
    [76] Moreira P.M.G.P., Santos T., Tavares S.M.O., et al. Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6 [J]. Materials and Design. 2009, 30: 180–187
    [77] Leitao C., Leal R.M., Rodrigues D.M., et al. Mechanical behaviour of similar and dissimilar AA5182-H111 and AA6016-T4 thin friction stir welds [J]. Materials and Design. 2009, 30: 101–108
    [78] Ouyang Jiahu, Eswar Yarrapareddy, Radovan Kovacevic. Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper [J]. Journal of Materials Processing Technology. 2006, 172: 110–122
    [79] Saeid T., Abdollah-zadeh A., Sazgari B.. Weldability and mechanical properties of dissimilar aluminum-copper lap joints made by friction stir welding [J]. Journal of Alloys and Compounds. 2010, 490(1-2): 652-655
    [80] Abdollah-Zadeh A., Saeid T., Sazgari B.. Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints [J]. Journal of Alloys and Compounds. 2008, 460: 535–538
    [81] Chen Y.C.. Nakata K.. Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys [J]. Materials and Design. 2008, 72: 132–138
    [82] Geiger M., Micari F., Merklein M., et al. Friction Stir Knead Welding of steel aluminium butt joints [J]. International Journal of Machine Tools & Manufacture. 2008, 48: 515–521
    [83] Huseyin Uzun, Claudio Dalle Donne, Alberto Argagnotto, et al. Friction stir welding of dissimilar Al 6013-T4 To X5CrNi18-10 stainless steel. Materials and Design. 2005, 26: 41–46
    [84] Lee Won-Bae, Martin Schmuecker, Ulises Alfaro Mercardo, et al. Interfacial reaction in steel–aluminum joints made by friction stir welding [J]. Scripta Materialia. 2006, 55: 355–358
    [85] Takehiko Watanabe. Hirofumi Takayama. Atsushi Yanagisawa. Joining of aluminum alloy to steel by friction stir welding [J]. Journal of Materials Processing Technology. 2006, 178: 342–349
    [86] Kwon Y J, Shigematsu I, Saito N. Dissimilar friction stir welding between magnesium and aluminum alloys [J]. Materials Letters, 2008, 62:3827-3829.
    [87] Ichinori Shigematsu. Yong-Jai Kwon. Naobumi Saito. Dissimilar friction stir welding for tailor-welded blanks of aluminum and magnesium alloys [J]. Materials Transactions. 2009, 50(1): 197-203
    [88] Naotsugu Yamamoto, Jinsun Liao, Shuhei Watanabe, et al. Effect of intermetallic compound layer on tensile strength of dissimilar friction-stir weld of a high strength Mg alloy and Al alloy [J]. Materials Transactions. 2009, 50(12): 2833-2838
    [89] Yan Jiu-chun, Xu Zhi-wu, Li Zhi-yuan, et al. Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring [J]. Scripta Mater, 2005, 53:585-589
    [90] Sato Y S, Park S H C, Michiuchi M, et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys [J]. Scripta Mater, 2004, 50:1233-1236.
    [91] Chen Y C, Nakata K. Friction stir lap joining aluminum and magnesium alloys [J]. Scripta Mater, 2008, 58: 433-436
    [92] Kostka A, Coelho R S, dos Santos J, et al. Microstructure of friction stir welding of aluminum alloy to magnesium alloy [J]. Scripta Mater. 2009, 60: 953-956.
    [93] Somasekharan A C, Murr L E. Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy [J]. Materials Characterization, 2004, 52:49-64.
    [94] Commin L., Dumont M., Masse J.-E., et al. Friction stir welding of AZ31 magnesiumalloy rolled sheets: Influence of processing parameters [J]. Acta Materialia. 2009, 57: 326–334
    [95] Chang C.I., Du X.H., Huang J.C.. Achieving ultrafine size in Mg-Al-Zn alloy by friction stir processing [J]. Scripta Mater. 2007; 57: 209-212
    [96] Genevois C., Deschamps A., Denquin A., et al. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds [J]. Acta Materialia. 2005, 53: 2447-2458
    [97]杨素媛,张保垒.厚板AZ31镁合金搅拌摩擦焊焊接接头的组织与性能[J].焊接学报. 2009, 30(5): 1-5
    [98] Woo W., Choo H., Brown D. W., et al. Texture variation and its influence on the tensile behavior of a friction-stir processed magnesium alloy [J]. Scripta Materialia. 2006, 54:1859-1864
    [99] Prangnell P. B., Heason C. P. Grain structure formation during friction stir welding observed by the‘stop action technique’[J]. Acta Materialia. 2005, 53: 3179-3192
    [100] Fonda R.W.. Bingert b.J.F. Colligan K.J.. Development of grain structure during friction stir welding [J]. Scripta Materialia. 2004, 51: 243–248
    [101] Suhuddin U. F. H. R., Mironov S., Sato Y. S., et al. Grain structure evolution during friction stir welding of AZ31 magnesium alloy. Acta Mater. 2009; 57: 5406-5418.
    [102] Woo W., Choo H., Prime M. B., et al. Microstructure, texture and residual stress in a friction stir processed AZ31B magnesium alloy [J]. Acta Mater. 2008; 56: 1701-1711
    [103] Chang C. I., Du X. H., Huang J. C.. Producing nanograined microstructure in Mg-Al-Zn alloy by two-step friction stir processing [J]. Scripta Mater. 2008; 59: 356-359
    [104] Sun Yufeng, Hidetoshi Fujii, Yutaka Takadaa, et al. Effect of initial grain size on the joint properties of friction stir welded aluminum [J]. Materials Science and Engineering A. 2009, 527(1-2): 317-321
    [105]张昭,张洪武.焊接参数对搅拌摩擦焊搅拌区材料融合的影响[J],金属学报. 2007, 43(3): 321-326
    [106] Hwang Yeong-Maw, Kang Zong-Wei, Chiou Yuang-Cherng, et al. Experimental study on temperature distribution withion the workpiece during friction stir welding of aluminum alloys [J]. International Journal of Machine Tools & Manufacture. 2008, 48: 778–787
    [107] Kumar K., Satish V. Kailas. The role of friction stir welding tool on material flow and weld formation [J]. Materials Science and Engineering A. 2008, 485:367-374
    [108] Cui G.R., Ma Z.Y., Li S.X.. Periodical plastic flow pattern in friction stir processed Al–Mg alloy. Scripta Materialia. 2008, 58: 1082–1085
    [109] Sutton M A, Yang B, A. Reynolds P, et al. Microstructural studies of friction stir welds in 2024-T3 aluminum [J]. Materials Sciences and Engineering A, 2002, 323: 160-166
    [110] Krishnan K N. On the formation of onion rings in friction stir welds [J]. Materials Sciences and Engineering A, 2002, 327: 246-251
    [111]王希靖,达朝炳,李晶,等.搅拌摩擦焊缝中的洋葱环形成分析[J].中国有色金属学报. 2006, 16(10): 1672-1677
    [112] Yang Bangcheng, Yan Junhui, Sutton Michael A, et al. Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: Part I. Metallurgical studies [J]. Materials Science and Engineering A. 2004, 364:66-74

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700