氧化铝/莫来石复合泡沫陶瓷的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泡沫陶瓷是一种特殊工艺制作的开孔率高达70%~90%并具有三维立体网络骨架结构和贯通气孔的新型多孔陶瓷材料,具有化学性能稳定、强度高、耐高温、抗热震性好、比表面积大等诸多优点。其中的氧化铝/莫来石复合泡沫陶瓷材料以制备成本低、使用功效高而受到业内广泛关注。
     针对普通粘土质泡沫陶瓷强度较低、抗热震性能差、适用范围小等缺点;单组分SiC、AlN、ZrO_2等泡沫陶瓷烧结温度高、成本高昂等现状,作者以氧化铝/莫来石复合泡沫陶瓷的制备为研究对象,采用有机泡沫浸渍法制备了氧化铝/莫来石复合泡沫陶瓷,系统研究了各种因素对该材料性能的影响,获得了如下研究成果。
     (1)有机泡沫前驱体预处理能显著提高浸浆量。实验选用聚氨酯海绵为有机前驱体,聚氨酯海绵经碱处理后破坏了聚氨酯海绵的网络间膜,同时也增加了茎的粗糙度,一定程度上改善了浸浆性能;而经过碱处理再经CMC改性的海绵与浆料润湿性得到了改善,聚氨酯海绵的浸浆量增加。
     (2)研究发现,在浆料中加入适当的分散剂可获得高固相含量、均匀稳定、流变性良好、适于浸渍的浆料。实验结果表明,浆料中加入质量分数为0.4%的分散剂聚丙烯酸胺获得的浆料性能最优;固含量为68.4%~69.4%时最适合浸渍;对辊间距与前驱体浸浆量的关系紧密,较佳的d/h(其中d为对辊间距,h为海绵高度)控制范围为9.45%~10.35%。
     (3)微波干燥提高了复合泡沫陶瓷的抗压强度和成品率。实验采用微波干燥方式有效地减少了椭圆变形,增加了浸浆量的限制范围,因此,泡沫陶瓷制品的抗压强度和成品率得到提高,同时提高了干燥效率,节约了能源。
     (4)通过对不同配方陶瓷烧结温度的研究,分析得到烧结过程中陶瓷物相的演变,同时考察了烧结温度对陶瓷性能的影响,得出配方B为最佳配方;通过对配方B陶瓷不同烧结保温时间的研究,得到了保温时间对复合泡沫陶瓷性能的影响,实验确定复合陶瓷较佳的烧结温度为1500℃,保温时间为90min,该工艺条件制备的复合泡沫陶瓷开孔率达到81.2%,抗压强度达到1.21MPa,抗热震性能(D_(st))为0.52。
     (5)研究发现,添加Y_2O_3、CaO不仅能有效促进氧化铝/莫来石复合泡沫陶瓷材料的烧结,提高陶瓷致密度,而且还能够显著提高复合泡沫陶瓷的抗压强度和抗热震性能。
     采用上述方法所制备的复合泡沫陶瓷材料不仅能较好地解决普通泡沫陶瓷强度低,抗热震性能差的问题,而且制备成本低,绿色环保,具有较好的工业应用前景。
Ceramic foam with high porosity (70%-90%)and a structure of open cells in a three-dimensional network is a new type porous ceramics material made by special technique. It has many good performances such as good chemical stability, high intensity, high temperature resistance, good thermal shock resistance, large specific surface area, and so on. Because of the low cost and high efficacy, alumina-mullite ceramic foams has been widely concerned in the industry.
     According to those disadvantages of ordinary clayey foam ceramics, such as low strength, low thermal shock resistance, and narrow scope of application, and the high production temperature and high cost of ceramic foams which have single component such as SiC, AlN and ZrO_2, We carried on the study on the preparation of alumina-mullite ceramic foams with polymer-sponge method, gave a systematic research on the effect of different factors on the performance of material. The research results are as follow:
     (1) Pre-treatment of polymer foam increased the grouting-absorption capacity of polymeric sponge. Choose the polymeric sponge as the precursor of ceramic foams. Through alkali treatment, the film of polymeric sponge between stalks was destroyed, and the roughness of the polymeric sponge surface roughness can be increased. And then with CMC modification added, the wetting ability and grouting-absorption capacity of polymeric sponge were increased.
     (2) Through adding appropriate dispersant, we can obtain the slurry with high solid content, good equality and stabilization, and excellent rheology. It was found that the best aqueous slurry can be obtained by adding 0.4% quality content PMAA-NH_4. And the slurry was most suitable for the impregnation when solid content was between 68.4%-69.4%. The gap of two-parallel rolls has a closed relationship with the grouting-absorption capacity of precursor. The best d/h(d- the distance of the gap of two-parallel rolls, h-height of polymeric sponge) was 9.45%-10.35%.
     (3) The compressive strength and yield of complex ceramic foams was increased by microwave drying method. By microwave drying method, elliptical deformation was reduced effectively and the limit of grouting-absorption capacity was enlarged. So the compressive strength and yield of ceramic foams was increased. Moreover it increased the drying efficiency, and saved the energy.
     (4) According to the research on the sintering temperature of ceramic with different recipe, the evolution of ceramic phase was studied. Through observing the effect of sintering temperature on ceramic performance, the best recipe B was finally confirmed. By studying on different sinter-holding time with recipe B, the influence of holding time on ceramic foam performance was obtained. The optimum sintering temperature of alumina-mullite ceramic foam was determined as 1500℃, and the optimum holding time was 90min. Under this condition, the porosity of alumina-mullite ceramic foam product was increase to 81.2%, the compressive strength was 1.21Mpa, and the thermal shock resistance (D_(st)) was 0.52.
     (5) It was found that additives Y_2O_3 and CaO had a promoting effect on the sintering and density improving of alumina-mullite ceramic foams. Moreover, they could improve the compressive strength and thermal shock resistance greatly.
     Prepare composite ceramic foam with above method can not only solve the problem of low strength and thermal shock resistance, but also reduce the cost and be environmental. It has good prospect for industrial application.
引文
[1]周竹发,王淑梅,吴铭敏.网眼陶瓷凝胶成型工艺条件研究[J].无机材料学报,2008,23(1):203-208
    [2]刘阳,宋学君,孙挺.泡沫陶瓷的绿色环保功能[J].中国陶瓷工业,2008,15(4):28-30
    [3]Colombo P.Ceramic foams:fabrication,properties and applications[J].Key Engineering Materials,2002,17(3):206-213
    [4]靳洪允.泡沫陶瓷材料的研究进展[J].陶瓷科学艺术,2005,11(4):33-37
    [5]张宇民,刘殿魁,韩杰才等.多孔陶瓷材料制备工艺进展[J].兵器材料科学与工程,2002,25(2):62-67
    [6]任雪潭.泡沫陶瓷制备工艺的探讨[J].材料科学与工程,2001,19(1):102-108
    [7]K.W.SUH.Handbook of Polymeric Foams and Foam Technology[M].Munich:Hanser Press,1991.22-50
    [8]J.N.ISRAELACHVILI.Intermolecular and Surface Forces[M].London:Academic Press,1991.33-44
    [9]刘辉,孙伟等.多孔陶瓷材料的应用及发展前景[J].矿业工程,2003,26(6):68-71
    [10]Zhu Xinwen,Jiang Dongliang,Tan Shouhong,et al.Improvement in the strut thickness of reticulated porous ceramics[J].J Am Ceram Soc,2001,84(7):1654-1656
    [11]马文,沈卫平,董红英等.多孔陶瓷的制造工艺及进展[J].粉末冶金技术,2002,20(6):365-368
    [12]陈哲,单外娥.泡沫陶瓷的研究现状及展望[J].十堰职业技术学院学报,2003,16(2):53-55
    [13]朱新文,江东亮,谭寿洪等.孔结构可控的网眼多孔陶瓷的制备[J].无机材料学报,2002,17(1):79-85
    [14]赵金龙.几种自蔓延高温合成新技术及其应用基础研究:[博士论文].云南昆明:昆明工学院,2001
    [15]任雪潭.泡沫陶瓷制备工艺的探讨[J].材料科学与工程,2001,19(1):102-108
    [16]Colombo P.Ceramic foams:fabrication,properties and applications[J].Key Engineering Materials,2002,20(2):206-213
    [17]朱时珍,赵振波.多孔陶瓷材料的制备技术[J].材料科学与工程,1996,14(3):33-39
    [18]K.Prabhlaran,Anand Melkeri.Preparation of macroporous alumina ceramics using wheat particles as gelling and pore forming agent[J].Ceramics International,2007,1(33):77-81
    [19]咨文华.溶胶-凝胶法制备多孔陶瓷的研究进展[J].中国陶瓷,2003,39(4):14-18
    [20]朱新文,江东亮.有机泡沫浸渍工艺--种经济适用的多孔陶瓷制备工艺[J].硅酸盐通报,2000,1(3):45-51
    [21]吴庆祝,刘永先,李福功等.泡沫陶瓷及其应用[J].全国性建材科技期刊--陶瓷,2002,1(2):12-14
    [22]P.Sepulveda,J.G.P.Binner.Processing of cellular ceramics by foaming and in situ polymerization of organic monomers[J].Journal of the European Ceramic Society,1999,2(19):2059-2066
    [23]R.H Tuffias R.B.Kaplan.Refractory ceramic Foams-A Novel New High Temperature Structure[J].Am.Ceram.Soc.Bulletin,1992,70(6):1025-1029
    [24]房文斌,耿耀宏,安阁英等.烧结制备泡沫陶瓷过滤器工艺的优化[J].铸造,2002,5(61):349-351
    [25]Grote R E.Use of ceramic foam filters in the production of steel casting Proceedings of AFS seminar Filtration of Ferrous Metals[J].Journal of the European Ceramic Society,1985,22(1):13-14
    [26]段曦东.多孔陶瓷的制备、性能及应用[J].陶瓷研究,1999,14(3):12-17
    [27]T.Ota,M.Takahashi et al.Biomimetic process for producing SiC wood[J].J.Am.Ceram.Soc,1995,78(12):3409
    [28]T.Ota,M.Imaeda,H.Takase,M.Kobayashi,N.Kinoshita,T.Hirashita,H.Miyazaki,and Y.Hikichi.Porous titania ceramic prepared by mimicking silicified wood[J].J.Am.Ceram.Soc,2000,83(6):1521
    [29]Q.Yang and T.Troczynski.Dispersion of alumina and silicon carbide powders in alumina sol[J].J.Am.Ceram.Soc,1999,82(7):1928
    [30]宋侠泰,刘开琪.特种陶瓷与耐火材料[M].北京:冶金工业出版社,2004.136-141
    [31]郭晓倬,董建新,胡尧和等.高温合金冶炼过程中泡沫陶瓷过滤器的作用[J].北京科技大学学报,1999,21(3):245-247
    [32]吴庆祝.汽车柴油机排气颗粒泡沫陶瓷过滤器的研制[J].河北陶瓷,1997, 25(3):3-8
    [33]姚秀歌,潭寿洪,江东亮.多孔羟基磷灰石的制备[J].无机材料学报,2000,15(3):467-472
    [34]Peter Greil.Advanced Engineering Ceramics[J].Adv Mater,2002,14(10):709-716
    [35]Mary Anne Alvin,Thomas E.Lippert,Jay E.Lane.Assessment of Porous Ceramic Materials for Hot Gas Filtration Appilcations[J].Am.Ceram.Soc.Bul,1991,70(9):1941-1948
    [36]Katsuki,H.,Furuta,S.,Ichinose,H.and Nakao,H.Preparation and some properties of porous ceramic sheet composed of needle-like mullite[J].J.Ceram.Soc.Jpn.,1988,96(11):1081-1086
    [37]Brindley,G.M,Nakahira,M.The kaolinite-mullite reaction seres Ⅰ-Ⅲ[J].J.Am.Ceram.Soc.,1959,42(7):311-324
    [38]Sonypadak,B.,Sadkaya,M.,Aksay,I.A.Spinel-phase formation during 980°exothermic reaction in the kaolinite-to-mullite reaction seres[J].J.Am.Ceram.Soc.,1990,70(11):837-842
    [39]Liu,K.C.,Zhomas,G.,Caballero,A.,Moya,J.S.and de Aza,S.Mullite formation in kaolinite-Al_2O_3[J].Acta Metall.Mater.,1994,42(2):489-495
    [40]Hildebrand,T.and R uegsegger,P.Structure model index-a new model to describe remodelling of trabecular bone[J].Bone,1996,19(75):143-146
    [41]叶荣茂,王惠光.铸钢用泡沫陶瓷过滤器的研制与应用[J].铸造,1993,42(10):19-22
    [42]贾天敏,安阁英.泡沫陶瓷过滤器净化原理及含过滤器浇注系统的设计[J].铸造技术,1998,1(5):20-23
    [43]房文斌,耿耀宏,叶荣茂.泡沫陶瓷过滤器过滤净化液态金属的机制[J].铸造,2000,50(8):472-475
    [44]Binner,J.G.P.Production and properties of low density engineering ceramic foams[J].Brit.Ceram.Trans.,1997,96(6):247-249
    [45]Cemail Aksel.The role of fine alumina and mullite particles on the thermomechanical behaviour of alumina-mullite refractory materials[J].Materials Letters,2002,57(2):708-714
    [46]王宏志,高镰,归林华等.晶内型Al_2O_3-SiC纳米复合陶瓷的制备[J].无机材料学报,1997,12(5):671-674
    [47]周秋生.碳化硅/莫来石/氧化铝复合陶瓷的研制:[博士学位论文].湖南长沙: 中南大学,2001
    [48]白佳海.莫来石/SiC复相多孔陶瓷的制备及性能研究[J].硅酸盐通报,2003,25(6):91-94
    [49]李爱菊,伊衍升,龚红宇.TiN、AlN弥散相强韧化Al_2O_3基复合材料的工艺研究[J].材料科学与工程学报,2003,21(4):524-527
    [50]Belmonte M,Nieto MI,Osendi MI,Miranzo P.Influence of the SiC grain size on the wear behaviour of Al_2O_3/SiC composites[J].J Eur Ceram Soc,2006,26(7):1273-1279
    [51]Ferroni LP,Pezzotti G.Evidence for bulk residual stress strengthening in Al_2O_3/SiC nanocomposites[J].J Am Ceram Soc,2002,85(8):2033-2038
    [52]Taktak S,Baspinar MS.Wear and friction behavior of alumina/mullite composite by sol-gel infiltration technique[J].Mater Des,2005,26(5):459-464
    [53]Zhang FC,Luo HH,Roberts SG.Mechanical properties and microstructure of Al_2O_3/mullite composite[J].J Mater Sci,2007,42(16):6798-6802
    [54]Luo HH,Zhang FC,Roberts SG/ Wear resistance of reaction sintered alumina/mullite composites[J].Mater Sci Eng A,2008,478(1-2):270-275
    [55]Root JH,Sullivan JD,Marple BR.Residual-stress in alumina-mullite composites[J].J Am Ceram Soc,1991,74(3):57-583
    [56]Merino JOL,Todd RI.Thermal microstress measurements in Al_2O_3/SiC nanocomposites by Cr~(3+) fluorescence microscopy[J].J Eur Ceram Soc,2003,23(11):1779-1783
    [57]Kitaoka S,Kawashima N,Komatsubara Y,Yamaguchi A,Suzuki H.Improved filtration performance of continuous alumina-fiber reinforced mullite composites for hot-gas cleaning[J].J Am Ceram Soc,2005,88(1):45-50
    [58]Sarrafi NGR,Coyle TW.Temperature dependence of crack wake bridging stresses in a SiC-whisker-reinforced alumina[J].Acta Mater,2001,49(17):3353-3363
    [59]Cannillo V,Pellacani GC,Leonelli C,Boccaccini AR.Numerical modelling of the fracture behaviour of a glass matrix composite reinforced with alumina platelets[J].Comp Part A,2003,34(1):43-51
    [60]Todd RI,Bourke MAM,Borsa CE,Brook BJ.Neutron diffraction measurements of residual stresses in alumina/SiC nanocomposites[J].Acta Mater,1997,45(4):1791-1800
    [61]Y.J.L in,L.J.C hen.Oxidation of SiC powders in SiC/alumina/zirconia compacts[J].Ceram.Int,2000,26(2):593-598
    [62]J.Wang,C.B.Portion,P.M.Marquis.Mullitization Al_2O_3-SiC nanocomposite:A case study of high temperature oxidation[J].Scripta.Mater.,1996,34(3):935-940
    [63]程本军,郭兴忠,杨辉.刚玉莫来石复相陶瓷力学性能的影响因素分析[J].材料科学与工程学报,2004,23(5):552-555
    [64]沈慧英,于岩.烧结温度对铝厂污泥研制的莫来石刚玉复相材料晶相结构的影响[J].陶瓷学报,2006,27(3):264-267
    [65]罗海辉,张福,成张明.氧化铝/莫来石复合陶瓷断裂行为研究[J].陶瓷学报,2006,27(2):161-166
    [66]Hull D.An introduction to composite materials[M].Cambrige:Cambridge University Press,1981.110-116
    [67]王零森,黄培云.特种陶瓷[M].中南大学出版社,湖南长沙,2005.20-80.
    [68]Russel W B,savilleD.A.,Schowallter W R.Colloidal Dispersions[M].Cambddge University Press,Cambirdge.U.K,1994,192-233
    [69]韩永生,李建保,魏强民.多孔陶瓷材料应用及制备的研究进展[J].材料导报,2002,16(3):26-28
    [70]R.Moreno.The Role of slip Additive in Tape-casting Technology:Partl-Solvents and Dispersants[J].Ceramic Bulletin,1992,69(10):1521-1531
    [71]Rodrigo Moreno.The Role of slip Additive in Tape-casting Technology:Part2-Binders and Plasticizers[J].Ceramic Bulletin,1992,69(11):1647-1657
    [72]季福元.聚合物分散剂在特种陶瓷浆料制备中的应用[J].江苏陶瓷,2000,33(4):16-17
    [73]T.F.Tadros,Polymer,J.Steric.Stabilization and Flocculation by polymers[J].1991,23(5):683-696
    [74]王安英.分散剂JA-281在高温陶瓷料浆中的应用[J].陶瓷工程,1997,31(5):16-17
    [75]戴肖南,侯万国.PH值对Mg-AI-MMH-高岭土分散体系触变性的影响[J].中国科学,2001,31(6):438-443
    [76]杨化桂,张辉.剪切稀化悬浮体触变性的研究[J].高校化学工程学报,1999,13(6):506-510
    [77]曾令可,王慧,罗民华等.多孔功能陶瓷制备与应用[M].北京:化工工业出版社,2006.52-90
    [78]俞康泰.陶瓷添加剂应用技术[M].北京:化学工业出版社,2006.6-39
    [79]曹大力,周静一,尹国利等.铸造用泡沫陶瓷过滤器[J].铸造,2005,54(3): 292-295
    [80]冯胜山,陈巨乔.泡沫陶瓷过滤器的研究现状和发展趋势[J].耐火材料,2002,36(4):235-239
    [81]谢高峰,戴斌煜,商景利等.铸钢用氧化铝泡沫陶瓷过滤器的研究现状[J].铸造技术.2008,29(4):483-486
    [82]Pradhan,M.S.,Sarma,D.S.H.and Khilar,K.C.Stability of aqueous foams with polymer additives.Ⅱ.Effects of temperature[J].J.Colloid Interf.Sci.,1990,139(2):519-526
    [83]Zhang,F.Z.,Takeaki,K.,Fuji,M.and Takahashi,M.Gelcasting fabricationof porous ceramics using a continuous process[J].J.Eur.Ceram.Soc.,2006,26(1):667-671
    [84]Jono,K.,Fuji,M.and Takahashi,M.Porous ceramics for building materials fabricated by in situ solidification method using natural polymer and waste resources[J].J.Ceram.Soc.Jpn.,2004,112(5):138-143
    [85]Sepulveda,P.and Binner,J.G.Processing of cellular ceramics by foaming and in situ polymerization of organic monomers[J].J.Eur.Ceram.Soc.,1999,19(2):2059-2066
    [86]Montanaro,L.,Jorand,Y.,Fantozzi,G.and Negro,A.Ceramic foams by powder processing[J].J.Eur.Ceram.Soc.,1998,18(3):1339-1350
    [87]Ortega,F.S.,Valenzuela,F.A.O.,Scuracchio,C.H.and Pandolfelli,V.C.Alternative gelling agents for the gelcasting of ceramic foams[J].J.Eur.Ceramic.Soc.,2003,23(1):75-80
    [88]Basel Al-Yousfi,P.E.Cleaner production for sustainable industrial development:concept and applications[J].Prac.Period.Hazard.,Toxic,Radioactive Waste Manage,2004,8(4):265-273
    [89]Sharma,M.,Vyas,P.Identification and quantification of environmental issues of aging coal-based power plant-case study[J].J.Energy Eng.,2001,127(3):59-73
    [90]Pignolet,G.,Celeste,A.,Deckard,M.and Esperet,J.P.Space solar power:environmental questions and future studies[J].J.Aerospace Eng.,2001,14(2):72-76
    [91]Chadderton,R.A.Should engineers counteract environmental extremism[J].J.Prof.Iss.Eng.Educ.Prac.,1995,121(2):79-84
    [92]徐燕莉.表面活性剂的功能[M].北京:化学工业出版社,2000.361-364
    [93]朱新文.网眼多孔陶瓷浸渍成型工艺的研究[J].无机材料学报,2001,16(3): 1144-1149
    [94]Fuji,M.,Shiroki,Y.,Menchavez,R.L.,Takegami,H.,Takahashi,M.,Suzuki,H.,Izuhara,S.and Yokoyama,T.Fabrication of cordierite filter by in-situ solidification for high tempamtttre dust collection[J].Powder Technol.,2007,172(1):57-62
    [95]Yong Sheng Han,Jian Bao Li,Yong Jun Chen.Fabrication of bimodal porous alumina ceramics[J].Materials Research bulletin,2003,38(2):373-379
    [96]龙波.三维通孔铁基泡沫的制备及其性能研究:[硕士学位论文].湖南长沙:中南大学,2006
    [97]Zievers,J.F.,Eggerstedt,P.Porous ceramics for gas filtration[J].Am.Ceram.Bull.,1991,70(1):108-111
    [98]V.A.Yakushin,N.P.Zhmud,U.K.Stirna.Physicomechanical characteristics of spray-on rigid polyurethane foams at normal and low temperatures[J].Mechanics of Composite Materials,2002,38(3):273-280
    [99]Torrecillas R,Calderon J,MO YAJS.Suitability of mullite for high temperature applications[J].J Eur Ceram Soc,1999,19(8):2519-2527
    [100]李庭寿,钟香崇,孙庚辰.莫来石-刚玉系材料的高温蠕变性能研究[J].硅酸盐通报,1989,8(3):1-8
    [101]Sacks M.D,Pask J.A.Sintering of mullite-containing materials:1.Effect of composition[J].J Am Ceram Soc,1982,65(1):65-72
    [102]Cemall A.The effect of mullite on the mechanical properties and thermal shock behaviour of alumina-mullite refractorymaterials[J].Ceramics International,2003,29:183-188
    [103]张效峰,张秀琴,司全京.刚玉莫来石推板的研制与应用[J].耐火材料,1999,33(1):41-42
    [104]Cemail A.The role of fine alumina and mullite particles on the thermomechanical behaviour of alumina-mullite ref rectory materials[J].Materials Letters,2002,57(2):708-714
    [105]Mazdiyasni K S,Brown L M.Synthesis and mechanical properties of stoichiometric aluminium silicate(mullite)[J].J Am Ceram Soc,1972,55(11):548-552
    [106]刘康时.陶瓷工艺原理[M].广州:华南理工大学出版社,1990.23-46.
    [107]程本军,郭兴忠,杨辉.刚玉莫来石复相陶瓷力学性能的影响因素分析[J].材料科学与工程学报,23(5):552-555
    [108]孙旭东,李继光,张民等.Al_2O_3/SiC纳米陶瓷复合材料的强化机理[J].金属学报,1999,2(35):879-882
    [109]H.X.Peng,Z.Fan,J.R.G.Evans,J.J.C.Busfield.Microstructure of ceramic foams[J].Journal of the European Ceramic Society,2000,20(7):807-813
    [110]J.L.Shi,Z.L.Lu,J.K,Guo.Model analysis of boundary residual stress and its effect on toughness in thin boundary layered yttria- stablized tetragonal zirconia polycrystalline ceramics[J].J.Mater.Res.,2000,5(15):727-732
    [111]M.Taya,S.Hayashi,A.S.Kobayashi.Toughening of a particulate- reinforced ceramic- matrix composite by thermal residual stress[J].J.Am.Ceram.Soc.,1990,3(73):1382-139
    [112]N.C.Biswas,S.P.Chaudhuri.Comparative study of zirconia-mullite and alumina-zirconia composites[J],Bull.Mater.Sci.,1999,22(1):37-39
    [113]D.P.H.Hasselman.Thermal stress resistance parameters for brittle refractory ceramics:a compendium[J].Am.Ceram.Soc.Bull.,1970,49(12):1033-1038
    [114]P.S.Turner,Thermal-expansion stresses in reinforced plastics[J].J.Res.Natl.Bur.Stand.,1946,37(4):239-243
    [115]李爱菊,尹衍升,龚红宇.TiN、AlN弥散相强韧化Al_2O_3基复合材料的工艺研究[J].材料科学与工程学报,2003,21(4):524-527
    [116]李景国,高镰,郭景坤.TiN-Al_2O_3纳米复合材料的力学性能和导电性能[J].无机材料学报,2002,17(6):1215-1219
    [117]Peigney A.Carbon nanoutubes in novel ceramic matrixnanocomposites[J].Ceramics Inierational,2000,2(26):677-863
    [118]Tartai J,Messing G L.Anisotopic grain growth in α-Fe_2O_3-doped alumina[J].Euron Ceram Soc.,1997,17(3):719-725
    [119]Taktak S,Baspinar MS.Wear and friction behavior of alumina/mullite composite by sol-gel infiltration technique[J].Mater Des,2005,26(5):459-641
    [120]Zhang FC,Luo HH,Roberts SG.Mechanical properties and microstructure of Al_2O_3/mullite composite[J].J Mater Sci.,2007,42(16):6798-8020
    [121]Cannillo V,Pellacani GC,Leonelli C,Boccaccini AR.Numerical modelling of the fracture behaviour of a glass matrix composite reinforced with alumina platelets[J].Comp Part A,2003,34(1):43-51
    [122]穆柏春.陶瓷材料的强韧化[M].北京:冶金工业出版社,2002.238-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700