高强耐热Al-Si活塞合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高Al-Si多元活塞合金的高温强度,本文采用铸造合金化的方法在工业试验条件下研究了Mn、RE、Ni、Fe等几种微合金化、合金化元素对Al-Si多元活塞合金的高温强化效果,并探索了挤压铸造对活塞合金力学性能的影响。利用扫描电镜(SEM)、光学显微镜(OM)、电子探针(EPMA)、X射线衍射仪(XRD)、差式扫描量热仪(DSC)等手段,分析了所制备各合金的微观组织、相组成与种类及一些合金的凝固过程,并对各活塞合金的高温强化机理进行了探讨。
     分别研究了微量Mn元素和微量混合RE对ZL109活塞合金的高温强化效果。发现随着合金中Mn含量的增加,ZL109合金中会出现含Mn化合相的演变。其中,加入的微量Mn元素当大多数存在于树枝状的Al_9FeNi耐热相中时其具有最佳的高温强化效果,再进一步增加Mn含量会导致形态很差的一种板片状含Mn相生成,使高温强化效果变差。研究发现微量混合RE也可对Al-Si多元活塞合金起到微合金化作用,明显提高合金的高温抗拉强度。微量富铈混合RE的加入可使得合金中AlNiCu耐热相的数量增多,体积分数增大,从而起到热强化效用。此外,混合RE的加入还可在合金中形成一种新的颗粒状富RE化合相。
     探索了挤压铸造方法对Al-Si多元活塞合金力学性能与显微组织的影响。试验发现挤压铸造可明显提高活塞合金的室温力学性能,但对高温抗拉强度的提高作用不大,与重力铸造相比甚至降低合金的高温抗拉强度。挤压铸造可使合金中的共晶Si呈粗棒或块状分布,而不再呈重力铸造合金中典型的针片状,从而降低了其割裂α-Al基体的不利影响。此外还发现,挤压铸造易促使活塞合金中的Al_9FeNi化合相呈粗大状析出,对合金的高温强度造成不利影响。
     在A牌号高性能活塞合金的基础上进行了Ni元素的进一步强化探索。试验发现,随着合金中Ni含量的增加,合金组织中的主要耐热相发生演变:从网状的Al_3CuNi演变为环絮状且呈封闭或半封闭态分布在α-Al枝晶晶界上的Al_9FeNi,最后演变为呈粗骨状的Al_9FeNi。其中,当Al_9FeNi呈环絮状封闭或半封闭分布在α-Al枝晶晶界上时,合金的高温强度有最显著的提高,且室温、高温综合强度最好。
     为尽量节省昂贵元素尤其是Ni在高性能活塞合金中的使用,制备了Fe、Cu、Ni综合强化的高强耐热活塞合金。试验发现Fe的适量加入可在活塞合金中形成形态较好的块状Al_9FeNi耐热相,对提高合金的高温强度尤其是350℃以上的高温抗拉强度有利;但添加过多的Fe则会导致合金中生成形态很差的粗大Al_9FeNi相。此外,在利用Fe、Cu、Ni综合强化时辅助加入Cr元素可进一步强化活塞合金。Cr的加入可使合金中生成热稳定性非常高的Al_(15)(Fe,Cr,Mn)_3Si_2耐热相,它与其它热强相如Al_9FeNi、Al_3CuNi、Al_7Cu_4Ni等一起可起到高温下共同强化α-Al基体的作用,从而使合金的高温强度大幅度提高,其中350℃时的抗拉强度可高达99.77MPa。
The elevated temperature strengthening effects of several trace-alloying and alloying elements such as Mn,RE,Ni,Fe on Al-Si piston alloys and the influence of squeeze casting on the mechanical properties of piston alloys have been investigated for the purpose of increasing the elevated temperature strengths of industrial aluminium-silicon piston alloys.By means of SEM,OM,EPMA,XRD and DSC,the microstructures,phase compositions and phase types of the prepared alloys and the solidification of some piston alloys are analyzed in this thesis,which helps to discuss the strengthening mechanism of piston alloys at elevated temperatures.
     The high temperature strengthening effects of trace Mn and RE have been studied respectively.It has been found that there occurs an evolution of Mn-bearing intermetallic phases in ZL109 piston alloy as the Mn content increases in the alloy. When most of manganese exists in the dendritic Al_9FeNi phase,the elevated temperature strengthening effect is good.Further increase of Mn addition can lead to the formation of a kind of plate-like Mn-bearing phase,whose strengthening effect is poor.It is found that trace RE addition can also play an effective role in strengthening Al-Si piston alloy at elevated temperatures.The addition of trace RE into the alloy can increase the volume fraction of the heat-resistant AlNiCu compound in ZL109 alloy.In addition,a kind of nodular RE-rich intermetallic phase is formed in the alloy after addition of RE.
     The influences of squeeze casting on the mechanical properties and microstructures of Al-Si piston alloys were also evaluated.It is found by experiments that the squeeze casting can improve the mechanical properties of Al-Si piston alloys evidently at room temperature but reduce the ultimate tensile strength(UTS) at elevated temperatures.The eutectic silicon in the squeeze cast Al-Si piston alloy characterizes as short-rod shaped instead of needle-like in gravity die casting Al-Si piston alloys.This helps to weaken the harmful effect of needle-like eutectic silicon on the alloy.It is also found that the squeeze casting can promote the formation of Al_9FeNi phase with coarse sizes,which may be the reason for the decrease of tensile strength at elevated temperatures.
     The investigation of potential strengthening effects of Ni on a high-performance piston alloy was conducted.It has been found that with the increase of Ni content, there occurs an evolution of main heat-resistant compounds in alloys:from the net-like Al_3CuNi to the Al_9FeNi phase distributing inα-Al dendrites boundaries with the shape of closed or semi-closed vermicule,and then to the Al_9FeNi phase like coarse bones.Among them,the vermicular Al_9FeNi phase distributing inα-Al dendrites boundaries has the most evident elevated temperature strengthening effect on the piston alloy.
     For the purpose of decreasing the use of the expensive element Ni in high-performance piston alloys as possible as it can,the new heat-resistant Al-Si piston alloys strengthened synthetically by Fe,Cu and Ni were fabricated and investigated.It is found that the proper addition of iron into the alloy helps to form the blocky Al_9FeNi heat-resistant phase,which can increase the UTS of piston alloys at elevated temperatures especially when above 350℃;but the excessive amount of Fe addition will lead to the formation of very coarse Al_9FeNi with had morphologies. Based on the above research,the addition of element Cr into the alloy was also tried combining with Fe,Cu and Ni.The result has shown that it helps to further strengthen the alloy.It is found that Cr can form the Al_(15)(Fe,Cr,Mn)_3Si_2 phase,which is a kind of heat-resistant intermetallic compound with a very high thermal stability.Jointly with other heat-resistant phases such as Al_9FeNi,Al_3CuNi and Al_7Cu_4Ni in alloy,the Al_(15)(Fe,Cr,Mn)_3Si_2 compound can play important roles in strengtheningα-Al matrix at elevated temperatures,which results in the increase of ultimate tensile strength of the alloy:the value can reach up to 99.77MPa at 350℃.
引文
[1]宋西贵.高强耐磨活塞铝合金BH135变质工艺与变质机理的研究[D].济南:山东大学硕士学位论文.2002.
    [2]《铸造有色合金及熔炼》联合编写组.铸造有色合金及熔炼.北京:国防工业出版社,1980.
    [3]Pacz,USA Patent.1387900,1920.
    [4]刘达利,齐丕襄.新型铝活塞.北京:国防工业出版社,1999年8月.
    [5]王家忻等.金属的凝固及其控制.机械工业出版社,1983年6月.
    [6]方昆凡.工程材料手册.北京出版社,2002年2月.
    [7]赖华清.活塞材料的应用与发展.上海汽车,2005,(12):33-35.
    [8]N.A.Belov,D.G.Eskin,N.N.Avxentieva.Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys.Acta Materialia,2005,53:4709-4722.
    [9]D.Y.Maeng,J.H.Lee,C.W.Won,et al.The effects of processing parameters on the microstructure and mechanical properties of modified B390 alloy in direct squeeze casting.Journal of Materials Processing Technology,2000,105:196-203.
    [10]冯增建,赵士博,张国华.提高活塞材料综合性能的研究.内燃机配件,2001,(1):18-21.
    [11]郭领军,李贺军,石振海.内燃机活塞材料的研究及应用述评.铸造,2003,52(9):657-660.
    [12]M.R.Joyce,C.M.Styles,P.A.S.Reed.Elevated temperature short crack fatigue behaviour in near eutectic Al-Si alloys.International Journal of Fatigue,2003,25:863-869.
    [13]谌国权,杨立斌,束翔,等.柴油机铝合金活塞性能实验研究.内燃机,2004,(2):26-28.
    [14]闫汝辉,张屹林,王亚南,等.铝活塞的挤压铸造.内燃机,2006,(3):22-24.
    [15]彭涛.内燃机活塞材料的发展与前景.山西科技,2007,(3):91-92.
    [16]http://www.chinamoderndesign.com/car/carl/jsnd.htm
    [17]赵德刚.多相颗粒增强铝基复合材料的研究[D].济南:山东大学硕士学位论文,2006.
    [18]赵德刚,刘相法,边秀房.(TiB_2+SiC)/ZL109复合材料的制备及其力学性能.铸造,2004,53(2):97-100.
    [19]D.G.Zhao,X.F.Liu,Y.C.Pan,et al.Microstructure and mechanical behavior of AlSiCuMgNi alloys reinforced with TiB_2 particles.Journal of Materials Science,2006,41(13):4227-4232.
    [20]Y.D.Huang,N.Hort,K.U.Kainer.Thermal behavior of short fiber reinforced AlSi12CuMgNi piston alloys.Composites:Part A,2004,35:249-263.
    [21]Y.D.Huang,N.Hort,H.Dieringa,et al.Microstructural investigations of interfaces in short fiber reinforced AlSi12CuMgNi composites.Acta Materialia,2005,53:3913-3923.
    [22]冯增建,孟庆军,刘延鹏,等.高性能活塞材料-BH135的研发.山东内燃机,2004,(2):35-36.
    [23]N.Belov,D.Eskin,A.Aksenov.Multicomponent phase diagrams:applications for commercial aluminum alloys.Oxford:Elsevier,2005.
    [24]V.Raghaven.Al-Cu-Fe-Mg-Ni-Si(Aluminium-Copper-Iron-Magnesium-Nickel-Silicon).Journal of Phase Equilibria and Diffusion,2007,28(2):223-225.
    [25]C.M.Styles,P.A.S.Reed,in:Proc ICAA-7,Aluminium Alloys:Their Physical and Mechanical Properties,ed.E.A.Starke,T.H.Sanders,W.A.Cassada(Trans Tech Publications Ltd.,Switzerland,2000):1457-1462.
    [26]周惠久,黄明志.金属材料强度学.北京:科学出版社,1989年3月.
    [27]黄明志,石德珂,金志浩.金属力学性能.西安:西安交通大学出版社,1986年10月.
    [28]王从曾.材料性能学.北京:北京工业大学出版社,2001年6月.
    [29]陈振华.耐热镁合金.北京:化学工业出版社,2007年1月.
    [30]苏学常.铝合金的强化.轻合金加工技术,1996,24(9):2-5.
    [31]东北工学院金相教研室.有色合金及其热处理.北京:中国工业出版社,1961年7月.
    [32]N.A.Belov,A.N.Alabin,D.G.Eskin.Improving the properties of cold-rolled Al-6Ni%sheets by alloying and heat treatment.Scripta Materialia,2004,50:89-94.
    [33]N.A.Belov,E.A.Naumova,D.G.Eskin.Casting alloys of the Al-Ce-Ni system:microstructural approach to alloy design.Materials Science and Engineering A,1999,271:134-142.
    [34]徐自立.高温金属材料的性能、强度设计及工程应用.北京:化学工业出版社,2006年3月.
    [35]束德林.工程材料力学性能.北京:机械工业出版社,2004年7月.
    [36]田家凯,G.S.安塞尔.合金及显微结构设计.北京:冶金工业出版社,1985年9月.
    [37]周瑞发,韩雅芳,李树索.高温结构材料.北京:国防工业出版社,2006年4月.
    [38]刘静安,谢水生.铝合金材料的应用与技术开发.北京:冶金工业出版社,2004年1月.
    [39]刘相法,乔进国,宋西贵,等.Al-P中间合金在Al-Si活塞合金中的应用.特种铸造及有色合金,2002,22(6):43-45.
    [40]赵品,高聿伟,刘万生,等.过共品Al-Si合金活塞材料的研究.物理测试,1996,14(5):4-6
    [1]N.A.Belov,D.G.Eskin,N.N.Avxentieva.Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys.Acta Materialia,2005,53:4709-4722.
    [2]X.F.Liu,J.G.Qiao,Y.Y.Wu,et al.EPMA analysis of calcium-rich compounds in near eutectic Al-Si alloys.Journal of Alloys and Compounds,2005,388:83-90.
    [3]M.M.Haque,A.Sharif.Study on wear properties of aluminium-silicon piston alloy.Journal of Materials Processing Technology,2001,118:69-73.
    [4]M.R.Joyce,C.M.Styles,P.A.S.Reed.Elevated temperature short crack fatigue behaviour in near eutectic Al-Si alloys.International Journal of Fatigue,2003,25:863-869.
    [5]D.L.Colwell,R.J.Kissling.Die and permanent mold casting alloy minor elements.AFS Transactions,1961,61:610-650.
    [6]L.F.Mondolfo.Aluminum Alloys:Structure and Properties.London:Butterworths,1976.
    [7]L.A.Narayanan.Crystallization behavior of iron-containing intermetallic compounds in 391aluminum alloy.Metallurgical and Materials Transactions,1994,(8):1761-1773.
    [8]张卫文,尹志民,赵阳,等.过共晶高硅铸造铝合金磷-稀土双重变质处理.中国有色金属学报,1995,5(1):59-62.
    [9]H.H Zhang,H.L.Duan,G.J.Shao,et al.Modification mechanism of Cerium on the Al-18Si alloy.Rare Metals,2006,25(1):11-15.
    [10]欧阳志英,毛协民,唐多光,等.稀土对过共品Al-Si合金P变质效果的影响.特种铸造及有色合金,2003,(1):22-23.
    [11]廖恒成,孙瑜,孙国雄,等.混合稀土对Sr变质近共品Al-Si合金组织的影响.中国有色金属学报,2000,10(5):640-644.
    [12]林清华,王佳夫,陆建生.稀土La(镧)对Al-Si共晶合金性能的影响.轻合金加工技术,2003,31(1):35-37.
    [13]C.M.Styles,P.A.S.Reed,in:Proc ICAA-7,Aluminium Alloys:Their Physical and Mechanical Properties,ed.E.A.Starke,T.H.Sanders,W.A.Cassada(Switzerland:Trans Tech Publications Ltd.,2000):1457-1462.
    [14]M.M.Haque,M.A.Maleque.Effect of process variables on structure and properties of aluminium-silicon piston alloy.Journal of Materials Processing Technology,1998,77:122-128.
    [15]张士林,任颂赞.简明铝合金手册.上海科学技术文献出版社,2001.
    [16]赖华清,徐翔,范宏训.稀土在铸造铝合金中的作用.热加工工艺,2001,(5):37-39.
    [1]闫汝辉,张屹林,王亚南,等.铝活塞的挤压铸造.内燃机,2006,(3):22-24.
    [2]D.Y.Maeng,J.H.Lee,C.W.Won,et al.The effects of processing parameters on the microstructure and mechanical properties of modified B390 alloy in direct squeeze casting.Journal of Materials Processing Technology,2000,105:196-203.
    [3]谌国权,杨立斌,束翔,等.柴油机铝合金活塞性能实验研究.内燃机,2004,(2):26-28.
    [4]M.R.Joyce,C.M.Styles,P.A.S.Reed.Elevated temperature short crack fatigue behaviour in near eutectic Al-Si alloys.International Journal of Fatigue,2003,25:863-869.
    [5]M.M.Haque,M.A.Maleque.Effects of process variables on structure and properties of aluminium-silicon piston alloy.Journal of Materials Processing Technology,1998,77:122-128.
    [6]潘复生,张丁非,等.铝合金及应用.北京:化学工业出版社,2006:428.
    [7]罗继相,白旭白,谌伟,等.铝合金挤压铸造技术的研究与应用.铸造,2002,51(8):464-469.
    [8]兰民国,周彼德,佟国栋,等.复合材料活塞的制造技术.特种铸造及有色合金,1992,12 (2):31-33.
    [9]程先军.挤压铸造Al-Si活塞缺陷分析.特种铸造及有色合金,2004,24(4):47.
    [10]黄国庆,罗继相,李敏华,等.压缩机活塞挤压铸造成型技术研究.特种铸造及有色合金,2006,26(8):498-500.
    [11]张海涛,吴申庆,余式昌.挤压铸造Mullite_f/M124F复合材料性能分析.特种铸造及有色合金,2006,26(2):98-100.
    [12]张国志,于溪凤,王向阳,等.超高压凝固Al-Si合金的非平衡组织.金属学报,1999,35(3):285-288.
    [13]齐丕骧,吴岳壹,齐霖.挤压铸造合金材料的研究进展.特种铸造及有色合金,2005,25(1):28-31.
    [14]A.Maleki,B.Niroumand,A.Shafyei.Effects of squeeze casting parameters on density,macrostructure and hardness of LM13 alloy.Materials Science and Engineering A,2006,428:135-140.
    [15]L.J.Yang.The effect of casting temperature on the properties of squeeze cast aluminium and zinc alloys.Journal of Materials Processing Technology,2003,140:391-396.
    [16]胡汉起.金属凝固原理.北京:机械工业出版社,2008年3月.
    [1]N.A.Belov,D.G.Eskin,A.A.Aksenov.Muiticomponent phase diagrams:applications for commercial aluminum alloys.Oxford:Elsevier,2005.
    [2]N.A.Belov,D.G.Eskin,N.N.Avxentieva.Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys.Acta Materialia,2005,53:4709-4722.
    [3]宋少源,潘清跃.NHS活塞合金的研制.四川工业学院学报,1990,9(1,2):41-50.
    [4]M.Zeren.The effect of heat-treatment on aluminum-based piston alloy.Materials & Design,2007,28:2511-2517.
    [5]V.Raghaven.Al-Cu-Fe-Mg-Ni-Si(Aluminium-Copper-Iron-Magnesium-Nickel-Silicon).Journal of Phase Equilibria and Diffusion,2007,28(2):223-225.
    [6]C.L.Chen,G.West,R.C.Thomson.Characterisation of intermetallic phases in multicomponent Al-Si casting alloys for engineering applications.Materials Science Forum,2006,519-521:359-364.
    [7]G.Requena,H.P.Degischer.Creep behaviour of unreinforced and short fibre reinforced AISi12CuMgNi piston alloy.Materials Science and Engineering A,2006,420:265-275.
    [8]A.J.Moffat,S.Barnes,B.G.Mellor,et al.The effect of silicon content on long crack fatigue behaviour of aluminium-silicon piston alloys at elevated temperature.International Journal of Fatigue,2005,27:1564-1570.
    [1]M.O.Otte,S.D.Mcdonald,J.A.Taylor,et al.Controlling porosity-related casting rejects:Understanding the role of iron in Al-Si alloys.Transactions of the American Foundrymen's Society,1999,107:471-475.
    [2]Y.H.Cho,D.H.Joo,C.H.Kim,et al.The effect of alloy addition on the high temperature properties of over-aged Al-Si(CuNiMg) cast alloys.Materials Science Forum,2006,519-521:461-466.
    [3]杨江波,印飞.改善铝硅合金中铁相形态的措施.铸造,2000,49(8):454-459.
    [4]边秀房,张国华,赵生旭.熔体处理对Al-Si合金铁相形貌的影响.特种铸造及有色合金,1992,12(4):19-21.
    [5]贾雨,赵平.过共晶铝硅合金中Al-Si-Mn-Fe相的形态影响因素.成都理理工学院学报,2001,28(2):214-216.
    [6]刘伏梅,刘志坚.铁在铝合金中的有害作用及其控制.内燃机配件,2002,(4):7-10.
    [7]谭锁奎,任全宝.金属型铸造活塞铝合金中铁的作用研究.特种铸造及有色合金,1998,18(3):1-5.
    [8]孙业赞,于敞,厉松春,等.铁在铝硅合金中存在的形态及其作用分析.铸造,1998,47(7):42-46.
    [9]N.A.Belov,D.G.Eskin,N.N.Avxentieva.Constituent phase diagrams of the Al-Cu-Fe-Mg-Ni-Si system and their application to the analysis of aluminium piston alloys.Acta Materialia,2005,53:4709-4722.
    [10] Jonathan A. Lee, Po-Shou Chen, US Patent, 6918970B2,2005.
    
    [11] C.L. Chen, G West, R.C. Thomson. Characterisation of intermetallic phases in multicomponent Al-Si casting alloys for engineering applications. Materials Science Forum, 2006,519-521:359-364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700