电渣熔铸大花导叶的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了提高水轮机机组的整体寿命,采用了电渣熔铸工艺生产机组的主要过流部件—导叶,导叶的材质采用超低碳马氏体不锈钢0Crl3Ni4Mo。由于传统的电渣产品都是形状简单的圆形铸件,而导叶的结构比较复杂,所以在电渣熔铸导叶生产设计过程中,遇到了一系列的问题。
     由于导叶与传统电渣铸件结构的不同,传统的经验公式不再适用,引入了等效圆和等效面积的概念,使经验公式适用于复杂的产品设计。还引入了换箱概念以解决没有电渣熔铸导叶所需要的足够的公用型腔的问题,我们将导叶结晶器设计为上下结构。
     将用电渣熔铸方法制造的大花导叶的试块与砂型铸造试块同炉热处理,对上述两试样进行化学成分、非金属夹杂物、机械性能、超声波汽蚀、金相组织等项目对比试验分析,可以看出采用电渣熔铸工艺生产的大花导叶有害元素S含量降低大约为30%以上,钢水纯净,组织致密,成份稳定。导叶内部无缩松、夹杂、气孔、裂纹等铸造缺陷,夹杂物分布均匀、细小,达到GB1056-89 1-2级水平,比以往砂型铸造导叶提高1个等级。
     在电渣熔铸导叶生产过程中,开发了异型件熔铸的生产工艺和异型结晶器的设计技术,掌握了电极的尺寸确定、以及生产过程中渣制度和电制度的控制技术。
     对水轮机过流部件进行喷丸处理,测量了喷丸影响层显微硬度、X射线衍射半高宽度和屈服强度等参量的沿层深分布、并计算了相应的晶块尺寸、微观应变和位错密度的等微观结构参量。结果表明,该影响层以显微硬度和屈服强度表征的组织强化效应显著、显微硬度和屈服强度提高是由于晶块细化、微观应变和位错密度增大造成的。喷丸影响层不同部位的显微硬度与条件屈服点之比约为3.37;
     研究成果生产的大花导叶化学成分、力学性能、无损探伤、夹杂物、高低倍检测等主要技术指标均达到或超过了用户技术协议的要求,大花导叶的生产实践表明,本课题的研究成果可以用于实际生产。
In order to improve hydraulic turbine service life, we adopt ESC technology to produce the guide vane which is chief Tran flux part of the equipment. The guide vane is made of 0Cr13Ni4Mo. The traditional electroslag ingot has a simple round shape while vane has a complex profile; we encounter a lot of problems in the production process of the electroslag casting guide vane.
     The traditional empirical formulas can not be adopted because of the differences in the shape in guide vane and traditional ingots. This project presents the concepts of equivalent circle and equivalent area, so as to the empirical formulas can be used in the complex technological design of products. This project also introduces the concept of displace box for the sake of solving the lack of common cavity die of ESC guide vane and the upper and lower crystallizer is designed.
     Put the test sample of guide vane made of ESC and the one made of sand casting in the same furnace to heat them. Comparing the test samples in chemical composition, non-metallic inclusions, mechanical properties, ultrasonic wave cavitations erosion, and metallurgical structure and so on, we can know that the ESC guide vane is cleanliness, dense macrostructure and consistent composition. There are not casting flaws such as shrinkage cavities, inclusions, gases and crackle in the guide vane. The inclusion has a homogeneous distribution and small size, which can reach 1-2 level of GB1056-89. it elevates a grade in comparison with the process of sand mould.
     A low carbon martensite stainless steel 0Cr13Ni4Mo normalized at 1000℃and tempered at 600℃,used in the guide stream assemblies of water turbine,was treated with shot peening.The depth distributions of microhardness,half-width value of X-ray diffraction profiles and yield strength in the shot-peening affected layer were measured.Correspondingly,the depth distributions of microstructure parameters,such as subgrain size,microstrain and dislocation density,in this layer were calculated.The experimental results indicate that the structure strengthening charactered by microhardness and yield strength is prominent.The subgrain size decreases,and the microstain and dislocation density increase in the shot-peening affected layer,which results in the increase of the microhardness and yield strength.The ratios of microhardness to proof stress are all about 3.37 in different depth of the affeceted layer.
     In the process of producing guide vane, we master the production technology, crystallizer and electrode dimension design, and we know the control technology of slag and electricity.
     The chemical composition, mechanical properties and nondestructive evaluation of the guide vane in this project reach and even surpass the requests of the protocol. The productive practice in guide vane power station indicates that the research achievements of the project can be used in actual production.
引文
1.田世江.电渣技术在我国铸造业中的应用[J],特种铸造及有色合金,2002,7(3):50-52
    2. Hoyle G.Electroslag Processes Principle and Practice [M], London&New York:Applied Science Publishers,1983,22.25
    3. Nafaziger R H. The Electroslag Melting Process Bulletin [J], United States Burballof Mines, 1976,1(16):136-141
    4. Paton B. Electroslag Remelting in the Soviet Union [A], Proceedings ofFitth International Congress on Electroheat [C],Brighton:1967,43-47
    5.李正邦.电渣冶金的回顾与展望[J],特殊钢,1999,20(6):1-6
    6.李正邦.国外电渣冶金现况及发展趋势[J],新金属材料,1978,190):17-19
    7.李正邦.国外电渣熔炼概况及进展[J],新金属材料,1973,10(1):20-24
    8.陈希春,冯涤,傅杰等.电渣冶金最新进展[J],钢铁研究学报,2003,150):62-67
    9. Biebricher U.Electroslag Remelting Technology [J],Ironmaking and Steelmaking,1979, 6(1):32-35
    10. Y.H.Moon,J.W.kim,D.W.Lee.Madining Characteristics of Electroslag Cast Steel for Hot-working Tools [J], Journal of Materials Processing Technology,2004,53(154):654-659
    11.李正邦.利用电渣法减少铸钢件冒口[J],焊接,1959,3(10):7-11
    12. Biebricher U. Metallurgical Plant and Technology [J], Steel Times International,1998, 26(3):30
    13. Holzgruber W. New ESR Technology for New Improved Products [A], Proceeding of 7th International Conference on Vacuum Metallurgy [C], Tokyo Japan,1982.1452-1458
    14. Hoyle G.Proceedings of Electroslag Refining [J], Iron and Steel Institute and Shemeld Metallurgical and Engineering Association Shemeld,1973:136-144
    15.李正邦.21世纪电渣冶金的展望[J],炼钢,2003,19(2):6-12
    16.李正邦.电渣熔铸涡轮盘工艺计算与渣系选择[A].钢铁研究总院论文集[C].北京:冶金工业出版社,1979,79-86
    17.陆锡才.电渣重熔原理与实践[M],沈阳:东北大学出版社,1990,206-220
    18. Hoyle G. Electroslag Processes Principles and Practice [M], London:Applied science publishers,1983,134-137
    19.曾乐,李正邦,朱觉麟等.电渣冶炼合金钢工艺[P],中国专利:000148,1964-9-18
    20.李正邦.电渣冶金原理及应用[M].北京:冶金工业出版社,1996,57-63
    21.李正邦.电渣重熔去除夹杂物[A],全国电渣冶金第二届会议论文选编[C].北京,1964,191-195
    22.李正邦,周文辉.三相电渣炉[A],全国电渣冶金第二届会议论文选编[C].北京,1964,219-223
    23.王仁智.喷丸强化技术在我国的发展.材料工程,1989(1):4-7
    24.杨晓,邹鸿承,戴蜀娟.激光冲击处理提高铝合金疲劳性能的机理研究[J].应用激光,1998(4):179-183
    25.徐滨士,韩文政,姜厚温.立竿见影的喷丸强化技术.中国表面工程,2000(48):46-48
    26.蒋芬叶.轮齿表面强化喷丸及应用.航空工程与维修,2000(11):51-52
    27.叶溥.喷丸技术的发展及应用.航空工程与维修,1994(04):24-25
    28.周正裕.压气机工级转子叶片喷丸强化工艺.航天工艺,1996(03):18-21
    29.陈志新.喷丸工艺的现状及其发展.凿岩机械气动工具,1997(02):57-5
    30.王君卿,徐超,苏仕方等.大型变曲面导叶电渣熔铸工艺模拟及应用[J],铸造,1999,3(7):23-28
    31. Li X Y, Zhang Z Q. In:Sun G X ed, Proc of 9th Chinese Conf on Foundry, Shenyang: Northeastern Univercity Press,1997:51
    32. Wang Z C, Chen H N. Abrasive Erosiorx draulir Turbine,2001:56
    33. Duan G C. Silt Abrasive Erosion of Hydraulic Turbine.RPijing:Tsinghua University Press, 1981
    34. Hirsch T, Vohringer 0, Macherauch E. Horterei-technMitt,1986; 41(3):166
    35. Hashimoto M, Shiratori M, Nagashima S. In:Iida K ed, Proc 4th Int Conf on Shot Peerzing, Tokyo:Japan Society of Precision Engineering,1990:495
    36. Sharp P K, Clayton J Q, Clark G. Fatigue Fract Eng Mater Struct,1994:17(3):243
    37. Kunio N. Tetsu-to-Hagane,1994; 80, N233
    38.贾淑芹,王大威,刘洪超等.电渣熔铸模拟三峡真机导叶组织性能研究及应用[J],铸造,2005,1540):852-855
    39.李正邦.电渣冶金原理及应用[M],北京:冶金工业出版社,1996,12
    40.李正邦等.电渣熔铸[M],北京:国防工业出版社,1979,140-163
    41.陈瑞,徐超,胡学军,杨军,王君卿,何镇明等.电渣熔铸的补缩工艺[J].铸造,1996,(11)
    42.孙宝应,姚铁吉,乔明杰。金属零件喷九强化中的几个工艺问题。航空制造技术,1998,6:30-32
    43.储继影,关占群,李占杰。喷丸强化效果和质量的表征指标及影响因素。汽轮机技术,2003(4):255-256
    44.李家宝.利用射线衍射方法确定金属工艺表面的应力-应变关系.材料研究学报,1998,34(4):287-290
    45.徐建辉.中国科学院金属研究所硕士学位论文,沈阳,2003
    46. Ji V, Lebrun J L, Chen C Q. Surf Coat Technol,2000; 130:95
    47. Ji N, Lebrun J L, Belliad P, Bourniquel B, Maeder G. In:Beck G, Denis S, Simon A eds, Proc of 2nd Int Conf On Residual Stresses, Int Conf on Residual Stresses, London:Elsevier Applied Science,1989:65
    48. Hayden H W, Floreen S. Metall Trarz.s,1973; 4:561
    49. Wang R Z. J Mech Eng Mater,1988; 68(5):19
    50. Li J B. Chin J.Mater Res,1998; 12:287
    51.王仁智.机械工程材料.1988;68(5):19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700