时效和蠕变对预变形SUPER304H奥氏体不锈钢析出行为和晶间腐蚀性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SUPER304H钢是一种新型18-8奥氏体不锈钢,由于它优异的综合性能被用于制造超超临界锅炉的过热器和再热器(SH/RH)。本文主要研究了时效、蠕变对未变形、15%、20%预变形SUPER304H奥氏体不锈钢析出行为及晶间腐蚀性能的影响,探索了表面喷丸对SUPER304H钢高温时效组织结构和晶间腐蚀敏感性的影响,分析测试了各种处理状态SUPER304H样品硬度变化。利用透射电镜(TEM)观察析出相的形状、大小、分布特征,利用X射线衍射技术分析析出相的晶体结构,结合能谱分析仪对析出相化学成分进行分析。通过双循环动电位再活化(DL-EPR)实验评价其晶间腐蚀性能。得到以下结论:
     未变形、15%、20%预变形SUPER304H钢经700℃下不同时间时效处理后,样品硬度随着变形量增加而增大。三种不同变形量样品晶界的析出物主要是M23C6型碳化物,晶粒内部及晶体缺陷处析出MC型碳化物。随着变形量和时效时间增加,沉淀相析出数量及大小均增加。随着变形量增加,SUPER304H钢再活化率降低,晶间腐蚀敏感性降低,抗晶间腐蚀性能得到改善。
     未变形、15%、20%预变形SUPER304H钢在700℃、180MPa下的蠕变过程中发生了强化和软化现象。与未变形样品相比,15%和20%预变形样品硬度有了较大提高。随着蠕变时间增加,预变形样品硬度降低缓慢。蠕变过程中SUPER304H钢在晶界处断续析出面心立方的(Cr,Fe)23C6颗粒,在晶粒内部和晶体缺陷处析出面心立方结构的MC型颗粒。随着变形量和蠕变时间增加,沉淀相析出数量及大小均增加。SUPER304H钢抗晶间腐蚀性随变形量增加而降低。对于未变形样品,抗晶间腐蚀性随蠕变时间延长而下降。预变形加速了SUPER304H不锈钢的敏化/脱敏过程。
     SUPER304H钢经不同喷丸工艺处理后表层硬度明显增大,提高到心部硬度的一倍以上,随着距表面距离增加,显微硬度逐渐下降。随着喷丸强度和喷丸时间增加,衍射峰逐渐宽化,表面结晶度逐渐下降,晶粒细化层变厚,表层硬度逐渐提高。表面喷丸强化处理的SUPER304H钢的抗晶间腐蚀性能比原始粗晶状态有了明显提高。喷丸强化明显加速了SUPER304H不锈钢的敏化/脱敏过程。
SUPER304H is a new commercial 18-8 austenitic stainless steel. It is used to produce ultra-supercritical boiler super-heater and re-heater due to its excellent properties. In this research, experiments were done to investigate the precipitate behavior and intergranular corrosion property of 0%,15%,20% deformation SUPER304H stainless steel samples, which aged and crept at 700℃for different times, dealt with shot peening and aging treatment. The change in hardness of samples under different processing conditions was analyzed by hardness tester. The morphology, size and distribution of the precipitate were observed by transmission electron microscopy (TEM), and its crystal structure was characterized by X-Ray diffraction technology. The chemical composition of the precipitate was analyzed by means of the energy dispersive spectrum system (EDS). Degree of intergranular corrosion susceptibility was evaluated by DL-EPR. The conclusions show that:
     After 0%,15%,20% deformation SUPER304H stainless steel samples treated by aging at 700℃for different time, the hardness of strained sample is significantly greater than unstrained one, and the hardness increases as the deformation increasing. The precipitate of M23C6 carbide mainly composed of chromium occurs along the grain boundaries of unstrained SUPER304H stainless steel samples aged at 700℃. The MC-type carbide form of the stainless steel and a few disperse inside the grains or along the crystal defect like as dislocation. Both the number and size of precipitation increased with deformation and aging time growing. As deformation increased, the Ir/Ia of SUPER304H samples fell, degree of intergranular corrosion susceptibility reduces, and therefore intergranular corrosion resistance improves.
     The strengthening and softening of the SUPER304H stainless steel happened during the creep behavior at 700℃& 180MPa. The hardness of strained samples become significantly greater than unstrained one, and their hardness fell slowly as the creep went. During the creep tests, the discontinuous face-center cube (Cr,Fe)23C6 carbide precipitated at grain boundaries and fcc MC was found inside grains and along crystal defect. Precipitation grew both in number and size with an increase of deformation and creep time. The intergranular corrosion resistance of the samples reduced as deformation increasing, and that of unstrained samples reduces as the creep going. But the effect of creep time on intergranular corrosion property of strained samples is complex. The pre-deformation accelerates the sensitization/desensitization process.
     After shot peening process, the surface hardness of SUPER304H stainless steel increased significantly, to a degree greater than double of matrix hardness. Micro-hardness gradually declines from the surface to matrix. As the strength and time of shot peening grew, grain refinement layer became thicker, the diffraction peak was widening, the surface crystallinity decreasing and the surface hardness increasing. Compared with that in the original coarse-grained state, the intergranular corrosion resistance of SUPER304H stainless steel significantly improves after shot peening treatment. The strength of shot peening accelerates the sensitization/desensitization process.
引文
[1]孙玉梅,邹小平.Super304H不锈钢锅炉管评述[J].锅炉技术,2007,38(1):52-55.
    [2]Sumitomo Metal Industries,ltd. Properties of SUPER304H Steel Tubes[R].1999, 909F-No.3518.
    [3]张磊,李广华.锅炉设备与运行[M].北京:中国电力出版社,2007:192-217.
    [4]SUPER304H小口径钢管评定试验报告[R].上海:上海锅炉厂有限公司,1999.
    [5]杨岩,程世长,杨钢.SUPER304H锅炉钢的开发和研究现状[J].特殊钢,2p02,23(1):27-29.
    [6]韩建伟.日本超超临界锅炉用管子钢的开发[J].动力工程,1998(2):18.
    [7]王剑志,罗仕清,黄晓斌.超(超)临界锅炉用SUPER304H钢管试制研究[J].特钢技术,2005(1):1-6.
    [8]Yoshiatsu Sawaragi et al. Development of the Economical 18-8 Stainless Steel (SUPER304H) Having High Elevated Temperature Strength for Fossil Fired Boilers[M].The Sumitomo Search,1992,48 (1):50-58.
    [9]黄晓斌.超临界发电锅炉用钢TP347H轧制管坯生产工艺研究[D].重庆:重庆大学,2004:39-40.
    [10]陆燕荪,徐英男.我国发电设备用钢现状与发展[R].上海:中国动力工程学会材料专业委员会,1998.
    [11]赵钦新.国外电站锅炉耐热钢的一些进展[J].动力工程,1998(2):18.
    [12]杨岩,程世长,杨钢.铜含量对Super304H钢持久性能的影响[J].机械工程材料,2002,26(10):23-25.
    [13]A.F.Padilha, D.M. Escriba, E.Materna-Morris, M. Rieth, M. Klimenkov. Precipitation in AISI 316L(N) during creep tests at 550℃ and 600℃ up to 10 years[J]. Journal of Nuclear Materials, 200,362:132-138.
    [14]Sawaragi Y, Otsuka N. Properties of a New 18-8 Austenitic Steel Tube(SUPER304H) for Fossil Fired Boilers after Service Exposure with High Elevated Temperature Strength[J]. Sumitomo Search,1994, 10:56.
    [15]Sawaragi Y. Properties After Service Exposure of A New 18-8 Austenitic Steel Tube (0.1C-18Cr-9Ni-3Cu-Nb,N) with High Elevated Temperature Strength for Fossil Fired Boilers[J]. The Minerals, Metals &Materials Society (TMS),1993:15086.
    [16]Takao Kan, Sawaragi Y. Properties and Experiences of a New Austenitic Stainless Steel SUPER304H (0.1C-18Cr-9Ni-3Cu-Nb,N) for Boiler Tube Application[J]. Sumitomo Search,1993,10:45.
    [17]林肇杰,程世长,刘正东.锅炉和电站用钢展望[M].北京:钢铁研究总院,1994:4.
    [18]湛木羲淳.A New 18-8 Austenitic Steel Tube" SUPER304H "with High Elevated Temperature Strength for Fossil Fired Boilers[J].住友金属,1994,1:46.
    [19]古臣清.材料工程基础[M].北京:机械工业出版社,2004:259-261.
    [20]M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, K. Sakai. Twin-induced grain boundary engineering for 316 austenitic stainless steel[J]. Acta Materialia,2006, (54):5179-5184.
    [21]李晨希,何世海,刘政军,于宝义.金属材料及其成形性能[M].北京:化学工业出版社,2007:48-50.
    [22]郑修麟.材料的力学性能(第二版)[M].西安:西北工业大学出版社,2004:114-120.
    [23]沈莲.机械工程材料(第二版)[M].西安:机械工业出版社,2003:33-35.
    [24]张俊善.材料强度学[M].哈尔滨:哈尔滨工业大学出版社,2004:129-162.
    [25]肖纪美.不锈钢的金属学问题(第二版)[M].北京:冶金工业出版社,2006:189-194.
    [26]阮於珍,张振灿,褚凤敏,韩华.316型不锈钢的晶间腐蚀性能[J].物理测试,2000(6):4-6.
    [27]刘虹,何蕴增.1Cr17N i2钢晶间腐蚀试验[J].热加工工艺,2003(3):55.
    [28]陈睿,刘静,庞于思.1Cr18Ni9Ti不锈钢晶间腐蚀试验研究[J].河南冶金,2006,14(4):14-17.
    [29]王国凡.1Cr18Ni9钢方焊管在大气中的晶间腐蚀[J].材料工程,2003(6):23-28.
    [30]K.Ravindranath, S.H.Malhotra. The influence of aging on the intergranular corrosion of 22Chromium-5Nickel duplex stainless steel[J]. Corrosion Science,1995,31 (1):121-132.
    [31]姬玉媛.18-8奥氏体不锈钢接头晶间腐蚀的控制[J].长春理工大学学报(综合版),2006,2(2):183-184.
    [32]FJ Torres ect. Corrosion behavior of sensitized duplex stainless steel [J].Bio-Medical Materials and Engineering,1998,(8):25.
    [33]A.Pardo, M.C.Merino. Influence of Ti, C and N concentration on the intergranular corrosion behaviour of AISI316Ti and 321 stainless steels[J]. Acta Materialia,2007,55:2239-2251.
    [34]荣凡,康喜范,郎宇平.含氮奥氏体不锈钢的敏化行为[J].钢铁,2005,40(5):62-64.
    [35]A DI Schino, J M Kenney. Effect of grain size on the corrosion resistance of a high nitrogen low nickel austenitic steel[J] Journal of Materials Science Letters,2002,(21):1969.
    [36]F Duffaut, J P Pouzet, P Lacombe. Potentiostatic study of structural modifications caused in a Ni-Cr-Fe alloy by heat treatment at 650℃[J]. Corrosion Science,1966,6(2):83.
    [37]A P Majidi, M A Streicher. Potentiodynamic reactivation method for detecting sensitization in AISI 304 and 304L stainless[J].Corrosion,1984,40(8):393.
    [38]方智,张玉林,吴荫顺等.电化学再活化法评价308L不锈钢的晶间腐蚀敏感性[J].腐蚀科学与防护技术,1996,8(2):87.
    [39]R F A Jargelius, S Hertaman, E Aymniotis, et al. Evaluation of the EPR technique for Measuring Sensitization in Type 304 Stainless Steel[J]. Corrosion,1991,47(6):429.
    [40]H Huang, C Liu, S Chen. Electrolyte System of EPR Test for Detecting Sensitization in Austenitic Stainless Steel[J]. Corrosion,1992,48(6):509.
    [41]李广超,杨文忠,路长青等.EPR技术用于测定硫脲对不锈钢阳极腐蚀行为的影响[J].材料保护,2001,34(8):44.
    [42]N Alonso-Falleiros, M Magri, IG S Falleiros. Intergranuler corrosion in a martensitic stainless steel detected by electrochemical test[J]. Corrosion,1999,55(8):769.
    [43]S Frangini, A Migrone. Modified electrochemical potentiokinetic reactivation method for detecting sensitization in 12wt% Cr ferritic stainless steels[J]. Corrosion,1992,48(9):715.
    [44]E Angelini, B DeBenedetti, G Maizza,et al. Sensitazation phenomena on aged SAF2205 duplex stainless steel and their control using the electrochemical potentiokinetic reactivation test[J]. Corrosion,1999,55(6):606.
    [45]GL Edgeman, MMarek, D FWilson, et al. Sensitization behavior of alloy 800H as characterized by the electrochemical potentiokinetic reactivation (EPR) technique[J].Corrosion,1994,50(12):912.
    [46]M Casales,M A Espinoza-Medina. Predicting susceptibility to intergranular stress corrosion cracking of alloy 690[J]. Corrosion,2000,56(11):1133.
    [47]S M Bruemmer. Evaluation of chemical and electrochemical etching techniques to determine phosphorus segregation in NiCrMoV rotor steels[J]. Corrosion,1986,42(3):180.
    [48]王荣滨.18-8型奥氏体不锈钢晶间腐蚀原因分析[J].材料保护,1999,32(12):31-32.
    [49]I.T. Hong, C.H. Koo. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel[J]. Materials Science and Engineering,2005,393:213-222.
    [50]G.H. Aydog du, M.K. Aydinol. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel. Corrosion Science,2006, (48):3565-3583
    [51]罗宏,龚敏.奥氏体不锈钢的晶间腐蚀[J].腐蚀科学与防护技术,2006,18(5):357-360.
    [52]陈小芹,谢志刚,张江涛.电化学方法在评价材料性能方面的应用[J].腐蚀科学与防护技术,2007,27(1):42-44.
    [53]武晋花.用电化学方法测量不锈钢晶间腐蚀的敏感性[J].冶金标准化与质量,2001,39(3):12-14.
    [54]高中平,陈范才,赵常就.EPR法评价晶间腐蚀敏感性的各种判据的比较[J].中国腐蚀与防护学报,2000,20(4):243-247.
    [55]高中平,陈范才,赵常就.动电位再活化法评价晶间腐蚀敏感性的各种判据[J].四川化工与腐蚀控制,1999,2(3):40-44.
    [56]马素媛,陈瑞,贺笑春,李家宝,郝学卓.0Cr13Ni4Mo马氏体不锈钢表层的喷丸强化[J].金属学报,2005,41(1):28-32.
    [57]高玉魁.304奥氏体不锈钢喷丸引起的组织转变和两相残余应力测定[J].航空材料学报,2004,24(4):18-21.
    [58]周志斌,许云华,霍群英,严伟林,方亮.喷丸处理诱导高锰钢表层纳米化[J].材料热理,2006,35(16):19-21.
    [59]缪筱玲,王鹏展.超(超)临界锅炉用钢管SUPER304H与XA704性能特点评价[J].东方电气评论,2006,20(3):31-36.
    [60]陶素娥.超超临界锅炉[J].武汉电力职业技术学院学报,2005,3(4):52-55.
    [61]杨冬,徐鸿.浅议超超临界锅炉用耐热钢[J].锅炉制造,2006(2):6-8.
    [62]Wen-Fung Wang, Meng-Jung Wu. Effect of silicon content and aging time on density,hardness, toughness and corrosion resistance of sintered 303LSC-Si stainless steels[J].Materials Science and Engineering A,2006,425:167-171.
    [63]刘小萍,田文怀,杨峰,郭朝丽,高原.时效处理SUS316L不锈钢中析出相的晶体结构和化学成分[J].材料热处理学报,2006,27(3):81-85.
    [64]Hong H U,Nam SW. The occurrence of grain boundary serration and its effect on the M23C6 carbide characteristics in an AISI 316 stainless steel [J].Materials Science and Engineering,2002,A332:255-261.
    [65]Bhadeshia H K D H. Advances in the kinetic theory of carbide precipitation [J]. Materials Science Forum,2003,426-432:35-42.
    [66]雍岐龙.钢铁材料中的第二相[M].北京:冶金工业出版社,2006:278-339.
    [67]Dutta B, Palmiere E J, Sellars C M. Modeling the kinetics of strain introduced precipitation in Nb microalloyed steels. Acta Mater,2001,41:785-794.
    [68]曹建春.铌钼复合微合金钢中碳氮化物沉淀析出研究[D].昆明:昆明理工大学,2006:106-127.
    [69]谭谆礼.金属材料高能喷丸表面纳米化研究[D].大连:大连铁道学院,2002:42-44.
    [70]Jang J S C, Koch C C. Hall-petch relationship in nanocrystallineiron produced by ball milling [J]. Sci.Metall.Mater,1990,24:1599-1604.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700