草地雀麦种植对坡地土壤水分动态变化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荒山荒坡地植被覆盖度低,保水固土性差,易使水土流失,是北京生态圈建设的重要组成部分,也是山区生态建设的重点和难点。因而如合理、有效地利用土壤水资源就成为保证植被生理需水、改善生态环境关键。针对当前该区植被恢复重建中存在的科学问题,以植被建设的关键性限制因素土壤水分为出发点,通过自然降雨条件下,选择15°和25°坡地设置草地雀麦种植试验小区,并以裸露地为对照,观察草地雀麦生物学特性及坡地降雨入渗、产流及土壤水分的动态变化规律,研究草地雀麦种植对坡地土壤水分动态变化的影响,取得的主要结论如下:
     1.北京地区在15°坡地草地雀麦种植4年后,地上生物量可达4967.3 kg/hm2 ,0~30 cm地下生物量为3941.4kg/hm2,且0~10cm土层地下生物量是草地地下水土保持功能发挥的主要组成部分。坡度对草地雀麦地上生物量有显著影响,而坡度对草地雀麦地下生物量无显著影响;草地雀麦刈割处理对地上、地下生物量的生长有一定的促进作用。
     2.草地雀麦种植可显著提高土壤入渗速率,水土流失防治效果明显,其保水能力达94.2%。坡度对地表年径流深度影响不显著;刈割会降低草地的土壤入渗速率,从而加大草地雀麦坡地地表径流,但对年径流深度影响不大;草地雀麦不同行距种植对植被高度无显著影响,对盖度影响显著,进而显著影响年径流深度;密度越大,水土流失防治效果越明显。
     3.北京地区15°坡地土壤水分动态变化较为明显的时期主要分布在3~9月份,期间又可以分为雨季前期(3月~6月)土壤含水量持续下降和雨季(7月~9月)土壤含水量逐步上升阶段。其中,雨季前期土壤含水量较低,草地雀麦种植可以减缓坡地0~60cm深度土壤含水量下降,并以0~20cm土层作用最大,维持土壤含水量在13.3%~14.6%之间;雨季降雨明显增加时,草地雀麦可以促进坡地土壤水分吸收达到相对较高的状态,并在土壤含水量高于16%以上后,加速0~60cm土层,尤其是0~20cm土层土壤水分散失,维持土壤含水量在13.4%以下。坡度的变化、刈割处理对草地雀麦土壤水分动态变化规律影响不明显;而草地雀麦行距的变化对土壤水分的动态变化影响较大,合理的密度种植对坡地土壤水分的动态变化的影响作用最大,北京地区以30cm为行距种植草地雀麦对坡地水土保持效果最为明显。
     4.在饱和持水量条件下,不同密度草地与裸地土柱蒸散量随着时间的延续呈现出先增加后减小的趋势,其中,裸地土柱蒸散量最少;草地雀麦土柱蒸散量随种植密度的增加而增大。在饱和持水量的条件下,草地雀麦具有加速土壤水分散失的作用。
Slope in barren hills has a low rate of vegetation coverage, poor soil and water conservation and easy to erosion, and it is an important part in ecosystem construction of Beijing,and also an important component of mountain area ecosystem construction. Therefore how to use of soil water reasonable and effectively becomes the key to insuring water vegetation needs and the improving the ecological environment. In light of existing vegetation rehabilitation in this area of scientific issues, which has taken soil water the key limiting factor in vegetation which has as into the starting point of through natural rainfall conditions, Choose 15°and 25°slope to set Bromus riparius test plot, and take bare places as comparison, observe the biological characteristics of brome and slope rainfall infiltration, runoff and soil moisture dynamic variation, research Bromus riparius on hill slope soil moisture changes, the main conclusions are as follows:
     1. Planting Bromus riparius for 4 years in 15°slope in Beijing the amount of aboveground biomass can up to 4967.3 kg/hm2,while 0 ~30 cm below-ground biomass was 3941.4kg/hm2, and underground biomass of 0 ~ 10cm is major part of underground water and soil conservation. Slopes has significant effect on the up-ground and has nothing with on the underground biomass ; Grass harvesting treatment on the ground and underground biomass have a certain role in promoting growth.
     2. Planting of Bromus riparius can significantly increase soil infiltration rate, and to prevent from soil erosion, and its water-retention capacity was 94.2%. Slope on earth surface runoff has no significant effect with it; Grass cutting will reduce the soil infiltration rate, thereby to increase the Bromus riparius slope surface runoff, but has little effect on annual runoff depth; Bromus riparius different plant spacing on plant height no significant effect on the cover, but significantly affect the depth of annual runoff. The higher density, the more obvious soil erosion control effect was.
     3. The period of soil dynamic moisture 15°slope in Beijing, are more obviously between March to September, in which, it can be divided into the early rainy season (March ~ June) soil moisture continued to decline and rainy season (July to September) the soil moisture content increased gradually phase, which pre-rainy season, low soil moisture and Bromus riparius can slow down the slope of 0 ~ 60cm depth soil water content decreasing , and play the role of the largest to the 0 ~ 20cm soil layer to maintain soil water content between 13.3% ~ 14.6%; rainfall significant increase during the rainy season, Bromus riparius hill slope can contribute to achieve a relatively high status of soil water absorption, and after 16% of soil water content, the acceleration of 0 ~ 60cm soil layer, in particular with 0 ~ 20cm layer of soil water loss, can maintain soil water content under 13.4%; gradient changes and cutting treatments on Bromus riparius dynamic changes of soil moisture had no obvious effect; Bromus riparius spacing change has some effect on soil Dynamic changes of water, reasonable density of planting the slope of the dynamic changes of soil moisture plays an important part and the slope to 30cm for the spacing on the slope planted Bromus riparius best soil and water conservation in Beijing.
     4. Under the conditions of saturated water, evapotranspiration increase and then decrease for grassland and bare land with different density as the extension of time, in which, evapotranspiration of bare soil column is the least, evapotranspiration of brome increase with grass planting density. When the soil moisture is saturated, Bromus riparius can accelerate the loss of soil moisture .
引文
[1]蒙仲举,孙铁军,高永,等.草地雀麦坡地水土保持作用的研究[J].水土保持通报, 2008, 28(4): 86-89.
    [2] Bruee RRKA. The measuremnent of soil water diffusivity[J]. Soil Sci.Soe, 1956, 20: 458-562
    [3] Gomez J A, Vanderlinden K, Nearing M A. Spatial variability of surfaee roughness and hydraulicc conduetivity after disk tillage:implieations for runoff variability[J]. Joumal of Hydrology, 2005, 311(1-4): 143-156.
    [4]王克林,傅伟,谢小立,等.红壤坡地土壤水分时间序列分析[J].应用生态学报, 2007, 18(2): 297-302.
    [5]郭晶,景元书,干春林.基于土壤水分平衡模型的广东干旱时布分布特征[J].中国农业气象, 2008, 29(3): 353-374.
    [6] Vereecken H, MaesJ, Darius P, et al. Estimating the soi1 moisture retention charaeteristic from texture, bulk density and carbon content[J]. Soil Sei, 1989, 148: 389-394.
    [7] Deng X P, Shan L, Zhang H P. Improving agricultural water use effieieney in arid and semiarid areas of China [J]. Agrieultural Water Management, 2006, 80(l-3): 23-40.
    [8] Brooks R H, Corey AT.Hydrau1ic properties of porous media[J]. Colorado state University Hydrol, 1964. 3: 27.
    [9] Legates D R.M J a G J. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model valdation [J]. Water Resour Res, 1999, 35: 233-241.
    [10]邵明安,王全九, Horton R.推求土壤水分运动参数的简单入渗法I理论分析[J].土壤学报, 2000, 37(l): 1-8.
    [11] Deurer M, Botteher J. Evaluation of models to upseale the small seale variability of Cd sorptio in a case Study[J]. Geoderma, 2007, 137(3-4): 269-278
    [12]孙铁军,刘素军,武菊英,等.草地雀麦坡地水土保持作用的研究[J].水土保持学报,2008, 22(3): 158-162.
    [13]胡良军,邵明安.黄土高原植被恢复的水分生态环境研究.应用生态学报[J],水土保持学报,2002, 13(8): 1045-1048.
    [14]胡良军.黄土高原植被恢复的土壤水分生态环境[D].杨凌:中科院水土保持研究所博士学位论文, 2002. 168.
    [15]李毅,邵明安.人工草地覆盖条件下降雨入渗影响因素的实验研究[J].农业工程学报, 2007,23(3): 18-23.
    [16]董三孝.黄土丘陵区退耕坡地植被自然恢复过程及其对土壤入渗的影响[J].水土保持通报, 2004, 24(4): 1-5.
    [17]张光辉,梁一民.黄土丘陵区人工草地径流起始时间研究[J].水土保持学报, 1995, 9(3): 78-83.
    [18] ChaubeyI. Effectiveness of VFS in controlling losses of surface applied poultry litters constituents[M]. Tran of the ASAE. 1985, 38(6): 1687-l692.
    [19] Cerda A. Parent material and vegetation affect soil erosion in easternspain[J]. Soil Sci.Soc.Am.J, 1999, 63: 362-368.
    [20] Kohl R A. Infiltration with porous and noporous simulated residue[J]. Journal of Soil&Water Conservation, 1999, 54(3): 574-576.
    [21] Wang Genxu,Ding Yongjian,Wang Jian et a1.. The land ecological evolutional patterns in the source areas of the Yangtze and Yellow Rivers in the past 15 years, China [J]. Environmental Monitoring and Assessment, 2006, 116(1-3):137-156.
    [22] R. J. Loch, T. Espigares, A. Costantini, et al. Vegetative filter strips to control sediment in forest plantations: validation of a simple model using field data[J]. Aust.J.SoilRes, 1999,3(7): 929-946
    [23] Dillaha. Vegetative filter strips for agricultural point source pollution control[M]. Transaction of the American Society of Agricultural Engineers. 1989, 32: 5l3-5l9.
    [24]蒋定生,江忠善.黄土高原丘陵区水土流失规律与水土保持措施优化配置研究[J].水土保持学报, 1992, 6(3): 23-26.
    [25] Ghulam M H.树冠下的土壤侵蚀[J].水土保持科技情报, 1989(3): 6-11.
    [26] Castillo V M. Runoff and soil loss to vegetation in a semiarid environment [J]. Soil Sci.Soc.Am.J, 1997. 61: 1116-112l.
    [27] Meyer L D. Effect of flow rate and canopy on rill erosion[J]. Trans. ASAE, 18: 905-91l.
    [28]张亚丽.降雨强度对黄土坡面矿质氮素流失的影响[J].农业工程学报,2004, 20(3): 17-20.
    [29]杨新民.林草地水土保持效益分析[J].陕西水土保持, 1988(5): 372-373.
    [30]何绍兰,邓烈.不同坡度及牧草种植对紫色土幼龄柑桔园水土流失的影响[J].中国南方果树, 2004, 33(6): 1-4.
    [31]陈法扬.不同坡度对土壤冲刷量影响试验[J].中国水土保持, 1985(2): 21-26.
    [32]张启民.晋西黄土丘陵沟壑区几种优良牧草水土保持效益的研究[J].山西水土保持科技, 1998(4): 13-15.
    [33] Weerts A H, Maltin D R, Lian G. et al. Modelling the hydration of foodstuffs[J]. Simulation Modelling Practice and Theory. 2005, 13(2): 119-128.
    [34] Minasny B, McBratney A B.The effieieney of various approaehes to obtaining estimates of soil hydraulic Properties[J]. Geodenna, 2002, 107(1-2): 55-70.
    [35]何绍兰,邓烈.不同坡度及牧草种植对紫色土幼龄柑桔园水土流失的影响[J].中国南方果树, 2004, 33(6): 1-4.
    [36]傅涛,倪九派.不同雨强和坡度条件下紫色土养分流失规律研究[J].植物营养与肥料学报, 2003, 9(1): 71-74.
    [37]蒋定生,江忠善.黄土高原丘陵区水土流失规律与水土保持措施优化配置研究[J].水土保持学报, 1992, 6(3): 23-26.
    [38]张启民.晋西黄土丘陵沟壑区几种优良牧草水土保持效益的研究[J].山西水土保持科技, 1998(4): 13-15.
    [39]涂利华.华西雨屏区几种牧草的水土保持能力研究[J].水土保持学报, 2005, 19(5): 35-38.
    [40]字淑慧.不同草带对坡耕地土壤侵蚀的影响[J].水土保持学报, 2005, 10(19)5: 39-42.
    [41]李树德.长江流域生态环境与可持续发展[J].水土保持研究, 1999, (4): 14-18.
    [42]薛丽霞.张家沟小流域水保林生态效益分析[J].重庆师范院学报, 2001, 18(3): 25-29.
    [43] Chen Y M. Soil and water conservation function and ecological benefits of different type vegetation in semiarid loess hilly region[J]. Soil Water Cons, 2000, 14(3): 57-6l.
    [44]陈洪松.野外模拟降雨条件下坡面降雨入渗、产流试验研究[J].水土保持学报, 2005, 19(2): 5-8.
    [45] Lu Z F.Ecological Agriculture of China Loess Planteau[M].Xian:Shanxi Science and Technology. 1997,45-55.
    [46] Rodrigue-Iturbe I. Ecohydrology:A hydrologic perspeetive of climate-soil -vegetation dynamics [J]. Water Resour. Res, 2000, 36(l): l-9.
    [47]龚学臣,杨立廷,牛瑞明.冀西北风沙半干早区农田土壤水分动态分析[J].土壤侵蚀与水土保持学报, 1998, 4(2): 88-91.
    [48]贾志清,宋桂萍,李清河等.宁南山区典型流域土壤水分动态变化规律研究[J].北京林业大学学报, 1997, 19(3): 15-20.
    [49]张仁陟,李小刚,胡华等.甘肃黄土地区农田土壤水分变异规律研究[J].土壤侵蚀与水土保持学报, 1998, 4(4): 53-59.
    [50]傅伯杰,杨志坚,王仰等.黄土丘陵坡地土壤水分空间分布数学模型[J].中国科学(D辑),2001, 31(3): 185-191.
    [51]邱扬,傅伯杰,王军等.黄土丘陵小流域土壤水分的空间异质性及其影响因子[J].应用生态学报, 2001, 12(5): 715-720.
    [52]王军,傅伯杰.黄土丘陵小流域土地利用结构对土壤水分时空分布的影响[J].地理学报, 2001, 55(l): 84-91.
    [53]余优森,林日暖,邓振铺等.人工草地土壤水分周年变化规律的研究[J].土壤学报, 1992, 29(2): 175-182
    [54]张兴吕,卢宗凡.坡地水平沟耕作的土壤水分动态及增产机理研究.水土保持学报[J], 1993, 7(3): 58-66.
    [55]黄明斌.小流域综合治理的水分环境效应杨凌[D]:中科院水土保持研究所博士学位论文, 1998.
    [56]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社, 1988.
    [57]李细元,陈国良.人工草地土壤水系统动力学模型与过耗恢复预测[J].水土保持研究, 1999, 3(l): 166-178.
    [58]刘昌明,窦清晨.土壤—植被—大气连续体模型中的蒸散发计算水科学进展[J], 1992, 3(4): 256-263.
    [59]康绍忠,刘晓明,高新科等.土壤—植物—大气连续体水分传输的计算机模拟[J].水利学报, 1992, (3): 1-12.
    [60]刘树华,黄子深,刘立超.土壤—植被—大气连续体中蒸散过程的数值模拟[J].地理学报, 1996, 51(2): 118-126.
    [61]邵明安,陈志雄. SPAC中的水分运动[A].中科院水利部西北水土保持研究所集刊[C], 1991, 13: 3-12.
    [62]余新晓.土壤动力水文学问题的研究及其在防护林体系建设中的应用[J].世界林业研究, 1995, (3): 27-33.
    [63]刘吕明,孙睿.水循环的生态学方面:土壤—植被—大气系统水分能量平衡研究进展[J].水科学进展, 1999, 10(3): 251-259.
    [64]刘吕明.土壤—植被—大气系统水分运行的界面过程研究[J].地理学报, 1997, 52(4): 366-373.
    [65]马雪花.森林水文学[M].北京:中国林业出版社, 1993, 91-140.
    [66] MullaheyJ. J. Defoliation effects on yield and bud and tiller numbers of two Sandhills grass[J]. Journal of Range Management, 44(3): 241-245.
    [67]拉尔.土壤侵蚀研究方法[M].北京:科学出版社, 1991, 165.
    [68]张清春,刘宝元.植被与水土流失研究综述[J].水土保持研究, 2002, 12(9)3: 96-101.
    [69]蒋定生.黄土高原水土流失与治理模式[M].北京:中国水利水电出版社, 1997.
    [70]穆兴民.论水土保持在解决中国水问题中的战略地位[J].水土保持通报, 1999, 19(3): 1-6.
    [71] R. J. Loch, T. Espigares, A. Costantini, et al. Vegetative filter strips to control sediment in forest plantations: validation of a simple model using field data[J]. Aust.J.SoilRes, 1999, 37: 929-946.
    [72]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报, 1983, 3(2): 91-101.
    [73]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展, 1999, 10(3): 311- 318.
    [74] D.希勒尔.土壤和水—物理原理和过程[M].北京:农业出版社, 1981: 1- 4.
    [75]施成熙,粟宗嵩,曹万金,等.农业水文学[M].北京:农业出版社, 1984: 169- 208.
    [76]张超,王会肖.土壤水分研究进展及简要评述[J].干旱地区农业研究. 2003, 21(4): 117- 120.
    [77] Gomez-Plaza A, Martinez-Mena M, Albaladejo J, et al. Factors regulating spatial distribution of soil water content in small semiarid catchments [J]. Journal of Hydrology, 2001, 256: 211-226.
    [78] Beate K, Haberlandt U. lmpact of land use changes on water dynamics-a case study in temperate meso and macroscale river basins [J]. Physics and Chemistry of the Earth, 2002, 27: 619-629.
    [79] Porporato A D, Odorico P, Laio F, et al. Ecohydrology of water-controlled ecosystems [J]. Advances in Water Resources, 2002, 25: 1335-1348.
    [80] Grayson R B, Western A W, Chiew, et al. Preferred states in spatial soil moisture patterns: local and nonlocal controls [J]. Water Resource Research, 1997, 33: 2897-2908.
    [81] Domingo F, Villagarcia L, Boer M M, et al. Evaluating the long-term water balance of arid zone stream bed vegetation using evapotranspiration modeling and hillslope runoff measurements [J]. Journal of Hydrology, 2001, 243: 17-30.
    [82] Liao F, Porporato A, Fernandez-Illescas C P. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress-IV. Discussion of real cases [J]. Advance in Water Resources, 2001, 24: 745-762.
    [83] Porporato A F, Laio F, Ridolfi L, et al. Plants in water-controlled ecosystems;active role in hydrological processes and response to water stress. III vegetation water stress [J]. Advance in Water Resources, 2001, 24: 725-744.
    [84] Wang G L, Liu G B, Xu M X, et al. A study on the effect of soil water on vegetation rehabilitation in watershed of losses hilly area [J]. Journal of Natural Resources (China), 2002, 17:339-345.
    [85]盛才余,刘伦辉,刘文耀,等.云南南涧干热退化山地人工植被恢复初期生物量及土壤环境动态[J].植物生态学报, 2000, 24(5): 575-580.
    [86]卢宗凡,张兴昌,苏敏,等.黄土高原人工草地的土壤水分动态及水土保持效益研究[J].干旱区资源与环境, 1995, 9(1): 40-49.
    [87] Qiu Yang, Fu Bojie, Wang Jun, et al. Soil moisture variation in relation to toppgraphy and use in a hills-lope catcahment of the Loss Plateau, China [J]. Journal of Hydrology, 2001, 240: 243-263.
    [88]贾志清.晋西北黄土丘陵沟壑区典型灌草植被土壤水分动态变化规律研究[J].水土保持通报, 2006, 26(1): 10-15.
    [89]苏日古嘎.禾本科牧草抗旱、耐寒、耐贫瘠特性比较研究[D]:内蒙古师范大学硕士学位论文, 2007.
    [90]孙铁军,刘素军,武菊英,等. 6种禾草坡地水土保持效果的比较研究[J].水土保持学报, 2008, 22(3): 158-162.
    [91]刘素军,孙铁军,张胜,等.玉米与草地雀麦种植对坡地水土流失的影响[J].华北农学报, 2008.23(1): 181-185.
    [92]叶芝菡,刘宝元.径流小区集流桶含沙量全深剖面采样器的研制与试验[J].泥沙研究, 2005, 6(3): 24-29.
    [93]刘晚苟,山仑,邓西平.植物对土壤紧实度的反应[J].植物生理学通讯. 2001, 37(6): 41-43.
    [94]王礼先,朱金兆.水土保持[M].北京:中国林业出版社, 2005.
    [95] Brakensiek D L. Soil containing rock fragments: effects on Infiltration[J]. Catena, 1994, 23: 99-110.
    [96] Is1amKR. Land use effects on soil quality in a tropical forest ecosystem M of Bangladesh[J]. Agriculture Ecosystems&Environment, 2000, 79: 9-16.
    [97]王文焰,张建丰,汪志荣等.波涌灌溉条件下土壤致密层的形成及其对土壤入渗性能的影响[J].水利学报, 1996, (7): 75-81.
    [98]王文焰,张建丰,王全九等.黄土浑水入渗能力的试验研究[J].水土保持学报, 1994, 8(l): 59-62.
    [99] An SH SH.Benefits of different age forest vegetation on soil fertilization and amelioration[J]. Bulletin of Soil and Water Conservation, 2001, 21(3): 75-77.
    [101]王文焰,张建丰.黄土的粒度组成与水分运动参数的相关性[J].水利学报, 1991,(l):40-45.
    [100] Wang G L. Effect of vegetation restoration on soil nutrient changes in zhifanggou watershed of loess hilly region[J]. Bulletin of Soil and Water Conservation, 2001, 22(1): 1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700