嵌入式夹砂管道缠绕机数控系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
夹砂玻璃钢管道作为一种新型复合材料管道,具有轻质、高强度、耐腐蚀、内壁光滑、流量大、不结垢、不留渣、不爆破、可靠性高、寿命长、造价低廉等优点,应用前景广泛,现已广泛应用与农业、电力输水、城市给排水等各个领域。
     夹砂玻璃钢管道生产线控制系统是生产玻璃钢夹砂管道的重要设备,然而目前市场上已有的大部分的此类缠绕机控制系统均采用的是NC嵌入PC的方式,此种方式下运动控制器和计算机连成一体。这种机构使系统的完全开放性受到限制,而且在实际的加工生产过程中,由于计算机系统容易受外界干扰、不够稳定,使得整个缠绕机系统的稳定性和可靠性下降。针对以上问题,设计了以TRIO MC302为核心、以触摸屏DOP-B07S200为人机界面、以交流伺服系统为驱动元件的嵌入式夹砂管道缠绕机数控系统。
     本系统是重载系统,在实际生产过程中,由于缠绕工艺的要求,电机需要不断的换向,而且在缠绕过程中出现断纱时需要接纱,这两种场合下都需要电机低速运行。当系统低速运行时,电机会出现低速爬行的现象,这不仅会影响系统的动态运行特性,而且会加速机械部件的磨损,因此在本论文开始首先对电机的摩擦动力学进行了仿真研究,仿真结果表明当电机的速度低到一定程度时,电机的速度曲线会出现“波动”现象,位移曲线会出现“波浪线”现象,降低了系统的动态性能。为了抑制这种现象的发生,采用了模糊PID的控制方法对电机进行控制,结果表明模糊PID的控制方法可以有效的降低此现象的出现几率,并提高了系统的动态性能。之后结合现代开放式数控系统的设计理念以及设计的工艺要求,对该数控系统进行了总体方案的设计以及硬件电气设计,其中包括伺服系统的电气设计、运动控制器与伺服系统的电气设计以及运动控制器的I/O口电气设计。软件设计方面,以Windows为开发平台,以Screen Editor 2.00.05编程软件为开发工具,完成了具有参数设置、I/O点测试、实时显示等功能的数控系统上位机软件的开发。根据实际的加工工艺要求,利用TRIO的软件开发工具开发了下位机的运动控制程序,以完成具体的加工操作,该程序可实现手动、半自动、自动三种操作模式。经过实践的检验,本文中设计的夹砂管道缠绕机数控系统实现了夹砂玻璃钢管道的缠绕,运行状态良好,达到了预定的设计要求。
As a new type of composite material pipe, Fiberglass Reinforced Plastic Pipe has an extensive application prospect, with its advantages such as light weight, high strength, corrosion resistance, smooth inner wall, flow rate, not scaling, leaving no residue, non-blasting, high reliability, long life to be used and its lower cost. In nowadays, it has been widely used in agriculture, electricity water, urban water supply drainage fields and so on.
     Fiberglass Reinforced Plastic Pipe Production Line Control System is an important equipment for the production of glass fiber reinfoced plastic pipe RPM, however, most of the winding machine control systems sold in market today are adopted the way that embed NC to PC, in this mode the motion controller integrates with computer. Such machine restricts the completely opening-up characteristic of the system, and also in the actual processing of the production process, because the computer system is vulnerable to outside interference, and it is not stable enough to make the entire winding machine system stability, then the reliability of the whole winding machine system will be declined. In order to solve this above problem, an embedded coarse pipe winding machine which adopts the TRIO MC302 as the core, the touch screen DOP-B07S200 as the support, and also the AC servo system serves as the driven components is designed.
     This system is an overloaded system, in the production process, as the winding process requirements, motor needs to commutate constantly, and needs to pick up yarn in the winding yarn break occurred during the time, both occasions need to run low-speed motor. When the system is running lowly, the low-speed crawling phenomenon for the electric machine will exist. This will not only affect the system's dynamic operational characteristics, but also will acceler- ate the speed of wearing and tearing of mechanical components, so this paper firstly carries out simulation studies of the friction motor power studies to guide the follow-up to the next bit plane in the PID parameters. Simulation results show that the motor speed curve will appear“volatility”phenomenon and displa-cement curve will appear“wavy line”phenomenon when the motor speed of a low to a certain extent. In order to suppress the occurrence of this phenomenon, using fuzzy PID control method to control the motor, the results show that the fuzzy PID control method can effectively reduce the probability of this phenom-enon, and improve the system dynamic performance. Then the overrall program of this numerical control system is designed and at the same time, the hardware, electrical design, including the electrical design of servo systems, controller's I / O port electrical design are also carried out, with the integration of the morden open design concepts and design process requirements. In the aspect of soft wear design, this system adopts Windows as a development platform and the Screen Editor 2.00.05 programming software as the development tools to complete the soft wear development of this numerical control system, with a set of parameters, I / O port testing, real-time display and other functions. According to the actual processing requirement, this system makes used of TRIO to develop a next-bit machine motion control procedures in order to complete the specific machining operation, the program can be realized in three kinds of operating modes: manual, semi-automatic and automatic. After the test in practice, RPM Pipe Winding Machine CNC System designed in this paper, running in good condition, and reached the pre-design requirements.
引文
[1]周仕刚,沈碧霞.我国RPM管的发展现状[J].上海建材,1995,7(6):4~8.
    [2]唐群.缠绕式玻璃纤维增强夹砂管的设计与应用[J].中国市政工程,2001,(S1):20~23.
    [3]张双娣.性能优异的夹砂玻璃钢管[J].广东建材,2005,6(8):8~9.
    [4]郑华杰,姚正东,岳秋林.新型管材(RPM)在市政工程中的应用[J].广东水利水电,2005,(S1):44~45.
    [5]相玉芬,封惠敏.大力开发应用玻璃钢夹砂管道[J].玻璃钢/复合材料,2002,10(6):33~36.
    [6]杨繁.玻璃纤维增强塑料夹砂管涵洞的应用研究[D].武汉理工大学硕士论文,2003:2~5.
    [7]许杰民.玻璃钢加砂管道及其应用[J].山西水利科技,1996,(S1):71~73.
    [8]周晓珍.浅析玻璃钢夹砂管道优点和运用[J].玻璃钢/复合材料,2001,6(l):35~36.
    [9]贾璞.夹砂玻璃钢管在水厂原水管工程中的应用[J].铁道勘测与设计,2005,8(4):81~83.
    [10]王可平,齐元江,唐慎军,孙喜壮,孙平.夹砂玻璃钢管在红旗水库除险加固工程中的应用[J].山东水利,2005,6(9):60~61.
    [11]吴美珍.夹砂玻璃钢管—种性能优良的排水管材[J].江西建材,2005,12(3):26~28.
    [12]沈永生.玻璃钢夹砂管及其应用探讨[J].城市公用事业,2001,15(3):16~18.
    [13]郝红雨,张志刚.玻璃钢夹砂管道在排水工程中的应用[J].潍坊学院学报,2005,5(2):158~160.
    [14]冷兴武,王荣秋.纤维缠绕玻璃钢夹砂管道的发展前景[J].玻璃钢/复合材料,1998,4(2):40~42.
    [15]冷兴武,王荣秋.缠绕夹砂管道与科技进步[J].纤维复合材料,2000.
    [16]陈静.纤维缠绕机计算机控制系统的设计与实现[D].天津工业大学硕士论文,2005:5~8.
    [17]李国伟.纤维缠绕机的发展状况[J].玻璃钢/复合材料,1988,6(3):48~52.
    [18]董雪芹.CCFW总体方案智能设计系统研究[D].武汉理工大学硕士学位论文,2006:6~8.
    [19]周云端.专用缠绕机的开发与张力控制系统研究[D].西北工业大学硕士学位论文,2006:5~7.
    [20] GREEN and JOHNE.Overview of filament winding[J].SAMPE Joural,2001, 37(1):7~11.
    [21] BRIAN WILSOBN. Filament winding-the jump from aerospace to commercial frame[J]. SAMPE Journal, 1997, 33(3):25~32.
    [22] SHEN F C. A Filament-Wound Structure Technology Overview[J]. Materials Chemistry and Physics, 1995, 42(2): 96~100.
    [23] ABDEL-HADY F. Filament Winding of Revolution Structures[J].Journal of Reinforced Plastics and Composites,2005,24(8):855~868.
    [24]王文生,路华,范谦.微机控制纤维缠绕机的设计特点[J].哈尔滨工业大学学报,1988,(2):71~80.
    [25]王世寰,王永章,路华.数控缠绕机张力在线检测系统的设计[J].中国机械工程,2002,13(24):2091~2093.
    [26]朱松青,史金飞,伍斌.数控纤维缠绕机精密张力控制系统[J].自动化仪表,2004,25(5):60~63.
    [27]田会方,杨岳,周洋.基于Internet的纤维缠绕机远程监控系统[J].武汉理大学学报,2003,25(7):57~59.
    [28]朱晓明,王永章,富宏亚.基于网络的纤维缠绕机远程监控关键技术研究[J].计算机集成制造系统,2005,11(2):265~269.
    [29] IMAMURA TAKASHI. Development of Hoop Filament Winding System with Tension Control[J].Transactions of the Japan Society of Mechanical Engineers Part C,2003,69(4):906~913.
    [30] IMAMURA T and KUROIWA T. Design and Tension Control of Filament Winding System[J].1999 IEEE International Conference on Systems, Man, and Cybernetics,1999,2:660~670.
    [31]王春香.微机数控纤维缠绕机精密张力控制系统研究[D].哈尔滨工业大学博士论文,1999:10~18.
    [32]吴耀楚,姚天海,郭柏林,刘第楷.计算机控制纤维缠绕机概念设计[J].中国建材装备,1997,(3):37~40.
    [33] BOGETTI T A and GILLESPIE JR J W. Two-dimensional Cure Simulation of Thick Thermosetting Composites[J]. Journal of Composite Material,1991,25:239~273.
    [34] BOGETTI T A, GILLESPIE JR J W. Process-induced Stress and Deformation in Thick-section Thermoset Composite Laminates[J]. Journal of Composite Material, 1992,26(5):625~660.
    [35] NAJI M I and HOA S Y. Curing of Thick Angle-bend Thermoset Composite Part: Cycle Effect on Thickness Variation and Fiber Volume Fraction[J]. Journal of Reinforced Plastics Composites, 1999,18(8):702~723.
    [36]彭继慎,苏庆宇,宋绍楼.基于Stribeck摩擦模型的模糊PID控制在伺服系统中的应用[J].电气技术,2007,(1):15~17.
    [37] K MENON, K KRISHNAMURTHY. Control of Low Velocity Friction and Gear Backlash in a Machine Tool Feed Drive System [J]. Mechatronics,1999,9(1): 30-55.
    [38] YANG SHIWEN, ZHENG MUQIAO. Simulation of Nonlinear Friction With Modeling Methodology [J]. Journal of System Simulation,2002,14(10):1360-1370.
    [39] ARMSTRONG-HELOUVRYB, DUPONTP, CANUDASDEWITC. A Survey of Models, Analysis tools and Compensation Methods for the Control of Machines with Friction[J]. Automatica(S0005-1098),1994,30(7):1035-1140.
    [40] SEIDL D R, REINEKING T L,LORENZ R D. Use of Neural Networks to Identify and Compensate for Friction in Precision, PositionControlledMechanisms[C]. Conference Record of the IEEE Industry Applications Society Annual Meeting,1992.1930-1945.
    [41] ANDRES GUESALAGA. Modelling End-of-roll Dynamics in PositioningServos[J]. Control Engineering Practice(S0967-0661),2004,12(2): 210-225.
    [42]刘丽兰,刘宏昭,吴子英,王忠民.机械系统中摩擦模型的研究进展[J].力学进展,2008,38(2):201~211.
    [43]刘金琨.先进PID控制MATLAB仿真(第二版)[M].北京:电子工业出版社,2004,102~118.
    [44]刘宇,刘杰,李允公,戴丽.基于摩擦动力学的交流伺服运动控制系统仿真[J].系统仿真学报,2007,19(16):3793-3799.
    [45]张思民.嵌入式系统设计与应用[M].北京:清华大学出版社,2008,5~15.
    [46]陈连坤.嵌入式系统的设计与开发[M].北京:清华大学出版社,2005,3~12.
    [47]徐旭,车延博.现代运动控制系统中的运动控制器及其应用[J].机床与液压,2007,35(7):155-157.
    [48]李长林,高洁.VisualC++串口通信协议与典型实例[M].北京:清华大学出版社,2006,1~10.
    [49]龚建伟,熊光明.VisualC++/Turbo C串口通信编程实践[M].北京:电子工业出版社,2004,302~320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700