基于LuGre摩擦模型的气缸摩擦力实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气缸作为气动系统中最常见的执行机构,以其结构简单、控制方便等优点,广泛应用于自动化生产中。近年来,随着微电子技术的飞速发展,气动技术与微电子技术相结合,气动伺服系统,特别是气缸位置伺服控制系统得到越来越广泛的应用,以满足工业设备的自动控制要求。然而,气动系统本身有不少不利于精确控制的弱点,其刚度比较差,非线性强。气缸的摩擦力特性,特别是低速状态下的摩擦力特性是影响其非线性的最主要因素之一,研究并掌握其特性对于更精确的伺服控制和爬行预测具有重要意义。
     对此,本课题综观国内外气缸摩擦力研究现状,在分析比较各种摩擦力模型和简要分析气缸摩擦力影响因素的基础上,结合实验室原有条件建立基于伺服电机的被动式气缸摩擦力测试台,实现被测气缸两腔气压与速度的独立控制。并以一无杆气缸和一单出杆气缸为例对其在不同气压、速度下的摩擦力进行测试分析,提出基于LuGre摩擦模型的各个动态和静态参数辨识和建模方法,并进一步研究供气压力和两腔压差对各个参数的影响,得出给定工作压力下被测气缸的摩擦力模型。最后根据实验结果,对于如何合理、有效率地测量和描述气缸摩擦力特性,提出了自己的一些有益建议。
     本论文主要分为四个章节:
     第一章本文的绪论部分,主要介绍了气动技术、气缸的特点和应用现状,以及国内外对气缸摩擦力的研究现状,并由此引出本论文的主要研究内容。
     第二章首先介绍了各种典型的摩擦现象,接着分析比较了现有的各种摩擦力静态和动态模型,简要分析了气缸摩擦力的影响因素,为摩擦力测试台的设计和测试结果提供理论依据。
     第三章详细描述了气缸摩擦力测试台的设计,包括其方案原理、硬件组成和软件设计。
     第四章以一无杆气缸和一单出杆气缸为例,对其在不同气压、速度下的摩擦力进行测试分析,研究供气压力和两腔压差对气缸的LuGre摩擦模型的各个动态和静态参数的影响。最后根据实验结果总结出如何合理、有效率地测量和描述气缸摩擦力特性的一些原则。
Recently with the rapid development of microelectronics technology, the pneumatic servo system, especially the pneumatic position servo control system, has become more and more widespread application in many industrial fields. However, the pneumatic servo systems have many disadvantages to be overcome. For example, they have very low stiffness, inherently non-linear behavior and low damping, which cause difficulties to precise control. Among these, the most complex non-linearity in pneumatic position servo systems is the friction force of the actuator, which has a decisive influence on its motion characteristics. So learning more about the friction force in pneumatic actuators is an important step to obtain the precise control and its appropriate design.
     In this regard, we look at the current research status on the friction of cylinders, and have a comparison of various existing friction models, then briefly analyze the friction factors. On this basis, a new experimental apparatus on which the cylinder tested is driven by a servo motor, is designed to have an in-depth study. The friction of a rodless and a single-rod cylinders are tested under different working pressures and speeds, as an example. And then the method to identify the parameters of LuGre Model using the experiment data is proposed. Also the impact of various pressures on the parameters is investigated. Finally, According to the experimental results, some useful suggestions on how to measure and describe the friction characteristics of the cylinder reasonably and effectively are carried out.
     The whole paper consists of four sections:
     Chapter one is the introduction of this paper. It first briefs the current application situation of cylinders, and then briefly introduces the current research status on the cylinder friction. In the end, it points out the main subjects of the research work.
     Chapter two introduces the theory of friction by tribology method, including a variety of typical friction phenomenon, various existing static and dynamic friction models, and the impact of the friction factors.
     The third chapter describes in detail the design of test rig on cylinder friction, including its hardware and software design.
     In the fourth chapter the method to identify the parameters of the friction model is proposed. And then the friction of a rodless and a single-rod cylinders are tested under different working pressure and speed. Also the impact of various pressures on the parameters of the friction model is investigated. Finally, According to the experimental results, some useful suggestions on how to measure and describe the friction characteristics of the cylinder reasonably and effectively are put forward.
引文
[1]吴振顺.气压传动与控制.哈尔滨工业大学出版社,1995.9.
    [2]路甬祥,阮健,陈行.气动技术的发展方向.液压与气动,1991,(2).
    [3]帕·克罗斯.气动技术.中国上海同济大学出版社,1990,8.
    [4]Dr. Kurt Stoll.从压缩空气的早期应用到现代气动技术系统.o+p41(1997)No.7.
    [5]毛文杰.二自由度电—气比例/伺服机械手的轨迹控制研究.浙江大学硕士论文,2000.
    [6]李小宁.气动技术发展的趋势.机械制造与自动化.2003,4(2):1-4.
    [7]李培珍,尹玉亮,顾总磊.气动技术的应用及其元件发展趋势.科技资讯.2007,No.19:28.
    [8]黄俊.气缸低速爬行特性及其特征判据的研究.南京理工大学博士学位论文,2006年.
    [9]周洪.气动伺服定位技术及其应用.液压与气动,1999(1):18-21.
    [10]周洪.气动技术的新发展.液压气动与密封,1999(5):2-12.
    [11]李企芳.气动技术发展趋向概述.中国液压气动密封件工业协会内部资料.
    [12]Nouri, B., AI-Bender, F., Swevers, J., Vanherck, P. and Van Brussel, H. Modeling a Pneumatic Servo Positioning System with Friction. Proceedings of the ACC,2000,6: 1067-1071.
    [13]Pedro Luis Andrighetto, Antonio Carlos Valdiero, Leonardo Carlotto. Study of the friction behavior in industrial pneumatic actuators. ABCM Symposium Series in Mechatronics, 2006,2:369-376.
    [14]Belforte, G, Mattiazzo,G, Mauro,S., Tokashiki,L. R. Measurement of Friction Force in Pneumatic Cylinders. Tribotest journal,2003,20(2):33-48.
    [15]Belforte G, D'Alfio N, Raparelli T. Experimental analysis of friction forces in pneumatic cylinders. Journal of Fluid Control,1989,20(1):42-60.
    [16]Tokashiki, L.R., Fujita, T., and Kagawa, T.. Occurrence conditions of stick-slip motion in pneumatic cylinders driven by meter out. The sixth Scandinavian international conference on fluid power,1999, Vol.2:727-742.
    [17]Lee E. Schroederl. Experimental Study of Friction in a Pneumatic Actuator at Constant Velocity. Journal of Dynamic Systems, Measurement, and Control,1993,9,Vol.115: 575-577.
    [18]张百海,程海峰,马延峰.气缸摩擦力特性试验研究.北京理工大学学报,2005,(6):483-487.
    [19]张百海,彭光正,刘琼.温度对气缸摩擦力特性影响的研究第四届全国流体传动及控制学术会议:337-380.
    [20]T. Raparelli, A. Manuello, Bertettot and L. Mazzat. Experimental and Numerical Study of Friction in an Electrometric Seal for Pneumatic Cylinders. Tribology International.1997, Volume 30 Number 7:547-557.
    [21]Belforte. G, Raparelli. T, Velardocchia. M. Study of the Behavior of Lip Seals in Pneumatic Actuators. Lubr. Eng,1993,45:775-780.
    [22]Conte M, Manuello A, Mazza L, Visconte C. Measurement of contact pressure in pneumatic actuator seals. In:Proceedings of the AITC-AIT 2006 international conference on tribology, 2006.
    [23]G. Belforte, M. Conte, A. Manuello Bertetto, L. Mazza, C. Visconte. Experimental and numerical evaluation of contact pressure in pneumatic seals. Tribology International.2009, 42:169-175.
    [24]Terashima Yuldo, Kawakami Yukio, Kawai Sunao. A study on the effects of friction characteristics in pneumatic cylinder. ISFP'2003:352-357.
    [27]黄俊,李小宁.气缸低速运动摩擦力模型的研究. 机床与液压.2005,(11):73-75.
    [28]黄俊,李小宁.气缸爬行现象的建模与仿真. 机床与液压.2006,(6):20-23.
    [29]Peter Beater. Pneumatic Drivers. Springer-Verlag Berlin Herdelberg,2007.
    [30]曹剑.基于运动和压力独立控制的气动同步系统研究.浙江大学博士学位论文.2009.
    [31]XIANG F, Wikander J. Block-oriented approximate feedback linearizafion for control of pneumatic actuator system. Control Engineering Practice,2004.12:387-399.
    [32]TOKASHIKI L R, FUJITA T, KAGAWA T. Stick-slip motion in pneumatic cylinders driven by meter-out circuit. Journal of JHPS,1999,30(4):22-29.
    [33]HAMITI K, VODA-BESANCON A, ROUX-BUISSON H. Position control of a pneumatic actuator under the influence of stiction. Control Engineering Practice,1996,4(8): 1079-1088.
    [34]DRAKUNOV S, HANCHIN G D, SU W C, etc. Nonlinearcontrol of a rodless pneumatic servoactuator,or sliding modes versus Coulomb friction. Automatica,1997,33(7): 1401-1408.
    [35]陶国良,王宣银,杨华勇.气动比例/伺服位置控制系统的摩擦力特性研究.液压气动与密封.2001,4(2):9-12.
    [36]刘丽兰,刘宏昭,吴子英,王忠民.机械系统中摩擦模型的研究进展.力学进展,2008,38(2):201-213.
    [37]Armstrong B. Control of Machines with Friction. Boston:Kluwer Academic Publishers, 1991:24-26.
    [38]H. Olsson, K.J. Astrom, C. Canudas de Wit. Friction models and friction compensation. Eur. J. Control, Vol.4, No.3. (1998):176-195.
    [39]Hess DP. Soom A. Friction at alubricated line contact operating at oscillating sliding velocities. Journal of Tribology,1990,112(1):147-152.
    [40]Richardson R. S. H, Nolle H. Surface friction under time-dependent loads. Wear,1976, 37(1):87-101.
    [41]Johannes V. I, Green M. A, Brockley C. A. The role of the rate of application of the tangential force in determining the static friction coefficient. Weak 1973,24(1):381-385.
    [42]B. Armstrong-H e louvry, P. Dupont, and C. Canudas de Wit. A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica, 1994,30(7):1083-1138.
    [43]Canudas de Wit C, Carillo J. A modified EW-RLS algorithm for system with bounded disturbance. Automatica,1990,26(3):599-606.
    [44]Karnopp. Computer simulation of slip-stick friction in mechanical dynamic systems. Journal of Dynamic Systems, Measurement, and Control,1985,107(1):100-103.
    [45]P. Dahl. Solid friction damping of spacecraft oscillations. Paper presented at the AIAA Guidance and Control Conference, Boston Mass,1975,No.75-1104.
    [46]Philip R, Dahl. Solid friction damping of mechanical vibrations. AIAA Journal,1976, 14(12):1675-82.
    [47]Bohlin T. A case study of grey box identification. Automatica,1994,30(2):307-318.
    [48]P.-A. Bliman, M.Sorine. Friction modelling by hysteresis operators, application to Dahl, sticktion and Stribeck effects. In Proceedings of the Conference "Models of Hysteresis", Trento, Italy,1991.
    [49]P.-A. Bliman, M. Sorine. Easy-to-use realistic dry friction models for automatic control. In Proceedings of 3rd European Control Conference, Rome, Italy,1995:3788-3794.
    [50]D.A. Haessig, B. Friedland. On the modelling and simulation of friction. Dyn Syst Meas Control Trans ASME,1991,9,113(3):354-362.
    [51]Canudas de Wit C, Olsson H, et al. A new model for control of system with friction[J]. IEEE Trans. on Automatic Control,1995,40(3):419-425.
    [52]Canudas de Wit C, P. Lischinsky. Adaptive friction compensation with partially known dynamic friction model. International Journal of Adaptive Control and Signal Processing, 1998,11(1):65-80.
    [53]谢祖刚.气缸低速摩擦特性的研究.浙江大学硕士学位论文,2003.
    [54]林复生.简明摩擦学.重庆大学出版社,1987:35-37.
    [55]崔宗伟.气缸低速摩擦力特性的研究及其建模与仿真.2008年.哈尔滨工业大学硕士学位论文.
    [56]刘立伟,王道顺,李世权.数字化气动测量技术的研究与应用[J].液压气动与密封,2003(3):26-27.
    [57]张冬明,陶国良.基于模块化气动元件性能测试平台开发[J].液压与气动,2010(10):78-80.
    [58]Charles Petzold. Windows程序设计(第5版).北京大学出版社,2004,9.
    [59]朱力.计算机控制智能高速气动缓冲系统的研究.杭州:浙江大学,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700