小麦TaPHR1基因表达载体的构建及遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
充分挖掘作物高效利用营养元素的遗传潜力,培育养分高效利用的农作物新品种,对农业可持续发展具有重要意义。本研究以26份优良普通小麦主栽品种(系)为材料,对影响小麦成熟胚愈伤组织诱导、分化和转化的因素进行了试验,进行了磷高效基因TaPHR1高效表达载体的构建和遗传转化研究。获得的主要研究结果如下:
     1、以植物表达载体pROK2-Ubi为基础,设计带有酶切位点KpnI和BamHI的一对引物,从载体pAC25上扩增到目的基因TaPHR1。酶切回收后与同样双酶切的表达载体pROK2-Ubi连接,获得新的高效表达载体pTaPHR1,并用冻融法将其导入根瘤农杆菌LB4404菌株;同时,进一步将表达载体pTaPHR1中的启动子Ubi换为TaPT2,构建了表达载体pTaPHR1-PT2,为农杆菌介导的磷高效基因遗传转化研究奠定了基础。
     2、通过对小麦成熟胚进行愈伤组织诱导及分化再生研究,明确了小麦基因型、吸胀时间、诱愈培养基2,4-D浓度、分化培养基KT浓度等是影响小麦成熟胚愈伤组织形成和分化再生的重要因子。利用剥胚法(embryo-isolated method, EI)诱导小麦成熟胚产生愈伤组织,并进行分化再生培养,筛选出了成熟胚出愈率高、愈伤质量好、分化成苗率较高的济麦22等基因型材料,确定了适宜的吸胀时间(18h)、诱愈(2 mg·L- 1 2,4-D)、分化(5 mg·L- 1 KT)条件。
     3、试验明确了侵染菌液浓度及侵染时间、高渗处理中蔗糖浓度、Ca2+离子处理、共培养中滤纸处理、共培养时间等因素,对小麦成熟胚愈伤组织遗传转化效率有较大影响。接种菌液浓度为OD600=0.6,浸染时间为60min时,抗性愈组率达到最大值4.08%;浸染前进行蔗糖高渗处理,当蔗糖浓度75 g·L- 1时抗性愈组率最高(济麦22,2.90%;泰农18,2.78%);侵染后20 mmol/L Ca2+处理,抗性愈组率达到最高(5.05%);共培养过程中添加滤纸片可以提高转化效率,抗性愈组率达到4.29%;共培养3d,可使抗性愈组率获得最高,达到4.52%。
     4.利用构建的磷高效表达载体pTaPHR1和建立的小麦成熟胚遗传转化体系将磷高效基因TaPHR1转入济麦22,获得了可育的转基因植株,经PCR检测初步证明目的基因已转入其中。
It is important for agricultural sustainable development to fully exploit the crop genetic potential of nutrients utilize efficiency and cultivate new varieties of efficient nutrients use. In this research, gene TaPHR1 was used to construct efficient gene expression vector for genetic transformation system of mature embryos of common wheat by A.tumefacienen. At the same time, 26 wheat genotypes were used for factors research on wheat mature embryos callus induction and differentiation to further optimize the conditions of tissue culture of wheat mature embryos. The major results were as followed:
     1. In this study, Triticum aestivun L. gene TaPHR1 was amplified using specific primers containing restriction enzyme site of KpnI and BamH1. PCR products and the binary expression vector pROK2-Ubi were digested by the corresponding restricted enzymes respectively, and linked directionally. The resulting vector with TaPHR1 was named pTaPHR1. The pTaRHR1 was further introduced into Agrobacterium tumefaciens strain LB4404. At the same time, new expression vector pTaRHR1-PT2 were constructed by changing the promoter Ubi of pTaRHR1 to promoter TaPT2. These vectors were used for phosphorus efficiency genetic transformation system of mature embryos of common wheat by A.tumefaciene.
     2. Genotype, imbibition time, concentration of plant growth regulator and so on were important influence factors for the induction, differentiation and regeneration of wheat mature embryos callus. Some of excellent wheat material including Jimai22 and so on with the high efficiency of induction, differentiation and regeneration of mature embryos callus were selected out from 26 wheat genotypes via embryo-isolated method (EI). The optimal method of induction, differentiation and regeneration of mature embryos callus of these genotypes were determined. The optimized system for induction, differentiation and regeneration of wheat mature embryos callus was established.
     3. Density of A. tumefaciens cell and inoculation time, density of sugar in osmotic treatment, density of Ca2+, putting filter paper, different co-culture time were important influence factors for transformation of wheat mature embryos. A. tumefaciens cell density, inoculation time and selection pressure of selection reagent were confirmed; At the sugar density of 75 g·L- 1, the frequency of resistant callus received the maximum rate to 2.90%(Jimai 22) and 2.78%(Tainong 18); At the Ca2+ density of 20 mmol/L, the frequency of resistant callus received the maximum rate to 5.05%; At the condition of putting filter paper, the frequency of resistant callus received the maximum rate to 4.29%; At the condition of training 3 d, the frequency of resistant callus received the maximum rate to 4.52%; The system optimized relatively of genetic transformation of mature embryo of wheat seed mediated by A. tumefacienens was further optimized.
     4. TaPHR1 gene were transferred into Jimai 22 by high phosphorus efficient expression vector pTaPHR1 and fertile transgenic plants had been gotten. Molecular detection results by PCR analysis of transgenic wheat showed that the useful gene had been transferred successfully.
引文
1.毕瑞明,陈立国,后猛,等.小麦的遗传转化[J].植物生理学通讯, 2006, 42(3):573-579.
    2.曹卫东,贾继增,金继运.小麦磷素利用效率的基因位点及其交互作用[J].植物营养与肥料学报, 2001, 7(3):285-292.
    3.陈佳,马俊莲,张子德.上西早生柿ETR5基因片段的克隆与植物表达载的构建[J].华北农学报, 2007, 22 (4) :25-28.
    4.陈立国,后猛,王玉海,等.农杆菌介导小麦成熟胚遗传转化研究[J].麦类作物学报, 2007, 27(2):188-192.
    5.杜立群,李银心,麻密,等.小麦生长点转化初报.植物学报[J]. 1996, 38(11):921-924.
    6.付永彩,吴茂森,成卓敏.小麦不同品种外植体的农杆菌转化方法研究[J].农业生物技术学报,2002,10(1):25-28.
    7.侯文胜,郭三堆,路明.利用花粉管通道法获得转雪花莲凝集素基因小麦[J].植物学通报, 2003, 20(2):198-204.
    8.华志华,黄大年.转基因植物中外源基因的遗传行为[J].植物学报, 1999, 41(1):1-5.
    9.黄承彦,楚秀生.外源DNA导入技术培育抗旱耐盐小麦新品种[J].山东农业科学, 2000, (4):4-6.
    10.冀俊丽,盛长忠,石明,等.通过负压花粉管法将耐盐基因HVA1转入小麦的研究[J].麦类作物学报, 2002, 22(2):10-13.
    11.柯遐义,陈春洪,杨芳,等.影响麦成熟胚培养的几种因素研究[J].广东农业科学, 1995, 6:12-14.
    12.孔青,徐乃瑜,林琼.小麦外源DNA导入及转化的初步研究[J].遗传, 1993, 15(5):19-22.
    13.李卫,董文,周菲,等.参与在农杆菌介导遗传转化过程中的植物因子研究进展[J].中国生物工程杂志, 2003, 23(12):62-67.
    14.李春娟,单世华,万书波,等.花生胚小叶外植体再生影响因素研究简报[J].花生学报, 2005 ,34 (3) :36-38.
    15.李继云,孙建华,刘金友,等.不同小麦品种的根系生理特性、磷的吸收及利用效率对产量影响的研究[J].西北植物学报, 2000, 20 (4):503-510.
    16.李硕碧.小麦籽粒胚乳结构性状的研究[J].西北农林科技大学学报(自然科学版), 2002, 30(5):7-10.
    17.李子银,胡会庆.农杆菌介导的植物遗传转化进展[J].生物工程进展, 1998, 18(1): 22-26.
    18.梁辉,朱银峰,朱贞,等.雪花莲凝集素基因转化小麦及转基因小麦抗蚜性的研究[J].遗传学报, 2004, 31(2):189-194.
    19.梁雪莲,孙毅,郭平毅.农杆菌介导转化小麦幼胚获得抗除草剂再生植株[J].植物生理与分子生物学学报, 2003, 29(6):501-506.
    20.刘国栋,李继云,李振声.低磷胁迫下小麦地上部某些性状的基因型差异[J].土壤学报, 1998, 35(2):18-20.
    21.刘国栋,肖世和.植物营养与作物育种[J].作物杂志, 2000, (3):4-7.
    22.刘建中,李振声,李继云.利用植物自身潜力提高土壤中磷的生物有效性[J].生态农业研究, 1994, 2(1):16-23.
    23.刘双俊.新疆大赖草DNA片段导入春小麦761转化后代的细胞核型分析[J].西北农业学报, 1997, (4):105.
    24.刘万代,尹钧,任江萍.转基因技术在小麦遗传改良中的应用[J].中国农学通报, 2006, 22:(7):69-73.
    25.刘伟华,李文雄,胡尚连.基因枪法向小麦导入几丁质酶基因的研究[J].西北植物学报, 2003, 23(1):54-59.
    26.陆景陵,胡霭堂.植物营养学[M].北京:北京农业大学出版社, 1994, 35.
    27.栾凤侠,陶波.小麦贸易与转入外源基因研究进展[J].黑龙江农业科学, 2005, (1): 46-48.
    28.牟红梅,刘树俊,周文娟,等.慈姑蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植株分析[J].遗传学报, 1999, 26(6):634-643.
    29.沈善敏.论我国磷肥的生产与应用对策[J].土壤通报, 1985, 3:97-103.
    30.沈善敏.中国土壤肥力[M].北京:中国农业出版社, 1998, 226-227.
    31.孙海国,张福锁.缺磷胁迫下的小麦根系形态特征研究[J].应用生态学报, 2002, 13(3):295-299.
    32.唐宗祥,张怀琼,张怀渝,等.2,4-D、KT对小麦成熟胚愈伤组织形成、分化的影响[J].四川农业大学学报,2004,22(3):203-205.
    33.陶余敏,唐锡华.农杆菌转化单子叶植物的可能性及问题[J].植物生理学报,1992,18(6):402-406.
    34.王常云,王作全,李晓亮,等.小麦幼胚离体培养育种技术研究[J].麦类作物,1999,19(1):14-16.
    35.王关林,方宏筠.植物基因工程[M].北京:北京科学出版社,2002,108-115.
    36.王广金,李忠杰,张晓东,等.利用花粉管通道法将编码优质HMW-GS基因导入小麦进行品质改良的研究[J].黑龙江农业科学,2002,(6):1-3.
    37.王庆仁,李继云,李振声.磷高效基因型小麦对缺磷胁迫的根际适应性反应[J].西北植物学报,2000,20(1):1-7.
    38.王庆仁,李继云,李振声.不同基因型小麦磷素营养阈值的研究[J].西北植物学报,1999,19(3):363-370.
    39.王小军,刘玉乐,黄永,等.可育的抗除草剂溴腈转基因小麦[J].植物学报,1996,38(12):942-948.
    40.王自章,张树珍,李杨瑞.T-DNA转移研究进展[J].生命科学研究,2001,5(3):120-124.
    41.吴刚,夏英武.植物转基因沉默及对策[J].生物技术,2000,10(2):27-32.
    42.吴茂森,田苗英,陈彩层,等.通过花粉管途径将BYDV-GPV株系缺失复制酶基因导入小麦[J].农业生物技术学报,2000,8(2):125-127.
    43.西廷业,王洪刚,后猛,等.小麦TaNCED1基因植物表达载体的构建[J].华北农学报,2008,23(4):77-80.
    44.奚亚军,林拥军,张启发,等.利用花粉管通道将叶片衰老抑制基因PSAG12-IPT导入普通小麦的研究[J].作物学报,2004,6:608-612.
    45.夏兰芹,郭三堆.高温处理对抗虫棉中Bt基因表达的影响[J].中国农业科学,2004,37(11):1733-1737.
    46.谢道昕,范云六,倪丕冲.苏云金芽孢杆菌杀虫基因导入中国栽培水稻品种中花11号获得转基因植株[J].中国科学(B辑),1991,21(8):830-834.
    47.邢宏燕,李滨,李继云.小麦品种磷营养特性的类型分析及其年度间稳定性的研究[J].西北植物学报, 1999, 19(2):219-228.
    48.徐明良,杨金水,葛扣麟.植物转基因的整合机制[J].植物生理学通讯, 1996, 32(3):697-704.
    49.徐琼芳,李连城,陈孝.基因枪法获得GNA转基因小麦植株的研究[J].中国农业科学, 2001, 34(1):5-8.
    50.徐涛.小麦高分子量麦谷蛋白1By15和1Dx1.5-t基因高效表达载体的构建及转化研究[D].中国农科院博士论文, 2006, 35-37.
    51.许耀,贾敬芬,郑国倡.酚类化合物促进根癌农杆菌对植物离体外殖体的高效转化[J].科学通报, 1998, 33(22):1745-1748.
    52.阎新甫,刘文轩,胡学义.外源DNA处理小麦种苗和颖花及其诱导变异的研究初报[J].河南农业大学学报, 1991, 25(4):359-365.
    53.杨景成,于元杰,齐延芳.外源基因导入小麦后雄性不育的初步研究[J].核农学报, 2004, 8(1):1-10.
    54.杨文治,余存祖.黄土高原区域治理与评价[M].北京:科学出版社, 1992, 139-140.
    55.叶兴国, Shirley Sato,徐惠君.小麦农杆菌介导转基因植株的稳定获得和检测[J].中国农业科学, 2001, 34(5):469-474.
    56.尹钧,余桂荣,任江萍,等.小麦花粉管通道法和子房注射法转化Anti-Trxs基因[J].西北植物学报, 2004, 24(5):776-780.
    57.余桂荣,尹钧,任江萍,等.小麦花粉管通道法转基因研究[J].麦类作物学报, 2004, 24(2):15-19.
    58.曾君祉,吴有强,王东江,等.花粉管通道(或运载)法转化的植株后代遗传表现及转化机理的探讨[J].科学通报, 1998, 6(3):561-566.
    59.张福锁,陈清,曹一平.根分泌物及其对根及微生物系统中养分有效性的直接影响[J].土壤与植物营养研究新动态, 1992, 1:64-72.
    60.张晓东,梁荣奇.优质HMW谷蛋白转基因小麦的获得及其遗传稳定性和品质性状分析[J].科学通报, 2003, 48(5):473-479.
    61.赵其国.我国现代农业发展中的若干问题[J].土壤学报, 1997,
    34(1):1-9.
    62.周艳华,何中虎,阎俊,等.中国小麦硬度分布及遗传分析[J].中国农业科学, 2003, 35(10):1177-1185.
    63. Altpeter F, Diaz I, McAuslane H, et al. Increased insect resistance in transgenic wheat stably expressing trypsin inhibitor CMe[J]. Mol Breed, 1999, 5:53-63.
    64. Altpeter F, Vasil V, Srivastava V, et al. Integration and expression of the high-molecular-weight glutenin subunit 1Axl gene into wheat[J]. Nat Biotech, 1996, 14:1155-1159.
    65. Alvarez M L, Gómez M, Carrillo J M, et al. Analysis of dough functionality of floure from transgenic wheat[J]. Mol Breed, 2001, 8:103-108.
    66. Barber S A. Soil Nutrient Bioavailability, A mechanistic approach[M]. John Wi1ey and Sons Inc, Canada, 1984, P:202-231.
    67. Bari R, Pant B D, Stitt M, et al. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants[J]. Plant Physiology, 2006, 141:988-999.
    68. Barro F, Rooke L, Bekes F, et al. Transformation of wheat with high molecular weight subunit genes results in improved functional properties[J]. Nat Biotech, 1997, 15:1295-1299.
    69. Batten G D. The up take and utilization of phorphorus and nitrogen by diploid, tetraploid and hexaploid wheat (T ritucum ssp) [J]. Annals of Botany, 1986, 58:49-59.
    70. Bhat K K S, and Nye P H. Diffusion of phosphate to plant root in soils[J]. Plant & Soil. 1973, 38:161-175.
    71. Bieri S, Potrykus I, Futterer J. Expression of active barley seed ribosome-inactivating protein in transgenic wheat[J]. Theor. Appl. Genet., 2000, 100:755-763.
    72. Blechl A E, Anderson O D. Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat[J]. Nat Biotech, 1996, 14:875-879.
    73. Blechl A E, Le H Q, Anderson O D. Engineering changes in wheat flourby genetic transformation[J]. Plant Physiol, 1998, 152:703-707.
    74. Bliffeld M, Mundy J, Potrykus I, et al. Genetic engineering of what for increased resistance to powdery mildew disease[J]. Theor. Appl. Genet., 1999, 98:1079-1086.
    75. Block M D, Debrouwer T, Moens T. The development of a nuclear male sterility system in wheat.Expression of the barnase gene under the control of tapetum specific promoters[J]. Theor. Appl. Genet., 1997, 95:125-131.
    76. Bochev B. Genetic basis of mineral nutrion in Tritium astivumⅡeffect of the cytoplasm on the absorption element in Genetic Aspects of Plant Nutrion[M]. Martinus Nijhoff Publishers, 1983, 429-434.
    77. Burleigh S H and Harrison M J. The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots[J]. Plant Physiology, 1999, 119:241–248.
    78. Chen W P, Chen P D, Liu D J, et al. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumation-like protein gene[J]. Theor. Appl. Genet., 1999, 99: 755-760.
    79. Chen W P, Gu X, Liang G H, et al. Introduction and constitutive expression of a rice chitinase gene in bread wheat using biolistic bombardment and the bar gene as a selectable marker[J]. Theor. Appl. Genet., 1998, 97:1296-1306
    80. Cheng M, Fry J E, Pang S Z, et al. Genetic transformation of wheat mediated by Agrobacterium tumefaciens[J]. Plant Physiology, 1997, 115(5):971-980.
    81. Cheng M, Hu T C, Layton J, et al. Desiccation of plant tissues post-Agrobacterium infection enhances T-DNA delivery and increases stable transformation efficiency in wheat[J]. In Vitro Cell Dev Biol-Plant, 2003, 39:595-604.
    82. Chiou T J, Aung K, Lin S I., Wu C C, Chiang S F and Su C L. Regulation of phosphate homeostasis by microRNA in Arabidopsis[J]. Plant Cell, 2006, 184:12-421.
    83. Franco-Zorilla J M, Gonzàlez E, Bustos R, Linhares F, Leyva A and Paz-Ares J. The transcriptional control of plant responses to phosphate limitation[J]. Journal of Experimental Botany, 2004, 55:285-293.
    84. Fujii H, Chiou T J, Lin S I, Aung K and Zhu J K. A miRNA involved in phosphate-starvation response in Arabidopsis[J]. Current Biology, 2005, 15:2038-2043.
    85. Hamburger D, Rezzonico E, Petétot J M C, et al. Identification and characterisation of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem[J]. Plant Cell, 2002, 14:889-902.
    86. Hart G E. Chromosome location in wheat and evolution of isozyme structural genes in hexaploid wheat [J]. Heredity, 1977, 39(2):263-277.
    87. Hiei Y, Komari T and Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens[J]. Plant. Mol .Biol., 1997, 35:205-218.
    88. Hiei Y, Ohta S, Komari T, et al. Efficient transformation of rice(Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of T-DNA[J]. Plant J, 1994, 6(2):271-282.
    89. Hogg A C, T Sripo, B Beecher, et al. Wheat puroindolines interact to form friabilin and control wheat grain hardness[J]. Theor. Appl. Genet., 2004, 108:1089-1097.
    90. Holofrd I C R. Soil Phosphrous: its measurement and its up take by plnats[J]. Aust J Soil Res. 1997, 35: 227-39.
    91. Hu T, Metz S, Chay C, et al. Agrobacterium-mediated large scale transformation of wheat(Triticum aestivum L.)[J]. Plant Cell Rep, 2003, 21:1010-1019.
    92. Karunarante S, Sohn A, Mouradov A, et al. Transformation of wheat with the gene encoding the coat protein of barley yellow mosaic virus[J]. Aust J Plant Physio, 1996, 23:429-435.
    93. Khanna H K and Daggard G E. Agrobacterium tumefaciens-mediated transformation of wheat using a super binary vector and a polyamine-supplemented regeneration medium[J]. Plant Cell Rep, 2003, 21:429-436.
    94. Leckband G and L?rz H. Transformation and expression of a stilbene synthase gene of Vitis vinifera L.in barley and wheat for increased fungal resistance[J]. Theor. Appl. Genet., 1998, 97:1004-1012.
    95. Lena N, Renate M and Tom H N. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana[J]. Plant Cell and Environment, 2007, 30: 1499-1512.
    96. Lynch J P, and Brown K M. Top soil for agingan architectural adaptation of plants to low phosphorus[J]. Plant and Soil, 2001, 237:225-237.
    97. Marschner H. Mineral Nutrition of High Plant. Second Edition[M]. Academic Press, London, 1995, 37-39.
    98. Martin A C, Pozo J C, Iglesias J, et al. Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis[J]. The Plant Journal, 2000, 24:559-567.
    99. Mengel K, Kirby E, Kosegarten H, et al. Homeostasis and transport of inorganic Phosphate in plants[J]. Plant Cell Physiol, 2001, 36:1-7.
    100.Miura K, Rus A, and Sharkuu A. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102: 7760-7765.
    101.Okubara P A, Blechl A E, McCormick S P, et al. Engineering deoxynivalenol metabolism in wheat through the expression of a fungal trichothecene acetyltransferase gene[J]. Theor. Appl. Genet., 2002,
    106:74-83.
    102.Oldach K H, Becker D, L?rz H. Heterologous expression of genes mediating enhanced fingal resistance in transgenic wheat[J]. Mol.Plant Microbe Interact, 2001, 14:832-838.
    103.Ozgen M, Turet M, Altinok S, et al. Efficient callus induction and plantregeneration from mature embryo culture of winter wheat genotypes[J]. Plant Cell Rep, 1998, 18 :331-335.
    104.Peters N R, Ackerman S, Davis E A. A modular vector for Agrobacteriummediated transformation of wheat[J]. Plant Mol.Biol.Rep., 1999,17:323-331.
    105.Poirier Y, Thoma S, Somerville C, et al. A mutant of Arabidopsis deficient in xylem loading of phosphate[J]. Plant Physiology, 1991, 97:1087-1093.
    106.Raghothama K G. Phosphorus acquisition on annu plant physicall[J]. Plant Mol Biol, 1999, 50:665-693.
    107.Rending V V and Tayler H M. Principles of soil-Plant relationship[M]. McGraawHill, New York, 1989, P:275.
    108.Rooke L, Bakes F, Fido R, et al. Overexpresssion of gluten protein in transgenic wheat results in greatly increased dough strength[J]. J.Cereal Sci., 1999, 30:115-120.
    109.Rubio V, Linhares F, Solano R, et al. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae[J]. Genes and Development, 2001, 15:2122-2133.
    110.Sample E C, Soper R J and Racz G J. Reaction of phosphate fertilizers in soils in the role of phosphorus in agriculture[J]. American sociey of agronomy, 1980, 263-310.
    111.Shin H, Shin H S, Chen R, et al. Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation[J]. The Plant Journal, 2006, 45:712-726.
    112.St?ger C, William S, Christou P. Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid sitobion avenae[J]. Molecular Breeding, 1999, 5(1):65-73.
    113.Takumi S, Murai K, Mori N, et al. Trans-activation of a maize Ds transposable element in transgenic wheat plants expressing the Ac transposase gene[J]. Theor. Apple. Genet., 1999, 98:947-953.
    114.Vance C P, Understone C and Allan D I. Phosphorus acquisition and use critical adaptation by plants for securing a nonrenewable resource[J]. NewPhytologist, 2003, 157:423-447.
    115.Wang Y, Ribot C, Rezzonico E, et al. Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis[J]. Plant Physiology, 2004, 135:1-12.
    116.Weir B, Gu X, Wang M-B, et al. Agrobacterium tumefaciens-mediated transformation of wheat using suspension cells as a model system and green fluorescent protein as a visual marker[J]. Aust.J.Plant Physiol, 2001, 28:807-818.
    117.Wiley P R, Tosi P, Jones H D, et al. The molecular basis for grain texture in wheat[J]. Proceedings of the 11th Internatonal Wheat Genetics Symposium, 2004, 15:43-47.
    118.Wu H, Sparks C, Amoah B, et al. Factors influencing successful Agrobacterium-mediated genetic transformation of wheat[J]. Plant Cell Rep, 2003, 21:659-668.
    119.Zhang L, French R, Langenberg W G, et al. Accumulation of barley stripe mosaic virus is significantly reduced in transgenic wheat plants expressing a bacterial ribonuclease[J]. Transgenic Res, 2001, 10:13-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700