栉孔扇贝遗传图谱的构建及重复元件的进化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1栉孔扇贝AFLP遗传连锁图谱的构建
     应用AFLP技术,本研究首次构建了栉孔扇贝的遗传连锁图谱。共21对引物组合用于AFLP分析。F1子代群体的多态位点比率为62.94%。在检测的783个多态性标记中,317个标记呈1:1分离,190个标记呈3:1分离,其余276个标记呈显著偏分离。应用软件MAPMSKER/EXP进行连锁分析,其中LOD设为2.5且θ设为0.30。雄性图谱含19个连锁群,共94个标记,总长1511.4 cM,覆盖率为66.56%;雌性图谱含20个连锁群,共97个标记,总长1610.2 cM,覆盖率为66.05%。雌雄图谱中AFLP标记的分布相对比较均匀。
     2栉孔扇贝rDNA家族在自然群体内的动态协同进化模式
     rDNA家族,作为串联重复多基因家族的一员,各重复单元间呈协同进化。本研究主要通过调查ITS序列的indel(insertion/deletion,即插入/缺失)多态性来研究栉孔扇贝rDNA家族在自然群体内的协同进化过程。在优化的条件下,由indel导致的异源双链分子可以在DHPLC(denaturing high-performance liquid chromatography)分析中被有效鉴别。应用该项技术,我们筛查了栉孔扇贝自然群体40个个体ITS序列的indel多态性。令人惊讶的是,仅7.5%的个体的ITS的组成是纯合的,而其它的个体(92.5%)为杂合的。基于DHPLC分析中不同的峰型,7个个体被选择通过测序的方法来调查个体内的indel多态性。进一步,单精子内indel多态性在更多的不同峰型个体中被调查。基于这些结果,本研究提出一个符合栉孔扇贝rDNA家族在自然群体内协同进化的新模式。不同于以往提出的模式,占群体最高比例的双峰个体可以被看作处于稳定和平衡的状态。这一状态由快速的染色体内重组机制所维持。单峰个体可以被看作处于取得完全均质化状态。它们在群体内仅占很低比例,因而染色体间重组的速度慢于染色体内重组的速度。三峰个体可以被看作处于正均质化一个突变体。该突变体可通过突变或染色体间重组产生。它们在群体内占相当高的比例,这一点或许暗示染色体间重组的速度并不低。
     3栉海杂交扇贝( Chlamys farreri♀×Argopecten irradians♂)早期发育过程中rDNA家族由偏向性基因转变介导的快速协同进化
     本研究还调查了栉海杂交扇贝早期发育过程中其基因组内亲本ITS序列的变化。获得的主要结果为:(1)PCR-RFLP分析结果显示杂种基因组内父本ITS的数量随着杂种的发育而逐渐减少,甚至在受精后14天时几乎完全消失;(2)FISH(fluorescence in situ hybridization)分析结果显示在杂种基因组内母本ITS序列被发现存在于父本来源的染色体上,而父本ITS序列却未被发现存在于母本来源的染色体上;(3)应用PCR-RFLP技术在杂种基因组内鉴别出6个重组突变体。由于重组区域比较短,因而位点特异性重组或许参与这一偏向性的基因转变过程。基于这些结果,我们推断rDNA家族在栉海杂种早期发育过程中发生了由偏向性基因转变引发的快速的协同进化。
     4栉孔扇贝与扇贝科其它7种扇贝ITS1二级结构的系统进化与结构进化分析
     目前,在序列比对过程中对缺口进行精确定位十分困难。当比对的序列具高度变异性时,这一缺点尤为突出。为了克服这一困难,本研究提出了一个新的策略用于解决基于高变序列的二级结构进行系统推断问题。在这个新策略中,完整的二级结构被直接用作聚类的字符,因而不再需要将其分解成同源的亚结构。本研究的结果显示,可靠的系统发生关系可以从完整的二级结构比对中推断得出,但不能从序列比对中推断得出(即便辅以结构的信息)。因而本研究结果充分支持这一新策略的在实践上的可行性。此外,本研究还调查了扇贝科8种扇贝ITS1二级结构的进化情况。完整的ITS1二级结构可以被分为4个结构域。互补性的碱基变化被发现存在于这4个结构域中。进一步,4个结构域内保守的结构模序被鉴别出来。这些模序,特别是D2和D3中的模序,或许在rRNA的成熟过程中起着重要的作用。
     5栉孔扇贝和虾夷扇贝Ty3/Gypsy类群Mag系反转座子CFG1和PYG1的克隆与特性分析
     本研究首次从栉孔扇贝和虾夷扇贝基因组内克隆得到Ty3/Gypsy类群Mag系的两个反转座子CFG1和PYG1。CFG1元件的全长为4826bp,包括5’-LTR(192bp),完整的ORF(4047bp)和3’-LTR(189bp)。CFG1和PYG1元件完整的ORF包含1348个氨基酸,未发现阅读框移位现象。与它们关系最近的是花斑剑尾鱼的Jule元件。栉孔扇贝二倍体基因组约含84个拷贝的CFG1元件。对于CFG1,PYG1和Ty3/Gypsy类群Mag系的其它元件,本研究总结了它们的主要特征,并比较了它们反转录酶(RT)域的3D结构。CFG1元件在幼虫期mRNA的表达量的变化规律为:在原肠胚前,其逐渐升高;在原肠胚后,其逐渐降低。而CFG1元件在闭壳肌和消化腺组织中mRNA的表达量比成体的其它组织略微低一些。总的来看,CFG1元件mRNA的表达量在幼虫期显著高于其在成体组织。CFG1元件的启动子和部分组特异性抗原(GAG)域处于未甲基化状态,而部分RT域则处于高度甲基化状态。因而,CFG1的表达可能是由转录后抑制机制而不是甲基化所控制。
1. Construction of AFLP linkage map for C. farreri
     The linkage maps of C. farreri were constructed with AFLP markers generated from 21 primer combinations. The polymorphism level of F1 progeny is 62.94%. Of the 783 polymorphic markers detected, 317 segregated in 1:1 ratios and 190 in 3:1 ratios, whereas the other 276 showed segregation distortion. Linkage analysis used the program MAPMAKER/EXP at LOD=2.5 andθ=0.30. The male map containing 94 markers in 19 linkage groups, was 1511.4 cM in total length and 66.56% in genome coverage. The female map containing 97 markers in 20 linkage groups, was 1610.2 cM in total length and 66.05% in genome coverage. The distribution of AFLP markers is relatively even in chromosomes of male and female map.
     2. Dynamics of concerted evolution of rDNA family in natural population of C. farreri
     rDNA family, as one of tandemly repeated families, exhibits the general pattern of concerted evolution. In order to study the homogenization process of rDNA family in the population of Zhikong scallop, this study focused on the insertion/deletion (indel) polymorphism of the internal transcribed spacer (ITS) sequence. Under the optimized condition, ITS heteroduplexes caused by indels could be well identified in denaturing high-performance liquid chromatography (DHPLC) analysis. Using this technique, ITS indel polymorphism in 40 individuals from natural population was investigated. Surprisingly, only 7.5 percent of individuals were homogeneous in ITS constitution, while the others (92.5%) were heterozygous. Based on peak types appeared in DHPLC analysis, seven representative individuals were chosen and ITS polymorphism within an individual was then investigated using sequencing method. Further, ITS indel polymorphism within single sperm was investigated in more individuals. Based on these results, a new model was proposed for concerted evolution of rDNA family in natural population of C. farreri. Different from previous models, 2-peak individuals with the highest proportion (62.5%) in natural population can be seen as being in a steady and balanced state maintained by rapid intrachromosomal recombination. 1-peak individuals can be seen as being in the state of full homogenization. They occupy the low proportion (7.5%) in natural population, which suggests that interchromosomal recombination is slower than intrachromosomal recombination. 3-peak individuals can be seen as being in the state of homogenizing a variant which may be generated by mutation or interchromosomal recombination. They occupy relatively high proportion in natural population, which implies that the rate of interchromosomal recombination may be not rare.
     3. Rapid concerted evolution via biased gene conversion occurs in the rDNA family of a hybrid scallop (Chlamys farreri♀×Argopecten irradians♂) at the early developmental stage
     This study also focused on the variation of the parental ITSs in a hybrid scallop (Chlamys farreri♀×Argopecten irradians♂) at the early developmental stage. The main results obtained in this study are: (i) polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis revealed that the quantity of paternal ITS in the hybrid had decreased gradually accompanying the development of the hybrid and even nearly disappeared at the 14th day after fertilization; (ii) fluorescence in situ hybridization (FISH) analysis in the hybrid revealed that maternal ITS had been found in the paternal ITS-bearing chromosomes, while paternal ITS had not been found in the maternal ITS-bearing chromosome; (iii) with PCR-RFLP technique, six recombinant variants were found in the hybrid and identification of short recombination regions implied that site-specific recombination may be involved in the biased gene conversion. Based on these results, it was concluded that rapid concerted evolution via biased gene conversion had occurred in the rDNA family of the hybrid at the early developmental stage.
     4. Analysis of the secondary structure of ITS1 in Pectinidae: implications for phylogenetic reconstruction and structural evolution
     It is at present difficult to accurately position gaps in sequence alignment and to determine substructural homology in structure alignment when reconstructing phylogenies based on highly divergent sequences. Therefore, this study developed a new strategy for inferring phylogenies based on highly divergent sequences. In this new strategy, the whole secondary structure presented as a string in bracket notation is used as phylogenetic characters to infer phylogenetic relationships. It is no longer necessary to decompose the secondary structure into homologous substructural components. In this study, reliable phylogenetic relationships of eight species in Pectinidae were inferred from the structure alignment, but not from sequence alignment, even with the aid of structural information. The results suggest that this new strategy should be useful for inferring phylogenetic relationships based on highly divergent sequences. Moreover, the structural evolution of ITS1 in Pectinidae was also investigated. The whole ITS1 structure could be divided into 4 structural domains. Compensatory changes were found in all 4 structural domains. Structural motifs in these domains were identified further. These motifs, especially those in D2 and D3, may have important functions in the maturation of rRNAs.
     5. Cloning and characterization of two novel elements (CFG1 and PYG1) of Mag lineage of Ty3/Gypsy retrotransposons from Zhikong scallop (Chlamys farreri) and Japanese scallop (Patinopecten yessoensis)
     Two novel elements (CFG1 and PYG1) which belong to Mag lineage of Ty3/Gypsy retrotransposons were cloned from Zhikong scallop (Chlamys farreri) and Japanese scallop (Patinopecten yessoensis). The total length of CFG1 element is 4826 bp, including 5’-LTR (192 bp), entire ORF (4047 bp) and 3’-LTR (189 bp). The entire ORFs of both CFG1 and PYG1 elements are composed of 1348 aa and do not have any frameshifts. Their closest relative is Jule element from the poeciliid fish (Xiphophorus maculatus). On average, the diploid genome of C. farreri contains approximate 84 copies of CFG1 elements. For CFG1, PYG1 and other elements of Mag lineage of Ty3/Gypsy group, this study summarized their major features and compared their 3D structures of RT domains. The mRNA expression of CFG1 element in larvae increases gradually before gastrulae stage and decreases gradually after gastrulae stage, whereas expressions in adductor muscle and digestive gland are relatively lower than those in other tissues of adults. Overall, the mRNA expression of CFG1 element in the early larvae is significantly higher than those in adult tissues. The promoter and partial GAG domain of CFG1 element are unmethylated, however, the partial RT domain is highly methylated. Therefore, it seems that CFG1 expression may be controlled by post-transcriptional suppression rather than methylation.
引文
[1]李莉,郭希明. 遗传图谱及其在主要水产动物的研究进展. 海洋科学,2003,27(11):14-19
    [2]李太武,孙修勤,刘艳,张进兴. 栉孔扇贝种群的遗传变异分析. 高技术通讯,2001,4:25-27
    [3]邱芳,伏健民,金德敏,王斌. 遗传多样性的分子检测. 生物多样性,1999,6(2):143-150
    [4]宋林生,李俊强,李红蕾,崔朝霞,李成华,胥炜,常亚青. 用 RAPD 技术对我国栉孔扇贝野生种群与养殖群体的遗传结构及其遗传分化的研究. 高技术通讯,2002,7:83-86
    [5]相建海,陈俅. 海湾扇贝、栉孔扇贝和虾夷扇贝杂交育种可行性研究 II. 杂交的细胞遗传学研究. 中科院海洋研究所实验海洋生物学开放研究实验室研究年报. 曾呈奎,费修绠主编,青岛:青岛海洋大学出版社,1991,Pp:137-139
    [6]谢强,卜文俊. RNA 的二级结构在动物分子系统学研究中的应用. 动物分类学报,2003,28(4):557-562
    [7]于军. 基因组学:多系统生命科学研究体系. 科学中国人,2004,5:52-53
    [8]张德水,陈受宜,惠东威,庄炳昌. 栽培大豆与半野生大豆杂种 F2 群体中 RFLP 标记的偏分离及其形成原因的分析. 遗传学报,1997,24:362-367
    [9]Agresti JJ, Seki S, Cnaani A, Poompuang S, Hallerman EM, Umiel N, Hulata G, Gall GAE, May B. Breeding new strains of tilapia: Development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture, 2000, 185: 43-56
    [10]Aguilar JF, Rossello JA, Feliner GN. Nuclear ribosomal DNA (nrDNA) concerted evolution in natural and artifical hybrids of Armeria (Plumbaginaceae). Mol Ecol, 1999, 8: 1341-1346
    [11]Arnheim N. Concerted evolution of multigene families. Evolution of Genes and Proteins, ed. M Nei, RK Koehn, Sinauer Associates, Sunderland, Mass, 1983, pp 38-61
    [12]Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E. Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci USA, 1980, 77: 7323-7327
    [13]Arkhipova I, Meselson M. Transposable elements in sexual and ancient taxa. Proc Natl Acad Sci USA, 2000, 97: 14473-14477
    [14]Bafna V, Muthukrishnan S, Ravi R. Computing similarity between RNA strings. In Proc 6th Symp Combinatorial Pattern Matching, Lecture Notes in Computer Science 937. eds. Z Galil, E Ukkonen, Berlin: Springer-Verlag, 1995, Pp: 1–16
    [15]Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard, 1995, 82: 247-277
    [16]Barucca M, Olmo E, Schiaparelli S, Canapa A. Molecular phylogeny of the family Pectinidae (Mollusca: Bivalvia) based on mitochondrial 16S and 12S rRNA genes. Mol Phylogenet Evol, 2004, 31: 89-95
    [17]Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P. An atypical topoisomerase IIfrom Archaea with implications for meiotic recombination. Nature, 1997, 386: 414-417
    [18]Billoud B, Guerrucci M, Masselot M, Deutsch JS. Cirripede phylogeny using a novel approach: molecular morphometrics. Mol Biol Evol, 2000, 17: 1435-1445
    [19]Boeke JD, Corces VG. Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol, 1989, 43: 403-434
    [20]Borggrefe T, Wabl M, Akhmedov AT, Jessberger R. A B-cell specific DNA recombination complex. J Biol Chem, 1998, 273: 17025-17035
    [21]Bowen NJ, McDonald JG. Genomic analysis of Caenorhabditis elegans reveals ancient families of retrovirus-like elements. Genome Res, 1999, 9: 924-935
    [22]Bradley RD, Hillis DM. Recombinant DNA sequences generated by PCR amplification. Mol Biol Evol, 1997, 14: 592-593
    [23]Brown DD, Wensink PC, Jordan E. Xenopus laevis and Xenopus mulleri: the evolution of tandem genes. J Mol Biol, 1972, 63: 57-73
    [24]Buckler ESIV, Ippolito A, Holtsford TP. The evolution of ribosomal DNA: divergent paralogues and phylogenetic implications. Genetics, 1997, 145: 821-832
    [25]Caetano-Anolles G. Evolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol, 2002, 54: 333-345
    [26]Cai HW, Gao ZS, Yuyama N, Ogawa N. Identification of AFLP markers closely linked to the rhm gene for resistance to Southern Corn Leaf Blight in maize by using bulked segregant analysis. Mol Genet Genomics, 2003, 269: 299-303
    [27]Capy P, Vitalis R, Langin T, Higuet D, Bazin C. Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J Mol Evol, 1996, 42: 359-368
    [28]Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet, 1999, 99: 425-431
    [29]Cervera MT, Storme V, Ivens B, Gusmao J, Lui BH, Hostyn V, Slycken JV, Van Montagu M, Boerjan W. Dense Genetic Linkage Maps of Three Populus Species (Populus deltoides, P. nigra and P. trichocarpa) Based on AFLP and Microsatellite Markers. Genetics, 2001, 158: 787-809
    [30]Chakravarti A, Lasher LK, Reefer JE. A maximum likelihood method for estimating genome length using genetic linkage data. Genetics, 1991, 128: 175-182
    [31]Chen CA, Chang C, Wei NV, Chen C, Lein Y, Lin H, Dai C, Wallace CC. Secondary structure and phylogenetic utility of the ribosomal internal transcribed spacer 2 (ITS2) in scleractinian corals. Zool Stud, 2004, 43: 759-771
    [32]Chen X, Salamini F, Gebhardt C. A potato molecular-function map for carbohydrate metabolism and transport. Theor Appl Genet, 2001, 102: 284-295
    [33]Chistiakov DA, Hellemans B, Haley CS, Law AS, Tsigenopoulos CS, Kotoulas G, Bertotto D, Libertini A, Volckaert FAM. A microsatellite linkage map of the European sea bass Dicentrarchus labrax L. Genetics, 2005, 170: 1821-1826
    [34]Coimbra MRM, Kobayashi K, Koretsugu S, Hasegawa O, Ohara E, Ozaki A, Sakamoto T, Naruse K,Okamoto N. A genetic linkage map of the Japanese flounder, Paralichthys olivaceus. Aquaculture, 2003, 220: 203-218
    [35]Coleman AW, Preparata RM, Mehrotra B, Mai JC. Derivation of the secondary structure of the ITS-1 transcript in Volvocales and its taxonomical correlations. Protist, 1998, 149: 135-146
    [36]Copenhaver GP, Pikaard CS. Two-dimensional RFLP analysis reveal megabase-sized clusters of rRNA gene variants in Arabidopsis thaliana, suggesting local spreading of variants as the mode for gene homogenization during concerted evolution. Plant J, 1996, 9: 273-282
    [37]Cremonesi L, Stenirri S, Fermo I, Paroni R, Ferrari M, Cazzola M, Arosio P. Denaturing HPLC analysis of DNA deletions and insertions. Hum Mutat, 2003, 22: 98-102
    [38]Crowther RL, Remeta DP, Minetti CA, Das D, Montano SP, Georgiadis MM. Structural and energetic characterization of nucleic acid-binding to the fingers domain of Moloney murine leukemia virus reverse transcriptase. Proteins, 2004, 57: 15-26
    [39]DeLano WL. The PyMOL Molecular Graphics System on the World Wide Web http://www.pymol.org. 2002
    [40]Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD. A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the solanaceae. Genetics, 2002, 161: 1697-1711
    [41]Doolittle RF, Feng DF, Johnson MS, McClure MA. Origins and evolutionary relationships of retroviruses. Quart Rev Biol, 1989, 64: 1-30
    [42]Dover G. Linkage disequilibrium and molecular drive in the rDNA gene family. Genetics, 1989, 122: 249-252
    [43]Dover G. Molecular drive: a cohesive mode of species evolution. Nature, 1982, 299: 111-117
    [44]Dudley JW. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci, 1993, 33: 660-668
    [45]Durbin R, Eddy S, Krogh A, Mitchison G. Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge: Cambridge Univ Press, 1998, Pp: 260-298
    [46]Elder JF, Turner BJ. Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol, 1995, 70: 297-320
    [47]Esposito MS. Evidence that spontaneous mitotic recombination occurs at the two-strand stage. Proc Natl Acad Sci USA, 1978, 75: 4436-4440
    [48]Fan M, Currie BP, Gutell RR, Ragan MA, Casadevall A. The 16S-like, 5.8S and 23S-like rRNAs of the two varieties of Cryptococcus neoformans: sequence, secondary structure, phylogenetic analysis and restriction fragment polymorphisms. J Med Vet Mycol, 1994, 32: 163-180
    [49]Finnegan DJ. Retroviruses and transposable elements-which came first? Nature, 1983, 302: 105-106
    [50]Fishman L, Kelly AJ, Morgan E, Willis JH. A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics, 2001, 159: 1701-1716
    [51]Fontana W, Konings DAM, Stadler PF, Schuster P. Statistics of RNA secondary structures. Biopolymers, 1993, 33: 1389-1404
    [52]Frueh FW, Noyer-Weidner M. The use of denaturing high-performance liquid chromatography (DHPLC) for the analysis of genetic variations: impact for diagnostics and pharmacogenetics. Clin Chem Lab Med, 2003, 41: 452-461
    [53]Gaffney PM, Pierce JC, Mackinley AG, Titchen DA, Glenn WK. Pearl, a novel family of putative transposable elements in Bivalve mollusks. J Mol Evol, 2003, 56: 308-316
    [54]Gaffney PM, Stott TM. Genetic heterozygosity and production traits in natural and hatching populations of bivalves. Aquaculture, 1984, 42: 289-302
    [55]Gandolfi A, Bonilauri P, Rossi V, Menozzi P. Intraindividual and intraspecies variability of ITS1 sequences in the ancient asexual Darwinula stevensoni (Crustacea: Ostracoda). Heredity, 2001, 87: 449-455
    [56]Ganley ARD, Scott B. Concerted evolution in the ribosomal RNA genes of an Epichloe endophyte hybrid: comparison between tandemly arranged rDNA and dispersed 5S rrn genes. Fungal Genet Biol, 2002, 35: 39-51
    [57]Ganley ARD, Scott B. Extraordinary ribosomal spacer length heterogeneity in a Neotyphodium endophyte hybrid: implications for concerted evolution. Genetics, 1998, 150: 1625-1637
    [58]Gilbey J, Verspoor E, McLay A, Houlihan D. A microsatellite linkage map for Atlantic salmon (Salmo salar). Anim Genet, 2004, 35: 98-105
    [59]Goertzen LR, Cannone JJ, Gutell RR, Jansen RK. ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae. Mol Phylogenet Evol, 2003, 29: 216-234
    [60]Gontcharov AA, Melkonian M. Molecular phylogeny of Staurastrum Meyen ex Ralfs and related genera (Zygnematophyceae, Streptophyta) based on coding and noncoding rDNA sequence comparisons. J Phycol, 2005, 41: 887-899
    [61]Gonzalez IL, Sylvester JE. Human rDNA: evolutionary patterns within the genes and tandem arrays derived from multiple chromosomes. Genomics, 2001, 73: 255-263
    [62]Gorelick RJ, Henderson LE, Hanser JP, Rein A. Point mutants of Moloney murine leukemia virus that fail to package viral RNA: evidence for specific RNA recognition by a “zinc finger-like” protein sequence. Proc Natl Acad Sci USA, 1988, 85: 8420-8424
    [63]Gorodkin J, Heyer LJ, Brunak S, Stormo GD. Displaying the information contents of structural RNA alignments: the structure logos. Comput Appl Biosci, 1997, 13: 583-586
    [64]Gottschling M, Hilger HH, Wolf M, Diane N. Secondary structure of the ITS1 transcript and its application in a reconstruction of the phylogeny of Boraginales. Plant Biol, 2001, 3: 629-636
    [65]Gottschling M, Plotner J. Secondary structure models of the nuclear internal transcribed spacer regions and 5.8S rRNA in Calciodinelloideae (Peridiniaceae) and other dinoflagellates. Nucl Acids Res, 2004, 32: 307-315
    [66]Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross: mapping strategy and RAPD markers. Genetics, 1994, 137: 1121-1137
    [67]Green LM, Berg JM. A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions:Spectroscopic studies and a proposed three-dimensional structure. Proc Natl Acad Sci USA, 1989. 86: 4047-4051
    [68]Gribbon BM, Pearce SR, Kalendar R, Schulman AH, Paulin L, Jack P, Kumar A, Flavell AJ. Phylogeny and transpositional activity of Ty1-copia group retrotransposons in cereal genomes. Mol Gen Genet, 1999, 261: 883-891
    [69]Hackett CA, Broadfoot LB. Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity, 2003, 90: 33-38
    [70]Hackett CA, Wachira FN, Paul S, Powell W, Waugh R. Construction of a genetic linkage map for tea (Camellia sinensis). Heredity, 2000, 85: 346-355
    [71]Hanakahi LA, Dempsey LA, Li MJ, Maizels N. Nucleolin is one component of the B cell-specific transcription factor and switch region binding protein, LR1. Proc Natl Acad Sci USA, 1997, 94: 3605-3610
    [72]Havecker ER, Gao X, Voytas DF. The diversity of LTR retrotransposons. Genome Biol, 2004. 5: 225
    [73]Heath DD, Rawson PD, Hilbish TJ. PCR-based nuclear markers identify alien blue mussel (Mytilus spp.) genotypes on the west coast of Canada. Can J Fish Aquat Sci, 1995, 52: 2621-2627
    [74]Helentjaris T. Implication for conserved genomic structure among plant species. Pro Natl Acad Sci USA, 1993, 90: 8308-8309
    [75]Hemmat M, Weeden NF, Manganaris AG, Lawson DM. Molecular marker linkage map for apple. J Hered, 1994, 85: 4-11
    [76]Herbergs J, Siwek M, Crooijmans RP, Van der Poel JJ, Groenen MA. Multicolour fluorescent detection and mapping of AFLP markers in chicken (Gallus domesticus). Anim Genet, 1999, 30: 274-285
    [77]Hershkovitz MA, Lewis LA. Deep-level diagnostic value of the rDNA-ITS region. Mol Biol Evol, 1996, 13: 1276-1295
    [78]Hickson RE, Simon C, Cooper A, Spicer GS, Sullivan J, Penny D. Conserved sequence motifs, alignment, and secondary structure for the third domain of animal 12S rRNA. Mol Biol Evol, 1996, 13: 150-169
    [79]Hillis DM, Dixon MT. Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol, 1991, 66: 411-453
    [80]Hillis DM, Moritz C, Porter CA, Baker RJ. Evidence for biased gene conversion in concerted evolution of ribosomal DNA. Science, 1991, 251: 308-310
    [81]Hofacker IL. Vienna RNA secondary structure server. Nucl Acids Res, 2003, 31: 3429-3431
    [82]Hofacker IL, Fekete M, Stadler PF. Secondary structure prediction for aligned RNA sequences. J Mol Biol, 2002, 319: 1059-1066
    [83]Hofacker IL, Fontana W, Stadler PF, Bonhoeffer S, Tacker M, Schuster P. Fast folding and comparison of RNA secondary structures. Monatsh Chem, 1994, 125: 167-188
    [84]Hohmann U, Graner A, Endo TR, Gill BS, Herrmann RG. Comparison of wheat physical maps with barley linkage maps for group 7 chromosomes. Theor Appl Genet, 1995, 91: 618-626
    [85]Holbrook SR. RNA structure: the long and the short of it. Curr Opin Struc Biol, 2005, 15:302-308
    [86]Hood L, Campbell JH, Elgin SCR. The organization, expression, and evolution of antibody genes and other multigene families. Annu Rev Genet, 1975, 9: 305-353
    [87]Htun H, Dahlberg JE. Topology and formation of triple-stranded H-DNA. Science, 1989, 243: 1571-1576
    [88]Hu X, Bao Z, Hu J, Shao M, Zhang L, Bi K, Zhan A, Huang X. Cloning and characterization of tryptophan 2,3-dioxygenase gene of Zhikong scallop Chlamys farreri (Jones and Preston 1904). Aquac Res, 2006, 37: 1187-1194
    [89]Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA, 2003, 100: 2574-2579
    [90]Hubert S, Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas. Genetics, 2004, 168: 351-362
    [91]Hughes AL, Nei M. Evolutionary relationships of class II major-histocompatibility-complex genes in mammals. Mol Biol Evol, 1990, 7: 491-514
    [92]Hughes KW, Petersen RH. Apparent recombination or gene conversion in the ribosomal ITS region of a Flammulina (Fungi, Agaricales) hybrid. Mol Biol Evol, 2001, 18: 94-96
    [93]Hung GC, Chilton NB, Beveridge I, Gasser RB. Secondary structure model for the ITS-2 precursor rRNA of strongyloid nematodes of equids: implications for phylogenetic inference. Int J Parasitol, 1999, 29: 1949-1964
    [94]Ingram VM. Gene evolution and the haemoglobins. Nature, 1961, 189: 704-708
    [95]Insua A, Lopez-Pinon MJ, Freire R, Mendez J. Sequence analysis of the ribosomal DNA internal transcribed spacer region in some scallop species (Mollusca: Bivalvia: Pectinidae). Genome, 2003, 46: 595-604
    [96]Jansen RC, Stam P. High resolution of quantitative traits into multiple loci via interval mapping. Genetics, 1994, 136: 1447-1455
    [97]Jenczewski E, Gherardi M, Bonnin I, Prosperi JM, Olivieri I, Huguet T. Insight on segregation distortion in two intraspecific crosses between species of Medicago (Leguminosae). Theor Appl Genet, 1997, 94: 682-691
    [98]Jentoft JE, Smith LM, Fu X, Johnson M, Leis J. Conserved cysteine and histidine residues of the avian myeloblastosis virus nucleocapsid protein are essential for viral replication but are not “zinc-binding fingers”. Proc Natl Acad Sci USA, 1988, 85: 7094-7098
    [99]Jiang T, Lin G, Ma B, Zhang K. A general edit distance between two RNA structures. J Comput Biol, 2002, 9: 371-388
    [100]Johnson R, Gamblin RJ, Ooi L, Bruce AW, Donaldson IJ, Westhesd DR, Wood IC, Jackson RM, Buckley NJ. Identification of the REST regulon reveals extensive transposable element-mediated binging site duplication. Nucleic Acids Res, 2006, 34: published online, doi: 10.1093
    [101]Jones ES, Hughes LJ, Drayton MC, Abberton MT, Michaelson-Yeates TPT, Bowen C, Forster JW. An SSR and AFLP molecular marker-based genetic map of white clover (Trifolium repens L.). Plant Sci,2003, 165: 531-539
    [102]Kai W, Kikuchi K, Fujita M, Suetake H, Fujiwara A, Yoshiura Y, Ototake M, Venkatesh B, Miyaki K, Suzuki Y. A genetic linkage map for the tiger pufferfish, Takifugu rubripes. Genetics, 2005, 171: 227-238
    [103]Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative. Genetics, 1999, 152: 1203-1216
    [104]Katzenberg DR, Tilley SA, Birshtein BK. Nucleotide sequence of an unequal sister chromatid exchange site in a mouse myeloma cell line. Mol Cell Biol, 1989, 9: 1324-1326
    [105]Kazazian Jr HH. Mobile elements: drivers of genome evolution. Science, 2004, 303: 1626-1632
    [106]Keeney S, Giroux CN, Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell, 1997, 88: 375-384
    [107]Keim P, Schupp JM, Travis SE, Clayton K, Zhu T, Shi L, Ferreira A, Webb DM. A high-density soybean genetic map based on AFLP markers. Crop Sci, 1997, 37: 537-543
    [108]Kelly JD, Gepts P, Miklas PN, Coyne DP. Tagging and mapping of genes and QTL and molecular marker-assisted selection for traits of economic importance in bean and cowpea. Field Crops Res, 2003, 82: 135-154
    [109]Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol, 1980, 16: 111-120
    [110]Kimura T, Yoshida K, Shimada A, Jindo T, Sakaizumi M, Mitani H, Naruse K, Takeda H, Inoko H, Tamiya G, Shinya M. Genetic linkage map of medaka with polymerase chain reaction length polymorphisms. Gene, 2005, 363: 24-31
    [111]Kjer KM. Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Mol Phylogenet Evol, 1995, 4:314-330
    [112]Knapik EW, Goodman A, Ekker M, Chevrette M, Delgado J, Neuhauss S, Shimoda N, Driever W, Fishman MC, Jacob HJ. A microsatellite genetic linkage map for zebrafish (Danio rerio). Nat Genet, 1998, 18: 338-343
    [113]Knorr C, Cheng HH, Dodgson JB. Application of AFLP markers to genome mapping in poultry. Anim Genet, 1999, 30: 28-35
    [114]Komaru A, Wada KT. Karyotypes of four species in the Pectinindae (Bivalvia: Pteriomorphia). Jap Jour Malac, 1985, 44: 249-259
    [115]Kovarik A, Matyasek R, Lim KY, Skalicka K, Koukalova B, Knapp S, Chase M, Leitch AR. Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc, 2004, 82: 615-625
    [116]Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, Rocca J, Soltis DE, Soltis PS. Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploid of recent and recurrent origin. Genetics, 2005, 169: 931-944
    [117]Krystal M, Eustachio PD, Ruddle FH, Arnheim N. Human nucleolus organizers on nonhomologou chromosomes can share the same ribosomal gene variants. Proc Natl Acad Sci USA, 1981, 78:5744-5748
    [118]Kumar A, Bennetzen JL. Plant retrotransposons. Annu Rev Genet, 1999, 33: 479-532
    [119]Kumar A, Hirochika Hirohiko. Applications of retrotransposons as genetic tools in plant biology. Trends Plant Sci, 2001, 6: 127-134
    [120]Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform, 2004, 5: 150-163
    [121]Ky CL, Barre P, Lorieux M, Trouslot P, Akaffou S, Louarn J, Charrier A, Hamon S, Noirot M. Interspecific genetic linkage map, segregation distortion and genetic conversion in coffee (Coffea sp.). Theor Appl Genet, 2000, 101: 669-676
    [122]Laha T, Loukas A, Verity CK, McManus DP, Brindley PJ. Gulliver, a long terminal repeat retrotransposon from the genome of the oriental blood fluke Schistosoma japonicum. Gene, 2001, 264: 59-68
    [123]Laha T, Loukas A, Smyth DJ, Copeland CS, Brindley PJ. The fugitive LTR retrotransposon from the genome of the human blood fluke, Schistosoma japonicum. Int. J Parasitol, 2004, 34: 1365-1375
    [124]Lamb BC, Helmi S. The extent to which gene conversion can change allele frequencies in populations. Genet Res, 1982, 39: 199-217
    [125]Lambowitz AM. Infectious introns. Cell, 1989, 56: 323-326
    [126]Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121: 185-199
    [127]Launey S, Hedgecock D. High Genetic Load in the Pacific Oyster Crassostrea gigas. Genetics, 2001, 159: 255-265
    [128]Leblanc C, Kloareg B, Loiseaux-Degoer S, Boyen C. DNA sequence, structure, and phylogenetic relationship of the mitochondrial small-subunit rRNA from the red alga Chondrus crispus (Gigartinales rhodophytes). J Mol Evol, 1995, 41: 196-202
    [129]Lee BY, Lee WJ, Streelman JT, Carleton KL, Howe AE, Hulata G, Slettan A, Stern JE, Terai Y, Kocher TD. A second-generation genetic linkage map of tilapia (Oreochromis spp.). Genetics, 2005, 170: 237-244
    [130]Leung W, Malkova A, Haber JE. Gene targeting by linear duplex DNA frequently occurs by assimilation of a single strand that is subject to preferential mismatch correction. Proc Natl Acad Sci USA, 1997, 94: 6851-6856
    [131]Li L, Guo X. AFLP-based genetic linkage maps of the pacific oyster Crassostrea gigas Thunberg. Mar Biotechnol, 2004, 6: 26-36
    [132]Li L, Xiang JH, Liu X, Zhang Y, Dong B, Zhang XJ. Construction of AFLP-based genetic linkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex-linked markers. Aquaculture, 2005, 245: 63-73
    [133]Li W-H, Graur D. Fundamentals of molecular evolution. Sinauer associates, Sunderland, Massachusetts, 1991. (陈建华译,《分子进化基础》,科学出版社, 1997, pp 105)
    [134]Li Y, Byme K, Miggiano E, Whan V, Moore S, Keys S, Crocos P, Preston N, Lehnert S. Genetic栉孔扇贝遗传图谱的构建及重复元件的进化分析 mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture, 2003, 219: 143-156
    [135]Li Z, Li J, Wang Q, He Y, Liu P. AFLP-based genetic linkage map of marine shrimp Penaeus (Fenneropenaeus) chinensis. Aquaculture, 2006, 261: 463-472
    [136]Liao D. Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet, 1999, 64: 24-30
    [137]Liao D, Jiang C. Toward an experimental system to study the mechanism of concerted evolution. In Recent Research Developments in Dynamical Genetics, eds. V Parisi, V. De Fonzo, F. Aluffi-Pentini, Transworld Research Network, in press
    [138]Liao D, Pavelitz T, Kidd JR, Kidd KK, Weiner AM. Concerted evolution of the tandemly repeated genes encoding human U2 snRNA (the RNU2 locus) involves rapid intrachromosomal homogenization and rare interchromosomal gene conversion. EMBO J, 1997, 16: 588-598
    [139]Liao D, Weiner AM. Concerted evolution of the tandemly repeated genes encoding primate U2 small nuclear RNA (the RNU2 locus) does not prevent rapid diversification of the (CT)n?(GA)n microsatellite embedded within the U2 repeat unit. Genomics, 1995, 30: 583-593
    [140]Lin G, Lo LC, Zhu ZY, Feng F, Chou R, Yue GH. The complete mitochondrial genome sequence and characterization of single-nucleotide polymorphisms in the control region of the Asian seabass (Lates calcarifer). Mar Biotechnol, 2006, 8: 71-79
    [141]Linde M, Diel S, Neuffer B. Flowering ecotypes of Capsella bursa-pastoris(L.) Medik. (Brassicaceae) analysed by a cosegregation of phenotypic characters (QTL) and molecular markers. Ann Bot, 2001, 87: 91-99
    [142]Liu JS, Schardl CL. A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. Plant Mol Biol, 1994, 26: 775-778
    [143]Liu X, Liu X, Guo X, Gao Q, Zhao H, Zhang G. A preliminary genetic linkage map of the pacific abalone haliotis discus hannai ino. Mar Biotechnol, 2006, 8: 386-397
    [144]Liu Z, Karsi A, Li P, Cao D, Dunham R. An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics, 2003, 165: 687-694
    [145]Lopez-Pinon MJ, Insua A, Mendez J. Identification of four scallop species using PCR and restriction analysis of the ribosomal DNA internal transcribed spacer region. Mar Biotechnol, 2002, 4: 495-502
    [146]Machida RJ, Miya MU, Yamauchi MM, Nishida M, Nishida S. Organization of the mitochondrial genome of Antarctic krill Euphausia superba (Crustacea: Malacostraca). Mar Biotechnol, 2004, 6: 238-250
    [147]Mai JC, Coleman AW. The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J Mol Evol, 1997, 44:258-271
    [148]Malik HS, Eickbush TH. Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol, 1999, 73: 5186-5189
    [149]Maynard BT, Kerr LJ, McKiernan JM, Jansen ES, Hanna PJ. Mitochondrial DNA sequence and geneorganization in Australian backup abalone Haliotis rubra (leach). Mar Biotechnol, 2005, 7: 645-658
    [150]McCaskill JS. The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers, 1990, 29: 1105-1119
    [151]McDonald JF. Transposable elements: possible catalysts of organismic evolution. Trends Ecol Evol, 1995, 10: 123-126
    [152]Michaille J-J, Mathavan S, Gaillard J, Garel A. The complete sequence of mag, a new retrotransposon in Bombyx mori. Nucleic Acids Res, 1990, 18: 674.
    [153]Michot B, Hassouna N, Bachellerie JP. Secondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes. Nucleic Acids Res, 1984, 12: 4259-4279
    [154]Michot B, Joseph N, Sazan S, Bachellerie JP. Evolutionary conserved structural features in the ITS2 of mammalian pre-rRNAs and potential interactions with the snoRNA U8 detected by comparative analysis of new mouse sequences. Nucl Acids Res, 1999, 27: 2271-2282
    [155]Mignouna H, Mank R, Ellis T, van den Bosch N, Asiedu R, Abang M, Peleman J. A genetic linkage map of water yam (Dioscorea alata L.) based on AFLP markers and QTL analysis for anthracnose resistance. Theor Appl Genet, 2002, 105: 726-735
    [156]Milbury CA, Gaffney PM. Complete mitochondrial DNA sequence of the eastern oyster Crassostrea virginica. Mar Biotechnol, 2005, 7: 697-712
    [157]Miller AD, Murphy NP, Burridge CP, Austin CM. Complete mitochondrial DNA sequences of the decapod crustaceans Pseudocarcinus gigas (Menippidae) and Macrobrachium rosenbergii (Palaemonidae). Mar Biotechnol, 2005, 7: 339-349
    [158]Moen T, Agresti JJ, Cnaani A, Moses H, Famula TR, Hulata G, Gall GAE, May B. A linkage map of Atlantic salmon (Salmo salar) reveals an uncommonly large difference in recombination rate between the sexes. Anim Genet, 2004, 81-89
    [159]Morrison DA, Ellis JT. Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of Apicomplexa. Mol Biol Evol, 1997, 14: 428-441
    [160]Murti JR, Bumbulis M, Schimenti JC. High-frequency germ line gene conversion in transgenic mice. Mol Cell Biol, 1992, 12: 2545-2552
    [161]Murti JR, Bumbulis M, Schimenti JC. Gene conversion between unlinked sequences in the germline of mice. Genetics, 1994, 137: 837-843
    [162]Musters W, Boon K, van der Sande CAFM, van Heerikhuizen H, Planta RJ. Functional analysis of transcribed spacers of yeast ribosomal DNA. EMBO J, 1990, 9: 3989-3996
    [163]Nagylaki T, Petes TD. Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics, 1982, 100: 315-377
    [164]Nakayashiki H, Ikeda K, Hashimoto Y, Tosa Y, Mayama S. Methylation is not the main force repressing the retrotransposon MAGGY in Magnaporthe grisea. Nucleic Acids Res, 2001, 29: 1278-1284
    [165]Naruse K, Fukamachi S, Mitani H, Kondo M, Matsuoka T, Kondo S, Hanamura N, Morita Y, Hasegawa K, Nishigaki R, Shimada A, Wada H, Kusakabe T, Suzuki N, Kinoshita M, Kanamori A,Terado T, Kimura H, Nonaka M, Shima A. A detailed linkage map of medaka, Oryzias latipes: Comparative genomics and genome evolution. Genetics, 2000, 154: 1773-1784
    [166]Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H. A medaka gene map: The trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res, 2004, 14: 820-828
    [167]Nei M, Hughes AL. Balanced polymorphism and evolution by the birth-and-death process in the MHC loci. In 11th Histocompatibility Workshop and Comference, ed. K Tsuji, M Aizawa, T Sasazuki, Oxford, UK: Oxford Univ. Press, 1992, pp. 27-38
    [168]Nei M, Rooney AP. Concerted and birth-and-death evolution of multigene familes. Annu Rev Genet, 2005, 39: 121-152
    [169]Nelson HH, Sweetser DB, Nickoloff JA. Effects of terminal nonhomology and homeology on double-strand-break-induced gene conversion tract directionality. Mol Cell Biol, 1996, 16: 2951-2957
    [170]Nichols KM, Young WP, Danzmann RG, Robison BD, Rexroad C, Noakes MR, Phillips B, Bentzen P, Spies I, Knudsen K, Allendorf FW, Cunningham BM, Brunelli J, Zhang H, Ristow S, Drew R, Brown KH, Wheeler PA, Thorgaard GH. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim Genet, 2003, 34: 102-115
    [171]Nielsen C. Animal Evolution: Interrelationships of the Living Phyla. Second Edition. Oxford: Oxford University Press, 2001
    [172]Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T. Loop-mediated isothermal amplication of DNA. Nucleic Acids Res, 2000, 28: e63
    [173]Ohara E, Nishimura T, Nagakura Y, Sakamoto T, Mushiake K, Okamoto N. Genetic linkage maps of two yellowtails (Seriola quinqueradiata and Seriola lalandi). Aquaculture, 2005, 244: 41-48
    [174]Ohta T. Evolution and Variation of Multigene Families. Berlin: Springer-Verlag, 1980
    [175]Olsen GJ. Phylogenetic analysis using ribosomal RNA. Methods Enzymol, 1988, 164: 793-812
    [176]Ota T, Nei M. Divergent evolution and evolution by the birth-and-death process in the immunoglobulin VH gene family. Mol Biol Evol, 1994, 11: 469-482
    [177]Ouvrard D, Campbell BC, Bourqoin T, Chan KL. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera). Mol Phylogenet Evol, 2000, 16: 403-417
    [178]Paabo S, Irwin DM, Wilson AC. DNA damage promotes jumping between templates during enzymatic amplification. J Biol Chem, 1990, 265: 4718-4721
    [179]Paques F, Haber JE. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol Mol Biol R, 1999, 63: 349-404
    [180]Parkin EJ, Butlin RK. Within- and between-individual sequence variation among ITS1 copies in the meadow grasshopper Chorthippus parallelus indicates frequent intrachromosomal gene conversion. Mol Biol Evol, 2004, 21: 1595-1601
    [181]Pauquet J, Bouquet A, This P, Adam-Blondon AF. Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl Genet, 2001, 103: 1201-1210
    [182]Pearce SR, Knox M, Ellis THX, Flavell AJ, Kumar A. Pea Ty1-copia group retrotransposons: transpositional activity and use as markers to study genetic diversity in Pisum. Mol Gen Genet, 2000, 263: 898-907
    [183]Pearl LH, Taylor WR. A structural model for the retroviral proteases. Nature, 1987, 329: 351-354
    [184]Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell, 2004, 7: 597-606
    [185]Peichel CL, Nereng KS, Ohgi KA, Cole BLE, Colosimo PF, Buerkle CA, Schluter D, Kingsley DM. The genetic architecture of divergence between threespine stickleback species. Nature, 2001, 414: 901-905
    [186]Pena JB, Rios C, Pena S, Canales J. Ultrastructural morphogenesis of pectinid spat from the western Mediterranean: a way to differentiate seven genera. J Shellfish Res, 1998, 17: 123-130
    [187]Perez F, Erazo C, Zhinaula M, Volckaert F, Calderon J. A sex specific linkage map of the white shrimp Penaeus (Litopenaeus) vannamei based on AFLP markers. Aquaculture, 2004, 242: 105-118.
    [188]Periman PS, Peebles CL, Daniels C. Types of introns and splicing mechanisms. In Intervening Sequences in Evolution and Development. eds. EM Stone, RJ Schwartz, Oxford, UK: Oxford University Press, 1989
    [189]Podsiadlowski L, Bartolomaeus T. Organization of the mitochondrial genome of mantis shrimp Pseudosquilla ciliate (Crustacea: Stomatopoda). Mar Biotechnol, 2005, 7: 618-624
    [190]Poompuang S, Nakorn UN. A preliminary genetic map of walking catfish (Clarias macrocephalus). Aquaculture, 2004, 232: 195-203
    [191]Porter SE, White MA, petes TD. Genetic evidence that the meiotic recombination hotspot at the HIS4 locus of Saccharomyces cerevisiae does not represent a site for a symmetrically processed double-strand break. Genetics, 1993, 134: 5-19
    [192]Prins R, Groenewald JZ, Marais GF, Snape JW, Koebner RMD. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet, 2001, 103: 618-624
    [193]Rance KA, Mayes S, Price Z, Jack PL, Corley RHV. Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet, 2001, 103: 1302-1310
    [194]Ray BL, White CI, Haber JE. Heteroduplex formation and mismatch repair of the “stuck” mutation during mating-type switching in Saccharomyces cerevisiae. Mol Cell Biol, 1991, 11: 5372-5380
    [195]Reedy R, Rothblum LI, Subrahmanyam CS, Liu M, Henning D, Cassidy B, Busch H. The nucleotide sequence of 8S RNA bound to preribosomal RNA of Novikoff hepatoma. J Biol Chem, 1983, 258: 584-589
    [196]Reese MG. Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem, 2001, 26: 51-56
    [197]Remington DL, Whetten RW, Liu BH, O’Malley DM. Construction of an AFLP genetic map with nearly complete genome coverage in Pinus taeda. Theor Appl Genet, 1999, 98: 1279-1292
    [198]Rose RR, Doolittle WF. Molecular mechanisms of speciation. Science, 1983, 220: 157-162
    [199]Saal B, Wricke G. Clustering of amplified fragment length polymorphism markers in a linkage map of rye. Plant Breed, 2002, 121: 117-123
    [200]Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol, 1987, 4: 406-425
    [201]Sakamoto T, Danzmann RG, Gharbi K, Howard P, Ozaki A, Sokkean K, Woram RA, Okamoto N, Ferguson MM, Holm LE, Guyomard R, Hoyheim B. A microsatellite linkage map of rainbow trout (Oncorhynchus mykiss) characterized by large sex-specific differences in recombination rates. Genetics, 2000, 155: 1331-1375
    [202]Saliba-Colombani V, Causse M, Gervais L, Philouze J. Efficiency of RFLP, RAPD and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome, 2000, 43: 29-40
    [203]Sambrook J, Fritsch EF, Maniatis T. Molecular cloing: a laboratory manual. New York: Cold Springs Harbour Laboratory Press, 1989, Pp. 464-467.
    [204]Santoyo G, Romero D. Gene conversion and concerted evolution in bacterial genomes. FEMS Microbiol Revs, 2005, 29: 169-183
    [205]Sekino M, Hara M. Linkage maps for the Pacific abalone (genus Haliotis) based on microsatellite DNA markers. Genetics, 2007, in press.
    [206]Schlotterer C, D Tautz. Chromosomal homogeneity of Drosophila ribosomal DNA arrays suggests intrachromosomal exchanges drive concerted evolution. Curr Biol, 1994, 4: 777-783
    [207]Schlotterer C, Hauser MT, von Haeseler A, Tautz D. Comparative evolutionary analysis of rDNA ITS regions in Drosophila. Mol Biol Evol, 1994, 11: 513-522
    [208]Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucl Acids Res, 1990 18: 6097-6100
    [209]Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res, 2003, 31: 3381-3385
    [210]Shapiro BA. An algorithm for comparing multiple RNA secondary structures. CABIOS, 1988, 4: 381-393
    [211]Shapiro BA, Zhang K. Comparing multiple RNA secondary structures using tree comparison. CABIOS, 1990 6: 309-318
    [212]Sijen T, Plasterk RHA. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature, 2003, 426: 310-314
    [213]Simmen MW, Leitgeb S, Charlton J, Jones SJ, Harris BR, Clark VH, Bird A. Nonmethylated transposable elements and methylated genes in a chordate genome. Science, 1999, 283: 1164-1167
    [214]Slate J, Van Stijn TC, Anderson RM, McEwan KM, Maqbool NJ, Mathias HC, Bixley MJ, Stevens DR, Molenaar AJ, Beever J E, Galloway SM, Tate ML. A deer (subfamily cervinae) genetic linkage map and the evolution of ruminant genomes. Genetics, 2002, 160: 1587-1597
    [215]Smith GP. Evolution of repeated DNA sequences by unequal crossover. Science, 1976, 191: 528-535
    [216]Soller M, Brody T, Genizi A. On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet, 1976, 47:35-39
    [217]Springer MS, Davidson EH, Britten RJ. Retroviral-like element in a marine invertebrate. Proc Natl Acad Sci USA, 1991, 88: 8401-8404
    [218]Springer MS, Britten RJ. Phylogenetic relationships of reverse transcriptase and RNaseH sequences and aspects of genome structure in the gypsy group of retrotransposons. Mol Biol Evol, 1993, 10: 1370-1379
    [219]Steinmetz M, Uematsu Y, Lindahl KF. Hotspots of homologous recombination in mammalian genomes. Trends Genet, 1987, 31: 7-10
    [220]Stringer JR. Recombination between poly[d(GT)·d(CA)] sequences in simian virus 40-infected cultured cells. Mol Cell Biol, 1985, 5: 1247-1259
    [221]Sun X, Liang L. A genetic linkage map of common carp (Cyprinus carpio L.) and mapping of a locus associated with cold tolerance. Aquaculture, 2004, 238: 165-172
    [222]Sweetser DB, Hough H, Whelden JF, Arbuckle M, Nickoloff JA. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol Cell Biol, 1994, 14: 3863-3875
    [223]Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl FW. The double-strand-break repair model for recombination. Cell, 1983, 33: 25-35
    [224]Tague BW, Gerbi SA. Processing of the large rRNA precursor: two proposed categories of RNA–RNA interactions in eukaryotes. J Mol Evol, 1984, 20: 362-367
    [225]Tan YD, Wan C, Zhu Y, Lu C, Xiang Z, Deng HW. An Amplified Fragment Length Polymorphism Map of the Silkworm. Genetics, 2001, 157: 1277-1284
    [226]Temin HM. Origin of retroviruses from cellular movable genetic elements. Cell, 1980, 21: 599-600
    [227]Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res, 1997, 24: 4876-4882
    [228]Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22: 4673-4680
    [229]Thyagarajan B, Lundberg R, Rafferty M, Campbell C. Nucleolin promotes homologous DNA pairing in vitro. Somatic Cell Mol Genet, 1998, 24: 263-272
    [230]Tinoco I Jr, Uhlenbeck OC, Levine MD. Estimation of secondary structure in ribonucleic acids. Nature, 1971, 230: 362-367
    [231]Titus TA, Frost DR. Molecular homology assessment and phylogeny in the lizard family Opluridae (Squamata: Iguania). Mol Phylogenet Evol, 1996, 6: 49-62
    [232]Treco, D, Arnheim N. The evolutionary conserved repetitive sequence d(TG·AC)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. Mol Cell Biol, 1986, 6: 3934-3947
    [233]van der Lee T, De Witte I, Drenth A, Alfonso C, Govers F. AFLP linkage map of the oomycetePhytophthora infestans. Fungal Genet Biol, 1997, 21: 278-291
    [234]Van Houten WHJ, Scarlett N, Bachmann K. Nuclear DNA markers of the Australian tetraploid Microseris scapigera and its North American diploid relatives. Theor Appl Genet, 1993, 87: 498-505
    [235]van Nues RW, Rientjes JMJ, Morre SA, Mollee E, Planta RJ, Venema J, Raue HA. Evolutionarily conserved structural elements are critical for processing of internal transcribed spacer 2 from Saccharomyces cerevisiae precursor ribosomal RNA. J Mol Biol, 1995, 250: 24-36
    [236]van Nues RW, Rientjes JMJ, van der Sande CAFM, Zerp SF, Sluiter C, Venema J, Planta RJ, Raue AHA. Separate structural elements within internal transcribed spacer 1 of Saccharomyces cerevisiae precursor ribosomal RNA direct the formation of 17S and 26S rRNA. Nucl Acids Res, 1994, 22: 912-919
    [237]vander Sande CAFM, Kwa M, van Nues RW, van Heerikhuizen H, Raue HA, Planta RJ. Functional analysis of internal transcribed spacer 2 of Saccharomyces cerevisiae ribosomal DNA. J Mol Biol, 1992, 223: 899-910
    [238]Vershinin AV, Ellis THN. Heterogeneity of the internal structure of PDR1, a family of Ty1-copia-like retrotransposons. Mol Gen Genet, 1999, 262: 703-713
    [239]Virk PS, Ford-Lloyd BV, Newbury HJ. Mapping AFLP markers associated with subspecific differentiation of Oryza sativa (rice) and an investigation of segregation distortion. Heredity, 1998, 81: 613-620
    [240]Vivek BS, Simon PW. Linkage relationships among molecular markers and storage root traits of carrot (Daucus carota L. ssp. sativus). Theor Appl Genet, 1999, 99: 58-64
    [241]Volff J-N, Korting C, Altschmied J, Duschl J, Sweeney K, Wichert K, Froschauer A, Schartl M. Jule from the fish Xiphophorus is the first complete vertebrate Ty3/Gypsy retrotransposon from the Mag family. Mol Biol Evol, 2001, 18: 101-111
    [242]vonder Schulenburg JHG, Englisch U, Wagele JW. Evolution of ITS1 rDNA in the Digenea (Platyhelminthes: Trematoda): 3’ end sequence conservation and its phylogenetic utility. J Mol Evol, 1999, 48: 2-12
    [243]vonder Schulenburg JHG, Hancock JM, Pagnamenta A, Sloggett JJ, Majerus MEN, Hurst GDD. Extreme length and length variation in the first ribosomal internal transcribed spacer of ladybird beetles (Coleoptera: Coccinellidae). Mol Biol Evol, 2001, 18: 648-660
    [244]Voorrips RE, Jogerius MC, Kanne HJ. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicas) in a population of doubled haploid lines of brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet, 1997, 94: 75-82
    [245]Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frifiters A, Pot J, Peleman J, Kuiper M, Xabeau M. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res, 1995, 23: 4407-4414
    [246]Waldbieser GC, Bosworth BG, Nonneman DJ, Wolters WR. A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics, 2001, 158: 727-734
    [247]Wahls WP, Wallace LJ, Moore PD. Hypervariable minisatellite DNA is a hotspot for homologousrecombination in human cells. Cell, 1990, 60: 95-103
    [248]Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet, 1998, 20: 116-117
    [249]Walsh JB. Interaction of selection and biased gene conversion in a multigene family. Proc Natl Acad Sci USA, 1985, 82: 152-157
    [250]Walsh JB. Sequence-dependent gene conversion: Can duplicated genes diverge fast enough to escape conversion? Genetics, 1987, 117: 543-557
    [251]Walter RB, Rains JD, Russell JE, Guerra TM, Daniels C, Johnston DA, Kumar J, Wheeler A, Kelnar K, Khanolkar VA, Williams EL, Homecker JL, Hollek L, Mamerow MM, Pedroza A, Kazianis S. A microsatellite genetic linkage map for Xiphophorus. Genetics, 2004, 168: 363-372
    [252]Wang L, Song L, Chang Y, Xu W, Ni D, Guo X. A preliminary genetic map of Zhikong scallop (Chlamys farreri Jones et Preston 1904). Aquac Res, 2005, 36: 643-353
    [253]Wang S, Bao Z, Pan J, Zhang L, Yao B, Zhan A, Bi K, Zhang Q. AFLP linkage map of an intraspecific cross in Chlamys farreri. J Shellfish Res, 2004, 23: 491-499
    [254]Wang S, Bao Z, Zhang L, Li N, Zhan A, Guo W, Wang X, Hu J. A new strategy for species identification of planktonic larvae: PCR-RFLP analysis of the internal transcribed spacer region of ribosomal DNA detected by agarose gel electrophoresis or DHPLC. J Plankton Res, 2006, 28: 375-384
    [255]Wang Y, Guo X. Chromosomal Rearrangement in Pectinidae Revealed by rRNA Loci and Implications for Bivalve Evolution. Biol Bull, 2004, 207: 247-256
    [256]Wang YH, Thomas CE, Dean RA. A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet, 1997, 95: 791-798
    [257]Wang Z, Zhang K. Alignment between two RNA structures. Proc 26th Symp Math Found Comput Sci, Lecture Notes in Computer Science 2136. London: Springer-Verlag, 2001, Pp: 690–702
    [258]Wen L, Tang HV, Chen W, Chang R, Pring DR, Klein PE, Childs KL, Klein RR. Development and Mapping of AFLP Markers Linked to the Sorghum Fertility Restorer Gene rf4. Theor Appl Genet, 2002, 104: 577-585
    [259]Wendel JF, Schnabel A, Seelanan T. An unuaual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol Phylogenet Evol, 1995a, 4: 298-313
    [260]Wendel JF, Schnabel A, Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA, 1995b, 92: 280-284
    [261]Wheeler WC, Honeycutt. Paired sequence difference in ribosomal RNAs: evolutionary and phylogenetic implications. Mol Biol Evol, 1988, 5: 90-96
    [262]Williams SM, Kennison JA, Robbins LG, Strobeck C. Reciprocal recombination and the evolution of the ribosomal gene family of Drosophila melanogaster. Genetics, 1989, 122: 617-624
    [263]Wilson K, Li Y, Whan V, Lehnert S, Byme K, Moore S, Pongsomboon S, Tassanakajon A, Rosenberg G, Ballment E, Fayazi Z, Swan J, Kenway M, Benzie J. Genetic mapping of the black tiger shrimp Penaeus monodon with amplified fragment length polymorphism. Aquaculture, 2002, 204: 297-309
    [264]Woram RA, McGowan C, Stout JA, Ferguson MM, Hoyheim B, Davidson EA, Davidson WS, Rexroad C, Danzmann RG. A genetic linkage map for Arctic char (Salvelinus alpinus): Evidence for higher recombination rates and segregation distortion in hybrid versus pure strain mapping parents. Genome, 2004, 47: 304-315
    [265]Wu RL, Han YF, Hu JJ, Li L, Li ML, Zeng ZB. An integrated genetic map of Populus deltoides based on amplified fragment length polymorphisms. Theor Appl Genet, 2000, 100: 1249-1256
    [266]Xiao W, Oefner PJ. Denaturing high-performance liquid chromatography: a review. Hum Mutat, 2001, 17: 439-474
    [267]Xiong Y, Eickbush TH. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J, 1990, 9: 3353-3362
    [268]Xu ML, Korban SS. Saturation mapping of the apple scab resistance gene Vf using AFLP markers. Theor Appl Genet, 2000, 101: 844-851
    [269]Yamauchi MM, Miya MU, Machida RJ, Nishida M. PCR-based approach for sequencing mitochondrial genomes of decapod crustaceans, with a practical example from kuruma prawn (Marsupenaeus japonicus). Mar Biotechnol, 2004, 6: 419-429
    [270]Yasukochi Y. A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1018 molecular markers. Genetics, 1998, 150: 1513-1525
    [271]Young WP, Wheeler PA, Coryell VH, Keim P, Thorgaard GH. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics, 1998, 148: 839-850
    [272]Yu Z, Guo X. Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin. Biol Bull, 2003, 204: 327-338
    [273]Zeng ZB. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    [274]Zhang J, Dyer KD, Rosenberg HF. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proc Natl Acad Sci USA, 2000, 97: 4701-4706
    [275]Zhang K. Computing similarity between RNA secondary structures. In IEEE Int Joint Symp Intell Syst. Los Alamitos: IEEE Computer Society Press, 1998, Pp: 126-132
    [276]Zhang K, Wang L, Ma B. Computing similarity between RNA structures. In Proc 10th Symp Combinatorial Pattern Matching. Lecture Notes in Computer Science 1645. Eds M Crochemore, M Paterson, London: Springer-Verlag, 1999, Pp: 281-293
    [277] Zhang L, Bao Z, Cheng J, Li H, Huang X, Wang S, Zhang C, Hu J. Fosmid library construction and initial analysis of end sequences in Zhikong scallop (Chlamys farreri). Mar Biotechnol, in press
    [278]Zhang L, Yang C, Zhang Y, Li L, Zhang X, Zhang Q, Xiang J. A genetic linkage map of Pacific white shrimp (Litopenaeus vannamei): sex-linked microsatellite markers and high recombination rates. Genetica, in press
    [279]Zhou Z, Bao Z, Dong Y, Wang S, He C, Liu W, Wang L, Zhu F. AFLP linkage map of sea urchin constructed using an interspecific cross between Strongylocentrotus nudus (♀) and S. intermedius (♂). Aquaculture, 2006, 259: 56-65
    [280]Zhu JH, Stephenson P, Laurie DA, Li W, Tang D, Jackson MT, Gale MD. Towards rice genomescanning by map-based AFLP fingerprinting. Mol Gen Genet, 1999, 261: 184-195
    [281]Zimmer EA, Martin SL, Beverley SM, Kan YW, Wilson AC. Rapid duplication and loss of genes coding for the chains of hemoglobin. Proc Natl Acad Sci USA, 1980, 77: 2158-2162
    [282]Zimmerman AM, Evenhuis JP, Thorgaard GH, Ristow SS. A single major chromosomal region controls natural killer cell-like activity in rainbow trout. Immunogenetics, 2004, 55: 825-835
    [283]Zwieb C, Glotz C, Brimacombe R. Secondary structure comparisons between small subunit ribosomal RNA molecules from six different species. Nucleic Acids Res, 1981, 9: 3621-3640

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700