白光LED用铝酸盐荧光粉的制备及发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光发光二极管(WLED)是一种高效、节能、环保、长寿命的新型固态照明技术,被誉为第四代照明光源,也称为21世纪绿色光源。制备WLED主要有两大途径,其中使用发射黄光的无机稀土发光材料与蓝光LED封装组成WLED是近期发展的主要方向。荧光粉技术的进步对WLED的发展有着至关重要的作用。
     目前用YAG:Ce荧光粉制备的WLED因其发射波长较短,显色指数较小(<80),使其发光颜色偏蓝色,刺激人的眼睛。为了克服这一缺点,我们制备了一种能被蓝光LED(最佳发射波长在465 nm左右)有效激发的橙黄光发射荧光粉。
     首先,利用溶胶-凝胶低温燃烧法制备了铝酸盐基纳米发光材料MAl2O4:Eu2+,Eu3+(M=Mg,Ca,Sr,Ba),并对其结构、形貌和荧光性质进行了研究。结果表明,在600℃低温下即可得到纯晶相产物,样品中同时出现了Eu2+的4f65d1-4f7发射及Eu3+的f-f发射。通过计算其色度坐标发现,MgAl2O4:Eu2+,Eu3+、CaAl2O4:Eu2+,Eu3+、BaAl2O4:Eu2+,Eu3+三种荧光粉的发光区域均在橙黄光区。
     其次,为了进一步提高MAl2O4:Eu2+,Eu3+中Eu3+的发射强度,制备了复合碱土铝酸盐MgxM1-xAl2O4:Eu2+,Eu3+(M=Sr,Ca,Ba)荧光粉,同时研究了基质中碱土离子掺杂比例、燃烧温度、燃烧时间、以及Eu3+的掺杂浓度等对产物发光性质的影响。掺入少量碱土离子Mg时,样品先是保持本身晶相(MAl2O4(M=SrCa,Ba))不变,持续增加Mg的含量,样品由一种晶相变为两种晶相(MAl2O4与MgAl2O4)的混合物,最终变为单一晶相(MgAl2O4)。光致发光研究结果表明,低温燃烧(600℃)得到的样品的发光强度较高,燃烧时间对其发光性质几乎没有影响;当对MgAl2O4基质进行10%碱土离子(Sr,Ca,Ba)掺杂后,产物中Eu3+的发光强度得到了明显的提高,与此同时,Eu2+的发光强度基本不变,而且二者发射峰位置并没有发生变化。由色度坐标分析得到, Mg0.9Sr0.1Al2O4:Eu2+,Eu3+发光区域仍在橙黄光区,但Mg0.9Ca0.1IAl2O4:Eu2+, Eu3+与Mg0.9Ba0.1Al2O4:Eu2+,Eu3+二者的发光区域转移到红光区。
     第三,用同种方法制备了稀土元素共掺杂的Mg0.9Sr0.1Al2O4:Eu2+,Eu3+,Ce3+、Mg0.9Sr0.1Al2O4:Eu2+,Eu3+,Dy3+Mg0.9Sr0.1Al2O4:Eu2+,Eu3+,Pr3+纳米荧光材料,并研究了其晶体结构及发光性质。稀土元素的掺杂没有改变晶体结构,但由于样品基质中陷阱能级的生成及稀土离子间的能量转移,产物中没有发现Ce3+、Dy3+、Pr3+的特征发射。同时,在样品中Eu2+的发光强度基本不变,但Eu3+发光强度明显减弱,且二者发光峰的位置未发生变化,因此,样品发光中红光部分减少。
White light-emitting diode (WLED) with lots of excellent properties, such as efficient, energy saving, environmental protection and long lasting lifetime, is a new solid state lighting technology. It is well known as the fourth-generation lighting source and deemed to a green light source for the 21st century. There are two kinds of approaches to achieve white-emitting LEDs, and the current mainstream of the fabrication of WLED is to combine yellow emitting lanthanide luminescence material with blue emitting LED. The progress of phosphor technology plays an essential role in the development of WLED.
     Currently, the WLED prepared using YAG:Ce phosphor has a shorter emission wavelength and a poor color rendering index (<80), which leads to the output light partial to blue light, hence it will irritate people's eyes. In order to overcome the problem, we have prepared a kind of orange-yellow emitting phosphors which can be effectively excited by blue LED (the optimum emission is about 465 nm).
     Firstly, Eu2+ and Eu3+ co-doped aluminates luminescence nanomaterials MAl2O4:Eu2+, Eu3+ (M=Mg, Ca, Sr, Ba) have been prepared by sol-gel combustion method. We studied the structure, morphology and the luminescence properties of the samples. It shows that we can obtain pure crystalline products at 600℃. There exists emission of both Eu2+ and Eu3+ at the same time in the samples. The luminescence of MgAl2O4:Eu2+, Eu3+, CaAl2O4:Eu2+, Eu3+, BaAl2O4:Eu2+, Eu3+ are both at orange-yellow region, judged by their chromaticity coordinates.
     Secondly, we have synthesized MgxM1-xAl2O4:Eu2+, Eu3+(M=Sr, Ca, Ba) phosphors in order to enhance the emission of Eu3+ in MAl2O4:Eu2+, Eu3+. We have also investigated the influence of the ratio of two different alkali-earth ions, the combustion temperature, time, and the doping contents of Eu3+ on luminescent property. Mixed with a small amount of Mg ions, the samples maintained their own phase (MAl2O4 (M=Sr, Ca, Ba)). But when kept on increasing the contents of Mg ions, the products became to be the mixture of MAl2O4 and MgAl2O4, and finally, they turned to be MgAl2O4. Photoluminescence spectra indicated that the samples have the strongest emission when the combustion temperature was 600℃and the combustion time has nearly no effect on the luminescence intensities. When the doping content of Sr, Ca, Ba in MgAl2O4 was 10%, the luminous intensity of Eu3+ was significantly enhanced. And at the same time, the luminescence of Eu2+ was nearly the same as the products synthsised before. Moreover, the peak position of both Eu2+ and Eu3+ did not change. The luminescence of Mg0.9Sr0.1Al2O4:Eu2+, Eu3+ are still at orange-yellow region, but that of Mg0.9Ca0.1Al2O4:Eu2+, Eu3+ and Mg0.9Ba0.1Al2O4:Eu2+, Eu3+ have transferred to the red light area.
     Thirdly, aluminates luminescence nanomaterials co-doped by rare earth elements, such as Mg0.9Sr0.1Al2O4:Eu2+, Eu3+, Ce3+, Mg0.9Sr0.1Al2O4:Eu2+, Eu3+, Dy3+, and Mg0.9Sr0.1Al2O4:Eu2+, Eu3+, Pr3+ were prepared. We have also studied the crystal structure and luminescence properties. The doping of rare earth elements didn't change the structure of the sample. We have not found the luminescence of Ce3+、Dy3+、Pr3+ because of the trap level in the matrix and energy transfer between rare earth elements. The luminous intensity of Eu2+ was nearly the same as the products synthesised without co-doped rare earth elements. In the meanwhile, the emission intensity of Eu3+ was significantly reduced. However, the potion of emission peaks of both Eu2+ and Eu3+ did not change. Therefore, the output of the red light became decreased.
引文
[1]D. Huo, J. S. Zhang, Z. J. Xu, Y. J. Yang, H. C. Yang, "Synthesis of Mixed conducting ceramic oxides SrFeCo0.5Oy powder by hybrid microwave heating", J. Am. Ceram. Soc.,2002,85,510-512.
    [2]N. Holonyak Jr, S. F. Bevaqua, "Coherent (visible) light emission from Ga(As1-xPx) junctions", Appl. Phys. Lett.,1962,1,82-83.
    [3]J. Nishizawa, K. Itoh, Y. Okuno, "LPE-AlGaAs and red LED (candela class)", J. Appl. Phys.,1985,57,2210-2214.
    [4]F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, "Very high-efficiency semiconductor wafer-bonded transparent substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes", Appl. Phys. Lett.1994,64, 2839-2841.
    [5]K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, A. S. H. Liao, "Twofold efficiency improvement in high performance AlGaInP light emitting diodes in the 555-620 nm spectral region using a thick GaP window layer", Appl. Phys. Lett.,1992,61,1045-1047.
    [6]C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, V. M. Robbins, "Hight performance AlGaInP visible light-emitting diodes", Appl. Phys. Lett.,1990,57,2937-2939.
    [7]H. Sugawara, M. Ishikawa, G. Hatakoshi, "Hight-efficiency InGaAlP/GaAs visible light-emitting diodes", Appl. Phys. Lett.,1991,58,1010-1012.
    [8]H. Sugawara, K. Itaya, G. Hatakoshi, "Emission Properties of InGaAlP Visible Light-Emitting Diodes Employing a Multiquantum-Well Active Layer", Jpn. J. Appl. Phys.1994,33,5784-5787.
    [9]H. Sugawara, K. Itaya, H. Nozaki, G Hatakoshi, "High brightness InGaAlP green light emitting diodes", Appl. Phys. Lett.,1992,61,1775-1777.
    [10]Hassaum Jones-Bey, "Booming LED market looks forward to wild blue yonder", Laser Focus World,2000,26,117-119.
    [11]S. Nakamura, G. Fasol, "The Blue Laser Diode:GaN Based Light Emitters and Laser", Springer, Berlin,1997.
    [12]李学勇,方志烈,“LED白色照明光源”,灯与照明,2000,24,85-86.
    [13]方志烈,叶其春,李学勇, “白色LED照明光源”,功能材料与器件学报,2000,6,406-407.
    [14]武毅,"The Green Lighting-LED",灯与照明,2005,30,45-49.
    [15]杨笑卫,“高亮度、纯白色LED灯的研制”,中国照明电器,2000,1,27-29.
    [16]王晓明,郭伟玲,高国,沈光地,“LED-新一代照明光源”,现代显示,2005,53(5),15-19.
    [17]马勇,“固体照明-新时代照明工业的一次革命”,新材料产业,2003,115,11-16.
    [18]J. S. Kim, P. E. Jeon, J. C. Choi, H. L. Park, S. I. Mho, G. C. Kim, "Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor", Appl. Phys. Lett.,2004,84,2931-2933.
    [19]T. Mukai, M. Yamada, S. Nakamura, "InGaN-based UV/blue/green/amber LEDs", SPIE,1999,3621,2-13.
    [20]A. Mills, "High-brightness LEDs lighting up the future", Ⅲ-Ⅴs Review,2001,14, 32-37.
    [21]M. Holt, "Power LEDs to plug gap to adoption of white lighring", Ⅲ-Ⅴs Reviews,2001,14,44-47.
    [22]A. Mill, "Trends in HB-LED markets", Ⅲ-Ⅴs Review,2001,14,38-42.
    [23]S. NaKamura, T. MuKai, M. Senoh, "Candela-class high brightness InGaN/AlGaN double-hetarostructure blue-light-emitting diodes", Appl. Phys. Lett., 1994,64,1687-1689.
    [24]HaitzR, LED半导体的又一次革命,第九届国际电光源科技研讨会译文集,重庆,灯与照明杂志社,2002,5,385.
    [25]S. Muthu, F. J. P. Schuurmans, M. D. Pashley, "Red, greem, and blue LEDs for white light illumination", IEEE. J. Sel. Top. Quantum Electron.,2002,8,333-338.
    [26]R. Muller-Mach, G. O. Mueller, M. R. Krames, T. Trottier, "High-power phosphor-converted light-emitting diodes based on Ⅲ-nitrides", IEEE. J. Sel. Top. Quantum Electron.,2002,8,339-345.
    [27]Z. Yang, X. Li, Y. Yang, X. Li, "The influence of different conditions on the luminescent properties of YAG:Ce phosphor formed by combustion", J. Lumin.,2007, 122-123,707-709.
    [28]G. Q. Yao, J. F. Duan, M. Ren, H. D. Yu, J. H. Lin, "Preparation and luminescence of blue light conversion material YAG:Ce3+", Chin. J. Lumin.2001,22, 21-23.
    [29]G. D. Xia, S. M. Zhou, J. J. Zhang, J. Xu, "Structural and optical properties of YAG:Ce3+ phosphors by sol-gel combustion method", J. Cryst. Growth,2005,279, 357-362.
    [30]M. Shur, A. Zukauskas, "Solid-State lighting:Toward Superior illumination", Proc. IEEE,2005,93,1691-1703.
    [31]晨光,“白光LED发展趋势”,光源与照明,2004,1,41-41.
    [32]崔元日,潘苏予, “第四代照明光源-白光LED",灯与照明,2004,28,31-34.
    [33]周太明,“半导体照明的曙光”,照明工程学报,2004,15,1-6.
    [34]雷玉堂,黎慧,“未来的照明光源-白光LED技术及其发展”,光学与光电技术,2003,1,33-34.
    [35]刘行仁,郭光华,林秀华,"InGaN蓝光LED的发射光谱、色品质与正向电流的关系”,照明工程学报,2004,15,14-18.
    [36]徐叙瑢,苏勉曾,“发光学和发光材料”,化学工业出版社,北京,2004.
    [37]E. Z. Wang, C. F. Wang, "Development and application of white LED" Electro-optics Tech.,2002,43,1-9.
    [38]中国科学院吉林物理所、中国科学技术大学固体发光编写组,“固体发光”,1976.
    [39]王志芳, “稀土离子掺杂的氧化物与含氧酸盐纳米粉末和透明陶瓷的制备及发光性质表征”,博士毕业论文,中国科学技术大学,2008,1-14.
    [40]董宁,“时间分辨光谱系统涉及与稀土氟化物单晶及稀土聚合物材料光谱分析”,博士学位论文,中国科学技术大学,2006.
    [41]林林,“新型红色和白色长余辉材料的研制及其发光特性研究”,博士毕业学位论文,中国科学技术大学,2007,1-32.
    [42]G. Blasse, B. C. Grabmaier. "Luminescent Materials", Spinger Verlag, Berlin, 1994.
    [43]C. Feldmann, T. Justel, C. R. Ronda, P. J. Schmidt, "Inorganic Luminescent Materials:100 years of Research and Application", Adv. Funct. Mater.,2003,13, 511-516.
    [44]周永慧,林君,张洪杰,“纳米发光材料研究的若干进展”,化学研究与应用,2001,13,117-122.
    [45]李建字,“稀土发光材料及其应用”,化学工业出版社,北京,2003.
    [46]刘祖武,“现代无机合成”,化学工业出版社,2001.
    [47]O.H.卡赞金, “无机发光材料”,北京,化学工业出版社,1980.
    [48]孙家跃,渡海燕,胡文祥, “固体发光材料”,化学工业出版社,2003.
    [49]石士考,霍庆,“无机粉末发光材料合成的新方法”,无机盐工业,1999,31,20-22.
    [50]袁曦明,许永胜,于江波,田熙科,“溶胶—凝胶法制备长余辉发光材料,SrAl2O4:Eu2+,Dy3+的研究”,稀土,2002,23,33-38.
    [51]D. Tsamouras, E. Dalas, S. Sakkopoulos, P. G. Koutsoukos, "Physicochemical characteristics of mixed copper-cadmium sulfides prepared by coprecipitation" Langmuir,1999,15,8018-8024.
    [52]F. J. Perez-Alonso, M. L. Granados, M. Ojeda, P. Terreros, et al. "Chemical structures of coprecipitated Fe-Ce mixed oxides", Chem. Mater.,2005,17, 2329-2339.
    [53]N. Zhao, L. Qi, "Low-Temperature Synthesis of Star-Shaped PbS Nanocrystals in Aqueous Solutions of Mixed Cationic/Anionic Surfactants", Adv. Mater.,2006,18, 359-362.
    [54]T. S. Li, S. P. Liu, Z. X. Lu, Z. F. Liu, "Synthesis and characterization of cuprous selenide nanocrystals at room temperature", Chinese Chem. Lett.,2007,18,617-620.
    [55]A. J. Houtepen, R. Koole, D. Vanmaekelbergh, J. Meeldijk, S. G. Hickey, "The Hidden Role of Acetate in the PbSe Nanocrystal Synthesis", J. Am. Chem. Soc.,2006, 128,6792-6793.
    [56]K. H. Park, K. Jang, S. Kim, H. J. Kim, S. U. Son, "Phase-Controlled One-Dimensional Shape Evolution of InSe Nanocrystals", J. Am. Chem. Soc.,2006, 128,14780-14781.
    [57]L. S. Li, N. Pradhan, Y. Wang, X. Peng, "High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors", Nano Lett.,2004, 4,2261-2264.
    [58]P. D. Cozzoli, L. Manna, M. L. Curri, S. Kudera, C. Giannini, M. Striccoli, A. Agostiano, "Shape and Phase Control of Colloidal ZnSe Nanocrystals", Chem. Mater., 2005,17,1296-1306.
    [59]F. Gao, Q. Lu, D. Zhao, "Controllable Assembly of Ordered Semiconductor Ag2S Nanostructures", Nano Lett.,2003,3,85-88.[60]林君,苏锵, “溶胶-凝胶法及其在稀土发光材料合成中的应用”,稀土,1994,15,42-45.
    [61]Z. Miao, D. Xu, J. Ouyang, G. Guo, et al., "Electrochemically induced sol-gel preparation of single-crystalline TiO2 nanowires", Nano Lett.,2002,2,717-720.
    [62]Y. Lu, Y. Yin, B. T. Mayers, Y. Xia, "Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach", Nano Lett., 2002,2,183-186.
    [63]A. Gurlo, N. Barsan, U. Weimar, M. Ivanovskaya, A. Taurino, P. Siciliano, "Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties", Chem. Mater.,2003,15,4377-4383.
    [64]施尔畏,夏长泰,王步国等,“水热法的应用及发展”,无机材料学报,1996,2,67-71.
    [65]苏勉曾,谢高阳等译, “固体化学及应用”,复旦大学出版社,1989.
    [66]T. Y. Peng, H. P. Yang, X. L. Pu, B. Hu, Z. C. Jiang, C. H. yan, "Combustion synthesis and photoluminescence of SrAl2O4:Eu,Dy phosphor nanoparticles", Mater. Lett.,2004,58,352-356.
    [67]J. J. Moore, H. J. Feng, "Combustion synthesis of advanced materials:part I. Reaction parameters", Prog. Mater. Sci.,1995,39,243-273.
    [68]J. J. Moore, H. J. Feng, "Combustion synthesis of advanced materials:part II. Classification, applications and modeling", Prog. Mater. Sci.,1995,39,275-316.
    [69]张若华, “稀土元素化学”,化学出版社,1987.
    [70]刘光华, “稀土固体材料学”,机械工业出版社,1995.
    [71]L. Ozawa, Cathodoluminescence, Kodansha Ltd,1990.
    [72]D. Jia, X. J. Wang, W. M. Yen, "Electrontraps in CaAl2O4:Tb3+", Chem. Phys. Lett.,2002,241,363-364.
    [73]T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, T. Morikawa, "Effects of Composition on the Long Phosphorescent SrAl2O4:Eu2+, Dy3+ Phosphor Crystals", J. Electrochem. Soc.,1997,144, L243-L245.
    [74]韩万书,“中国固体无机化学十年进展”,高等教育出版社,1998.
    [75]苏锵,刘行仁, “稀土发光及激光材料”,冶金工业出版社,1995.
    [76]D. L. Dexter, "A theory of Sensitized Luminescence in Solids", J. Chem. Phys., 1953,21,836-850.
    [77]X. Yu, "Functional Luminecence Materials and Light Luminescence Mechanism", Chinese Light Industry Publishing House,1997(in Chinese).
    [78]B. M. J. Smets, J. G. Verlijsdonk, "The luminescence properties of Eu2+ and Mn2+ doped barium hexaaluminates", Mater. Res. Bull.,1986,21,1305-1310.
    [79]盐川二朗,“稀土的最新应用技术”,化学工业出版社,1981.
    [80]埃文斯,“结晶化学导论”,人民教育出版社,1984.
    [81]Y. Murayama, N. Takeuchi, et al, "Phosphorescent phosphor", US patent,1997.
    [82]龚福才,“发光材料和稀土三基色粉简介”,光源与照明,2001,4,31-33.
    [83]张希艳,卢利平,柏朝辉,刘全生,“稀土发光材料”,国防工业出版社,2005.
    [84]苏锵,梁宏斌,“稀土离子的高能光谱”,中国稀土学报,2001,19,481-486
    [85]C. S. Shi, Q. Su, "The chemistry and physics of abnormal valency rare earth elements", Science Press, Beijing,1994.
    [86]J. M. Zhang, H. Q. Su, Z. R. Ye, Z. H. Jia, C. Y. Zang, C. S. Shi, "Energy Transfer from Ce3+ to Eu2+ and Electron Transfer from Ce3+ to Eu3+ in BaY2F8:Ce, Eu Systems", Chemical Journal of Chinese Universities,2001,22,358-361.
    [1]H. Chang, I. W. Lenggoro, T. Ogi, K. Okuyama, "Direct synthesis of barium magnesium aluminate blue phosphor particles via a flame route", Mater. Lett.,2005, 59,1183-1187.
    [2]D. Wang, Q. Yin, Y. Li, M. Wang, "Concentration quenching of Eu2+ in SrO·Al2O3:Eu2+ phosphor, J. Lumin.,2002,97,1-6.
    [3]T. Aitasalo, J. Holsa, H. Jungner, M. Lastusaari, J. Niittykoski, M. Parkkinen, R. Valtonen, "Eu2+ doped calcium aluminates prepared by alternative low temperature routes", Opti. Mater.,2004,26,113-116.
    [4]Q. M. Song, J. F. Huang, M. J. Wu, et al, "Study on synthesis and luminescence property of Eu2+ activated strontium aluminates", J. Lumin(Chinese).,1991,12, 144-150.
    [5]Q. M. Song, J. Y. Chen, Y. Z. Wu, "A study on luminescence of Mg doped phosphor", Fudan University(natural science),1995,34,103-106.
    [6]I. C. Chen, T. M. Chen, "Sol-gel Synthesis and the Effect of Boron Addition on the Phosphorescent Properties of SrAl2O4:Eu2+, Dy3+ Phosphors", J. Mater. Res.,2001, 16,644-651.
    [7]G. Btasse, "Energy Transfer between Inequivalent Eu2+ Ions", J. Solid. State Chem.,1986,62,207-211.
    [8]Tooru Katsumata, Kazuhito Sasajima, Takehiko Nabae, Shuji Komuro, Takitaro Morikawa, "Characteristics of Strontium Aluminate Crystals Used for Long duration Phosphors", J. Am. Ceramics. Soc.,1998,81,413-416.
    [9]Masayuki Nogami, Tsukasa Yamazaki, Yoshihiro Abe, "Fluorescence Properties of Eu3+ and Eu2+ in Al2O3-SiO2 Glass", J. Lumin.,1998,78,63-68.
    [10]I. C. Chen, T. M. Chen, "Effect of Host Compositions on the Afterglow Properties of Phosphorescent Strontium Aluminate Phosphors Derived from the Sol-gel Method", J. Mater. Res.,2001,16,1293-1300.
    [11]S. M. Alessandra, S. Roberval, A. K. Claudia, C.F.C. F. Maria, E.S. T. Ercules, F. B. Hermi, MgAl2O4:Eu, Dy:Luminescent nanoparticles of MgAl2O4:Eu, Dy prepared by citrate sol-gel method, Opti. Mater.,2008,31,440-444.
    [12]D. Jia, W. M. Yen, Enhanced Vk3+ center afterglow in MgAl2O4 by doping with Ce3+, J. Lumin.,2003,101,115-121.
    [13]P. Gluchowski, R. Pazik, D. Hreniak, W. Strek, Luminescence studies of Cr3+ doped MgAl2O4 nanocrystalline powders, Chemical Physics,2009,358,52-56.
    [14]V. Singh, R.P.S. Chakradhar, J.L. Raoand, D.K. Kim, J.Solid State Chem., Synthesis, characterization, photoluminescence and EPR investigations of Mn doped MgAl2O4 phosphors 2007,180,2067-2074.
    [15]X. TENG, W. ZHUANG, H.HE, Influence of La3+ and Dy3+ on the properties of the long afterglow phosphor CaAl2O4:Eu2+, Nd3+, Rare Metals,2008,27,335-339.
    [16]H. Ryu, K.S. Bartwal, An efficient co-doping of Eu and Er in CaAl2O4 aluminate phosphor, Physica B:Condensed Matter,2008,403,3195-3198.
    [17]H. Ryu, K.S. Bartwal, Cr3+ doping optimization in CaAl2O4:Eu2+ blue phosphor, J. Alloy. Compd.,2008,464,317-321.
    [18]C. K. Lee, Y. J. Kim, Post-annealing effects on the recrystallization and optical properties of CaAl2O4:Eu2+ thin films, J. Cryst. Growth,2009,311,904-907.
    [19]H. Ryu, K.S. Bartwal, Photoluminescent studies on Ti co-doped CaAl2O4:Eu2+, Ti3+ phosphor, Physica B:Condensed Matter,2008,403,1843-1847.
    [20]X. Teng, W. Zhuang, Y.g Hu, C. Zhao, H. He, X. Huang, Effect of flux on the properties of CaAl2O4:Eu2+, Nd3+ long afterglow phosphor, J. Alloy. Compd.,2008, 458,446-449.
    [21]H. Song, D. Chen, W. Tang, Y. Peng, Synthesis of SrAl2O4:Eu2+, Dy3+,Gd3+ phosphor by combustion method and its phosohorescence properties, J. Lumin.,2008, 29,41-44.
    [22]R. Chen, Yi. Wang, Y. Hu, Z. Hu, C. Liu, Modification on luminescent properties of SrAl2O4:Eu2+, Dy3+ phosphor by Yb3+ ions doping, J. Lumin.,2008,128, 1180-1184.
    [23]Zifeng Qiu, Yuanyuan Zhou, Mengkai Lu*, Aiyu Zhang, Qian Ma, "Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+(M=Sr, Ba, Ca, R=Dy, Nd and La) nanoparticles and luminescence mechanism research", Acta Mater.,2007, 55,2615-2620.
    [24]V. Chernov, R. Melendrez, M. Pedroza-Montero, W.M. Yen, M. Barboza-Flores The behavior of thermally and optically stimulated luminescence of SrAl2O4:Eu2+,Dy3+ long persistent phosphor after blue light illumination, Radiation Measurements,2008,43,241-244.
    [25]O. Arellano-Tanori, R. Melendrez, M. Pedroza-Montero, B. Castaneda, V. Chernov, W.M. Yen and M. Barboza-Flores, Persistent luminescence dosimetric properties of UV-irradiated SrAl2O4:Eu2+,Dy3+ phosphor, J. Lumin.,2008,128, 173-184.
    [26]H. Song, D. Chen, W. Tang, Y. Peng, Synthesis of SrAl2O4:Eu2+, Dy3+, Gd3+ phosphor by combustion method and its phosphorescence properties, Displays,2008, 29,41-44.
    [27]H. Ryu, K.S. Bartwal, Investigations on luminescence characteristics of Eu and Cr codoped BaAl2O4, Mater. Chem. Phys.,2008,111,186-189.
    [28]H. Aizawa, S. Komuro, T. Katsumata, S. Sato, T. Morikawa, Long afterglow phosphorescent characteristics of BaAl2O4:Eu,Dy films, Thin Solid Films,2006,496, 179-182.
    [29]M. Peng, G Hong Reduction from Eu3+ to Eu2+ in BaAl2O4:Eu phosphor prepared in an oxidizing atmosphere and luminescent properties of BaAl2O4:Eu, J. Lumin.,2007,127,735-740.
    [30]H. Ryu, B.K. Singh, K.S. Bartwa, Effect of Sr substitution on photoluminescent properties of BaAl2O4:Eu2+, Dy3+, Physica B:Condensed Matter,2008,403,126-130.
    [31]L. J. Shen, Z. Y. Zhang, "Luminescence of Eu3+ in Y(P,V)04:Eu3+", Bao Gang Ke Ji,1995,1,107-112.
    [32]G Pan, H. Song, X. Bai, Z. Liu, H. Yu, W. Di, S. Li, L. Fan, X. Ren, S. Lu, "Novel Energy-Transfer Route and Enhanced Luminescent Properties in YVO4:Eu3+/YBO3:Eu3+ Composite", Chem. Mater.,2006,18,4526-4532.
    [33]G L. Messing, S. C. zhang, G. B. Jayanthi, "Ceramic powder synthesis by spray pyrolysis", J. Am. Ceram.,1993,76,2707-2726.
    [34]Y. C. Kang, S. B. Park, I. W. Lenggoro, K. Okuyama, "Morphology control of multicomponent oxide phosphor particles containing high ductility component by high temperature spray pyrolysis", J. Electrochem. Soc.,1999,146,2744.
    [35]高晓明,邱克辉,赵改青,傅茂媛,“SrAl2O4:Eu2+发光材料的制备工艺及发光性能的研究”,涂料工业,2004,34,24-26.
    [36]郭庆捷,徐明霞,曹佩玲,“Eu2+激活的碱土铝酸盐长余辉发光材料的研究现状”,稀有金属材料与工程,2004,33,225-228.
    [37]F. Gu, S. F. Wang, M. K. Lu, G J. Zhou, D. Xu, D. R. Yuan, "Structure evaluation and highly enhanced luminescence of Dy3+-doped ZnO nanocrystals by Li+ doping via combustion method", Langmuir,2004,20,3528-3531.
    [38]F. Gu, S. F. Wang, M. K. Lu, W. G. Zou, G. J. Zhou, D. Xu, D. R. Yuan, "Combustion synthesis and luminescence properties of Dy3+-doped MgO nanocrystals", J. Cryst. Growth.,2004,260,507-510.
    [39]G Tessari, M. Bettinelli, A. Speghini, "Synthesis and optical properties of nanosized powders:lanthanide-doped Y2O3", Appl. Surf. Sci.,1999,144-145,
    686-689.
    [40]C. A. Kodaira, R. Stefani, A. S. Maia, M. C. F. C. Felinto, H. F. Brito, "Optical investigation of Y2O3:Sm3+ nanophosphor prepared by combustion and Pechini methods", J. Lumin.,2007,127,616-622.
    [41]E. Zych, D. Hreniak, W. Strek, "Spectroscopic Properties of Lu2O3/Eu3+ Nanocrystalline Powders and Sintered Ceramics", J. Phys. Chem. B,2002,106, 3805-3812.
    [42]E. Zych, "On the reasons for low luminescence efficiency in combustion-made Lu2O3:Yb", Opt. Mater.,2001,16,445-452.
    [43]J. Banga, M. Abboudi, B. Abrams, P.H. Holloway, "Combustion synthesis of Eu-, Tb-and Tm- doped Ln2O2S (Ln=Y, La, Gd) phosphors", J. Lumin.,2004,106, 177-185.
    [44]Z. Fu, S. Zhou, S. Zhang, "Study on Optical Properties of Rare-Earth Ions in Nanocrystalline Monoclinic SrAl2O4:Ln (Ln=Ce3+, Pr3+, Tb3+)", J. Phys. Chem. B, 2005,109,14396-14400.
    [45]G. C. Kim, "Emission color tuning from blue to green through cross-relaxation in heavily Tb3+-doped YAlO3", Mater. Res. Bull.,2001,36,1603-1608.
    [46]Z. Qiu, Y. Zhou, M. Lu, A. Zhang, Q. Ma, "Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+, R3+(M=Sr, Ba, Ca, R=Dy, Nd and La) nanoparticles and luminescence mechanism research", Acta Mater.,2007,55, 2615-2620.
    [47]J. McKittrick, L. E. Shea, "The influence of processing parameters on luminescent oxides produced by combustion synthesis", Displays,1999,19,169-172.
    [48]P. Yang, G. Q. Yao, J. H. Lin, "Photoluminescence and combustion synthesis of CaMoO4 doped with Pb2+", Inorg. Chem. Commun.,2004,7,389-391.
    [49]S. M. Wang, Z. L. Xiu, M. K. Lu, A. Y. Zhang, Y. Y. Zhou, Z. S. Yang, "Combustion synthesis and luminescent properties of Dy3+-doped La2Sn2O7 nanocrystals", Mater. Sci. Eng. B.,2007,143,90-93.
    [50]F. Pandozzi, F. Vetrone, J. C. Boyer, R. Naccache, J. A. Capobianco, A. Speghini, M. Bettinelli, "A Spectroscopic Analysis of Blue and Ultraviolet Upconverted Emissions from Gd3Ga5O12:Tm3+,Yb3+ Nanocrystals", J. Phys. Chem. B,2005,109, 17400-17405.
    [51]F. Vetrone, J. C. Boyer, J. A. Capobianco, "Luminescence Spectroscopy and Near-Infrared to Visible Upconversion of Nanocrystalline Gd3Ga5O12:Er3+", J. Phys. Chem. B,2003,107,10747-10752.
    [1]Z. Yu, X. Huang, W. Zhang, X. Cui, H. Li, "Crystal structure transformation and luminescent behavior of the red phosphor for plasma display panels", J. Alloys. Compd.,2005,390,220-222.
    [2]Z. Wei, L. Sun, C. Liao, J. Yin, X. Jiang, C. Yan, "Fluorescence intensity and color purity improvement in nanosized YBO3:Eu", Appl. Phys. Lett.,2002,80,1447-1449.
    [3]Z. G. Wei, L. D. Sun, C. S. Liao, J. L. Yin, X. C. Jiang, C. H. Yan, "Size-Dependent Chromaticity in YBO3:Eu Nanocrystals:Correlation with Microstructure and Site Symmetry", J. Phys. Chem. B,2002,106,10610-10617.
    [4]苏锵,“稀土化学”,河南科学技术出版社,1993.
    [5]W. Chen, J-O. Bovin, A.G. Joly, S. Wang, F. Su, G Li, "Full-Color Emission from In2S3 and In2S3:Eu3+ Nanoparticles", J. Phys. Chem. B,2004,18,11927-11934.
    [6]Pramod K Sharma, Nass R, Schmidt H, "Effect of solvent, host precursor, dopant concentration and crystallite size on the fluorescence properties of Eu(III) doped yttria", Opt. Mater.,1998,10,161-169.
    [7]M. G. Bawendi, W. L. Wilson, L. Rothberg, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, L. E. Brus, "Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters", Phys. Rev. Lett.,1990,65,1623-1626.
    [1]A.A. Setlur, W.J. Heward, Y. Gan, A.M. Srivastave, R.G. Chandran, M.V. Shankar, Crystal Chemistry and Luminescence of Ce3+-Doped Lu2CaMg2(Si,Ge)3O12 and Its Use in LED Based Lighting Chem. Mater.,2006,18,3314-3322.
    [2]X.Q. Zeng, S.J. Im, A.H. Jang, Y.M. Kim, etc. Luminescent properties of (Y,Gd)BO3:Bi3+,RE3+(RE=Eu, Tb) phosphor under VUV/UV excitation, J. Lumin., 2006,121,1-6.
    [3]O.M. Ntwaeaborwa, H.C. Swart, R.E. Kroon, P.H. Holloway, J.R. Botha, Hotoluminescence of cerium-europium doubly activated SiO2 phosphors prepared by sol-gel method,Surf. Interface Anal.,2006,38,458-461.
    [4]A. Patra, C.S. Friend, R. Kapoor, P.N. Prasad, Fluorescence Upconversion Properties of Er3+-Doped TiO2 and BaTiO3 Nanocrystallites, Chem. Mater.,2003,15, 3650-3655.
    [5]R. J. Xie, N. Hirosaki, T. Suehiro, F. F. Xu, M. Mitomo, A Simple, Efficient Synthetic Route to Sr2Si5Ng:Eu2+-Based Red Phosphors for White Light-Emitting Diodes, Chem. Mater.,2006,18:5578-5583.
    [6]R. Jayavel, T. Mochiku, S. Ooi, K. Hirata, Growth of bulk Pr2-xCexCuO4+δ single crystals by B2O3 encapsulated flux technique, J. Crys. Grow.,2002,237-239,792-795.
    [7]A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, M. V. Shankar, Crystal Chemistry and Luminescence of Ce3+-Doped Lu2CaMg2(Si,Ge)3O12 and Its Use in LED Based Lighting, Chem. Mater.,2006,18,3314-3322.
    [8]A.Y. Zhang, M.K. Lu, G.J. Zhou, S.M. Wang, Y.Y. Zhou, Combustion synthesis and photoluminescence of Eu3+, Dy3+-doped La2Zr2O7 nanocrystals, J. Phys. Chem. Solids,2006,67,2430-2434.
    [9]Z. Pei, Q. Zeng, Q. Su, The application and a substitution defect model for Eu3+→Eu2+ reduction in non-reducing atmospheres in borates containing BO4 anion groups, J. Phys. and Chem. Solids,2000,61,9-12.
    [10]J. M. Zhang, H. Q. Su, Z. R. Ye, Z. H. Jia, C. Y. Zang, C. S. Shi, "Energy Transfer from Ce3+ to Eu2+ and Electron Transfer from Ce3+ to Eu3+ in BaY2F8:Ce, Eu Systems", Chemical Journal of Chinese Universities,2001,22,358-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700