压电陶瓷纤维的制备与性能测试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着1-3型压电纤维复合材料研究的不断深入,其性能的优越性逐渐体现出来,特别是构造出具有正交异性的1-3型压电纤维复合材料后,在传感和驱动领域有着更广阔的应用前景。据目前的研究资料表明,制约1-3型压电纤维复合材料性能的原因主要有两方面,一是制备复合材料所用的聚合物的性能,二是压电纤维的性能。然而在同等条件下,压电纤维的性能越好的复合元件,其综合性能就越好。压电纤维的性能对1-3压电纤维复合材料元件的性能起着致关重要的作用。寻求性能更好的压电纤维成为了当前研究的焦点,同时如何测量新型压电纤维的压电性能也成了研究与生产过程中遇到的重要问题。基于这些存在的问题,本论文研究的具体内容有以下几个部分:
     1、采用挤压法和活性炭模板法两种不同的方法制备压电陶瓷纤维,其中以挤压法为主要制备方法,该种方法制备的压电陶瓷纤维直径为250μm,长度可达150mm,压电性能优良。活性炭模板法制备的压电纤维直径远小于挤压法,仅25μm,且纤维表面光滑而平直,纤维可自动成束,是一种值得深入研究的制备方法。
     2、提出了一种测量细微直径压电陶瓷纤维压电性能的方法。用压电材料的基本理论来研究了压电陶瓷纤维的性能特点;分析了当前的几种压电性能常数测量方法的优缺点,为测量新型压电陶瓷纤维的压电性能常数提供参考。基于1-3压电纤维复合材料的细观力学模型的均匀场理论,提出了一种测量新型压电陶瓷纤维的压电应力常数的方法。使用有限元软件对设计的测量方案中的关键结构的参数进行了模拟研究,找到能够满足测量要求的测试条件。
     3、制备了1-3型压电纤维复合材料试件,并使用提出的方法测量了压电陶瓷纤维的压电应力常数。对测量结果进行了分析,表明这种测量方法可行。据测量结果显示挤压法制备出来的压电陶瓷纤维具有较好的压电性能。
With the development of piezoelectric materials research, the performance of 1-3 piezoelectric fiber composites is more and more important. Especially after the orthotropic characteristics ability of the 1-3 piezoelectric fiber composites has been developed, it has more potential applications in sensing and driving field. There are reasons of two aspects that affect the performance of 1-3 piezoelectric fiber composites . First, the performance of the polymer is used for making composite materials; second, the performance of the piezoelectric fibers. If, in the same conditions, the better the performance of piezoelectric fiber, the better their final performance. So, the performance of piezoelectric fiber plays an important role in 1-3 piezoelectric fiber composites. Seeking for the better performance of the piezoelectric fiber is the focus of current research. At the same time, how to measure the piezoelectric properties of the latest piezoelectric fiber has become an important issue in the course of research and production . Because of these problems, the specific content of this thesis has the following components:
     First, there are two different methods to prepare piezoelectric ceramic fibers. One is prepared by extrusion process, the other is the activated carbon template method to produce ceramic fibers. Used the extrusion process method as the main preparation methods, the types of piezoelectric ceramic fibers have a diameter of 250μm, length of the 150mm and good piezoelectric properties. The diameter of piezoelectric ceramic fibers prepared by the activated carbon template method is much smaller than prepared by extrusion process, only the 25μm, and the fiber surface is smooth, straight fibers can automatically into the beam. This preparation method has high potential value to study.
     Second, A piezoelectric properties measure method of minor diameter piezoelectric ceramic fiber has been developed. The basic theory of piezoelectric materials has been introduced, the performance characteristics of piezoelectric ceramic fibers and 1-3 piezoelectric composite materials have been analyzed, and several measurement methods of piezoelectric constants are analyzed. All of these provide theory basis for measuring the piezoelectric constants of piezoelectric ceramic fibers. Basing on 1-3 piezoelectric fiber composites micromechanics model of uniform field theory, a new type of piezoelectric ceramic fibers measuring piezoelectric stress constants method has been designed. Through simulation analysis, parameters of the key structure of the measurement method has been analyzed, and the measurement requirements of the test conditions have been obtained.
     Third, prepared 1-3 piezoelectric fiber composites specimens using the ceramic fibers obtained by extrusion process and measured its piezoelectric stress constants. The measurement results shows that this measurement method is feasible and the piezoelectric ceramic fibers obtained by extrusion process have good piezoelectric properties.
引文
[1]盖学周.压电材料的研究发展方向和现状[J].中国陶瓷,2008,44(5):9-13.
    [2]骆英.正交异性压电复合材料功能元件的研究[D].南京:南京航空航天大学博士论文,2000.
    [3]万建国.压电复合材料及其在智能材料结构中的研究[D].南京:南京航空航天大学博士论文,1997.
    [4]杜善义,王彪.复合材料细观力学[M].科学出版社,1998.
    [5]R.E. Newnham, D.P. Skinner, L.E. Cross. Connectivity and piezoelectric pyroelectric composites[J]. Materials Research Bulletin,1978,13: 525-535.
    [6]赵寿根,程伟.1-3型压电复合材料及其研究进展[J].力学进展,2002,32:157-68.
    [7]T. Hauke, R. Steinhausen, W. Seifert, etal. Modeling of poling behavior of ferroelectric 1-3 composites [J]. Journal of Applied Physics,2001,89 (9):5040-5047.
    [8]A. Gachagan, R. Hamilton, etal. Ceramic epoxy composite transducers for non-contacting ultrasonic applications [J]. Proceedings of the SPIE-the International society for optical engineering,1992,1733:49-56.
    [9]A. Bent. Active fiber composite material systems for structural control applications [C]. Proceedings SPIE's 6th International Symposium on Smart Structures and Materials, Newport Beach, CA, March 1-5,1999.
    [10]W. Wilkie, J. High, P. Mirick, R. Fox, B. Little, R. Bryant, R. Hellbaum, A. Jalink. low-cost piezocomposite actuator for structural control applications[C]. Proceedings SPIE's 7th international symposium on smart structures and materials, Newport Beach, California, March 5-9,2000.
    [11]J. Rossetti, G Pizzochero, A. Bent. Recent advances in active fiber composites technology [C]. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics,2000: 753-756.
    [12]J. High, W. Wilkie. Method of fabricating NASA-standard macro-fiber piezocomposite actuators [C]. NASA/TM-2003-212427, ARL TR2833, June 2003.
    [13]A. Damson, D. John, etal. System and method for generating electric power from a rotating tire's mechanical energy using piezoelectric fiber composites[P]. US Patent. US6807853,2004.10.26.
    [14]H. Berger, S. Kari, U. Gabbert. An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites [J]. International Journal of Solids and Structures,2005,42 (21):5692-5714.
    [15]J. S. Park, J. H. Kim. Coefficients of thermal expansion for single crystal piezoelectric fiber composites[J]. Composites Part B:Engineering,2007,38(7-8):795-799.
    [16]Y. Lin, A. Henry. Concept and model of a piezoelectric structural fiber for multifunctional composites [J]. Composites Science and Technology,2008,68(7-8):1911-1918.
    [17]B.A. Auld, K.A. Kunkel, Y.A. Shui, etal. Manganese cations increase the mutation rate of human immunodeficiency virus type 1 ex vivo[C]. Proceeding of 1983 IEEE Ultrasonic Symposium,1983,554-558.
    [18]耿学仓,李明栓.检测超声换能器用1-3型压电PZT/环氧复合材料及换能器的研究[J].应用声学,1992,10(5):10-14.
    [19]党长久,李明轩.1-3型压电复合材料[J].应用声学,1994,14(1):1-6.
    [20]B. Wang. Three-dimensional analysis of an ellipsoidal inclusion in a piezoelectric material[J].International Journal of Solids and Structures,1992,29(3): 293-308.
    [21]B. Wang. Effective behavior of piezoelectric composites[J]. Applied Mechanics Reviews, 1994,47(1), part2:s112-s121.
    [22]吴雪莲.PZT/IPN复合材料的制备和电性能研究[D].哈尔宾:哈尔滨工业大学硕士学位论文,2006.
    [23]朱雯.功能陶瓷晶须的研究进展[J].江苏石油化工学报,2002,14(2):125-129.
    [24]丁子上,翁文剑.溶胶-凝胶技术制备材料的进展[J].硅酸盐学报,1993,21(5):443-449.
    [25]Y. Hu. Preparation of lead zirconate titanate ceramic fibers by sol-gel method[J]. Journal of Sol-Gel Science and Technology,2000,18:235-247.
    [26]R. Steinhausen, T. Hauke, W. Seifert. Finescaled piezoelectric 1-3 composites properties and modeling[J]. Journal of the European Ceramic Society,1999,19:1289-1293.
    [27]W. Glaubitt, W. Watzka, H. Scholz. Sol-gel processing off unctional and structural ceramic oxide fibers[J]. Journal of Sol-Gel Science and Technology,1997,8:29-33.
    [28]Y. Park, M. Miyayama. Electrical properties of Pb(Zr_(0.53)T_(0.47))O_3(PZT) fibers fabricated by sol-gel technique[J].Key Engineering Materials,1999(157):33-40.
    [29]U. Selvaraj, P. Moses, Q. Jiang. Pb(ZrTi)O_3(PZT)fibers-fabrication and properties[J]. Ferroelectrics,1994(154):325-330.
    [30]赵宇光.制备灵敏PZT纤维的新工艺[J].中国建材科技,2001,3(5):89.
    [31]M. Zhang, X.D. Wang, F.M. Wang, etal. Preparation and ferroelectric properties of PZT fibers[J]. Ceramics International,2005(31):281-286.
    [32]王录全.长PZT纤维的制备[J].中国核科技报告,2000:12-20.
    [33]李坤,李金华,李锦春.PLZT陶瓷纤维/环氧树脂1-3复合材料的制研究[J].无机材料学报,2004,19(2):168-176.
    [34]陈彩凤,刘军,骆英,徐祥宁,活性炭微反应器法制备PZT压电陶瓷纤维的研究[C].第三届压电与声波理论及器件会议,南京,2008.
    [35]S. Zhang, H. Li, M. Li. Size-dependent piezoelectric coefficient d33 of PbTiO_3 nanoparticles[J]. Materials Letters,2008(62):2438-2440.
    [36]K. Yako, H. Kakemoto, T. Tsurumi, S. Wada. Domain size dependence of d33 piezoelectric properties for bariumtitanate single crystals with engineered domain configuration[J]. Materials Science and Engineering B,2005 (120):181-185.
    [37]徐红星,骆英,袁新华.E-S法测量压电元件压电应变常数d_(33)的研究[J].江苏大学学报,2001,7(4):12-14.
    [38]叶会英,浦昭邦.一种由压电双晶片测量压电常数d_(31)的方法[J].压电与声光,2000,6(3):203-205.
    [39]叶会英,禹延光.一种实用的压电常数测试系统及测试精度分析[J].电子元件与材料,2004,8(8):46-50.
    [40]范素华,王培吉.激光干涉法测压电陶瓷的压电常数d_(31)[J].应用光学,1997(4):30-32.
    [41]陈伟民,李敏.用动态位移响应测量压电常数的方法[J].压电与声光,2001,8(4):323-325.
    [42]叶正芳,徐正堂.压电陶瓷压电应变常数d_(33)的测试方法研究[J].压电与声光,1993(4):37-43.
    [43]R. Steinhausen, S. Kern, C. Pientschke, H. Beige, F. Clemens, J. Heiber. A new measurement method of piezoelectric properties of single ceramic fibres[J]. Journal of the European Ceramic Society,2010,30(2):205-209.
    [44]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京:北京大学出版社,2005.
    [45]宋道仁,肖鸣山.压电效应及其应用[M].北京:科学普及出版社,1987.
    [46]张福学,孙慷.压电学[M].北京:国防工业出版社,1984.
    [47]沈毅.压电正交异性复合材料用于AE传感的初步研究[D].镇江:江苏大学硕士论文,2005.
    [48]王树彬,韩杰才,杜善义.PZT/PVDF压电复合材料的合金化制备技术及其性能研究[J].宇航材料工艺,1999,6:314-317.
    [49]陈平,刘胜平.环氧树脂[M].北京:化学工业出版社,1999.
    [50]吴爱军,压电纤维OPCM传感元件设计分制备与性能测试研究[D].镇江:江苏大学硕士学位论文,2007.
    [51]贾德昌,周劲松,王文等.电工材料[M].哈尔滨:哈尔滨工业大学出版社,2000.
    [52]A. Bent, A. Hagood, N.W. Rodgers. Anisotropic actuation with piezoelectric fiber composites[J]. Journal of Intelligent Material Systems and Structures,1995,6(3):338-349.
    [53]A. Bent, A. Hagood. Piezoelectric fiber composites with interdigitated electrodes[J]. Journal of Intelligent Material Systems and Structures,1997,8(11):903-919.
    [54]赵寿根,程伟,1-3型压电陶瓷纤维复合材料的细观力学模型及其力电宏观参数研究[J].应用力学学报,2005,22(3):043-933.
    [55]B. William, J. Zimmerman,中仿科技公司.COMSOL Multiphysics有限元法多物理场建模与分析[M].北京:人民交通出版社,2007.
    [56]张玉宝,李强.基于COMSOL Multiphysics的MEMS建模及应用[M].北京:冶金工业出版社,2007.
    [57]孙康,张福学.压电学[M].北京:国防工业出版社,1984.
    [58]李传山.PMS-PNN-PZT压电厚膜材料的制备及性能研究[D].济南:山东轻工业学院,2007.
    [59]杨杰.PZT压电纤维的制备与性能研究[D].成都:电子科技大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700