变量施肥机液压无级调速控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国家科技部“十一五”科技支撑计划“多功能农业装备与设施研制”之子项目“仿生智能作业机械研究与开发”(2006BAD11A08)开展了PLC和液压技术在变量施肥中的应用研究工作。
     变量施肥技术对我国农业发展有着非常积极的意义,实施按需变量施肥,可以大大提高肥料利用率,减少肥料的浪费以及多余肥料对环境的不良影响,其经济、社会和生态效益显著。
     调速控制系统作为变肥施肥技术中的重要组成部分,其性能的优劣直接影响着变量施肥作业的效果。因此,本文采用PLC和电液比例液压传动技术设计了变量施肥机液压无级调速系统,并对该系统进行试验验证。试验表明,变量施肥机液压无级调速系统工作稳定、性能可靠,功率质量比高,且具有操作方便、系统价格便宜等特点,为下一步开发大型自动变量施肥机提供了理论和技术参考。
The core of study and development of the technology of Precision Agriculture (PA) is precision positioning and variable rate application which is supported by GPS, GIS and RS, etc. The fertilizer is main elements of agricultural high yield and increase production, and the cost of fertilizer takes greater parts among total cost. The input and the utilization ratio of fertilizer effects agricultural output, peasant’s income and environmental quality directly. Variable Rate Fertilization (VRF) is suitable for different needs for areas, crops, soils and crops growth environment. With balance applying fertilizer, VRF can improve the fertilizer utilization ratio, and has obvious economic and environmental benefits.
     Inputting fertilizer has some problems in our country, such as unreasonable structure, low average utilization ratio of fertilizer, failing to give full play of fertilizer in increasing production benefit. In researching of VRF, it is main work to introduce foreign advanced equipments to track, digest and absorb. So, it is necessary to study and to develop the technology of VRF according to our national conditions, which has important theoretical meaning and practical value to realize agricultural sustainable developments.
     The paper is supported by the subject of“Biomimetic smart operating machinery research and development”founded by National science and technology support plant of“Multi-functional development of the agricultural equipment and facilities”supported by National Ministry of Science and Technology office. Designed automatic variable rate fertilizing machine control and drive system etc. The main work and results are as followed:
     (1)Control project and model of automatic VRF are established. To the existing Development characteristics of China's agricultural machinery, working condition of countryside in China, and fully considering the reliability that agricultural machinery needs, manual, Non-GPS positioning and automatic methods of control are adopted in the automatic control systems of VRF. On the base of analyzing the main elements that effect fertilizer and the rule of control fertilization, the control model of Hydraulic Motor rotary speed in automatic VRF is confirmed. It sets up theoretical foundation for automatic controls of VRF.
     (2)The hydraulic stepless speed regulation system is designed and debugged. Electro-hydraulic proportional control system test rig is established through the reasonable selection of components, and the Proportional velocity regulating valve and the hydraulic Motor Speed control system is studied. Selecte and designe the components of the hydraulic drive system such as: hydraulic motor, proportional velocity regulating valve, amplifiers, filter, joints, Tubing and Chain drive system. After experiment, find the hydraulic drive system can achieve the goal of stepless speed regulation, and meet the requirements of VRF.
     (3)PLC control system is developed as controller of automatic VRF executive body. According to the requests of control system, the input and output of system and the communication are analyzed, the EM235 module is deployed and calibrated, and the structure of control system is designed. The hardware electric circuit of PLC control system is confirmed, which includes receiving DGPS signals, receiving sensor signal of tractor velocity, keyboard inputting, pulse output of step motor, displaying screen and warning etc. Verified by the experiment, the control system is relatively steady, reliable, and meets the request of using.
     (4)Design program of control system. The program is written by using Ladder Diagram Language tool that used in Step 7-Micro/WIN Programming software. It can realize VRF by means of manual、Non-GPS and automatic control. In automatic method of control, program has finished the work of receiving positional and velocity information from GPS receiver working in mode of DGPS. It can identify the grid block correctly and accurately find out the needs of fertilizer, and then outputs the corresponding voltage to drive motor and completes VRF. In Non-GPS method of control, the grid block identify, fertilizer needs search and voltage output is based on the pick and deal with of the pulse signal outputted by near switching speed sensor. In manual method of control, program can receive and deal with sensor pulse signal and keyboard characters. Then it outputs the corresponding voltage to drive motor and completes VRF. These three operations can be selected according to needs and conditions.
     (5)The speed-demarcate experiments of the hydraulic motor is finished. The speed-demarcate experiments is did under different engine speeds and calendared the speed of hydraulic motor when the PLC output one voltage and then next. Then fits the experimental data and obtains the curve about voltage and the speed of hydraulic motor
     (6)Demarcate experiments are done of four line variable rate fertilizer applicator. Through analyzing liner correlation can be conclude between rotation speed of fertilization sprayer and quality of fertilization. The uniform and stability among all sprays can meet the demand. I select linear function to control VRF. At last, considering synthetically the influence that velocity of tractor and rotation speed of fertilization sprayer to quality of fertilization per hectare, I obtain the mathematical function of these variable parameters. The automatic control system of VRF is based on map in this paper. The control system can receive DGPS signal automatically and get the positioning and velocity information of the tractor by GPS receiver, then it can complete automatic VRF according to the decision value of the quality of fertilization. Through manual and automatic method of control, quality of fertilization per hectare can adjust within range from 80 to 500 kg/ha, the rotary speed of hydraulic motor is 20~150rpm. System has many characters such as simple structure, convenient to operating, the quality of fertilization range heavy to change, controller relatively steady and reliable, ideal control accuracy etc. In addition, this system is exploited by ourselves and the control system’s cost is relatively low, and the hydraulic system can output magnitude power.
引文
[1]汪懋华.“精细农业”的实践与农业科技创新[J].中国科学院,1999,(4):21~25.
    [2]李志伟,潘剑君,张佳宝.基于GPS的智能农机载高光谱采集系统的初步研究[J].光谱学与光谱分析,2005,(6).
    [3]张书慧,马成林,吴才聪,杜巧玲,韩云霞,赵兴明.一种精确农业自动变量施肥技术及其实施[J].农业工程学报,2003,(1).
    [4]马旭,马成林,桑国旗,庄俭.变量施肥机具的设计[J].农业机械学报,2005,(1).
    [5]汪懋华,关于精细农业试验示范与发展研究的思考[J].中国农业科技导报,2003,第5卷(1).
    [6]张柏.中国发展精准农业耕作的基本分析及设计[J].地理科学,2000,20(2):110~114.
    [7]唐延林,邹先定,试论我国农业可持续发展及其对策[J].贵州农业科学,2002,30(4):47~50.
    [8] Robert P C . Precision Agriculture : An Information Revolution inAgriculture[J].Agriculture Outlook Forum 1999.1~5.
    [9] http://www.rustsales.com.cn.Review of Variable Rate Application Equipment for Precision Farming.1~9.
    [10]彭望禄,Pierre Robert,程惠贤.农业信息技术与精确农业的发展[J].农业工程学报2001,17(2):9~11.
    [11]王熙,王新忠.三种不同变量施肥执行机构的比较研究[J].农机化研究,2006,(l):122-124.
    [12]刘微,赵同科,方正,等.精确农业研究进展[J].河北农业科学,2005,9(1):107~109.
    [13]张书慧,马成林,吴才聪,杜巧玲,韩云霞,赵兴明.一种精确农业自动变量施肥技术及其实施[J].农业工程学报,2003,(1).
    [14] Michihisa lida,Assodiate Professor,Dr.Mikio Umeda,Professor,Dr.etc.Variable Rate Fertilizer Applicator for Paddy Field.The Society for Engineering in Agricultural,Food,and Biological Systems[J].ASAE PaperNO.01-1111.
    [15]曹玉宝.液压技术在现代农业机械中的应用现状与趋势[J].农机化研究,2008,25(5):194~196.
    [16] Understanding Fundamentals Of Hydrostatic Transmissions[J].Diesel Progress Engines&Drives, 200.
    [17]王英,米柏林,郑辉.液压技术在农林机械方面的应用与展望[J].农机化研究,2002.
    [18]王广怀,曹祯,米柏林.国内外联合收割机典型液压驱动系统的研究与探讨[J].机床与液压,2000.
    [19]邵利敏,王秀,牛晓颖,钱东平.基于PLC的变量施肥控制系统设计与试验[J].农业机械学报,2007,(11).
    [20]曲桂宝.变量施肥机的试验研究[D].长春:吉林农业大学,2006.
    [21]王新忠,王熙,王智敏.精准农业与变量施肥技术[J].黑龙江八一农垦大学报,2004,14(4):25~27.
    [22] Adam chunk VI,Morgan MT,Ess DR.An Automated Sampling System of Measuring Soil pH[J].ASAE,1999,(4):885~892.
    [23]陈立平,黄文倩,孟志军,付卫强,赵春江基于CAN总线的变量施肥控制器设计农业机械学报[J].2008,8:( 1):101~104.
    [24]张书慧,马成林,李伟,徐岩,.变量施肥对玉米产量及土壤养分影响的试验[J].农业工程学报,2006,(8).
    [25]董艺.单片机与PLC的区别及其对控制系统设计方案选择的影响[J].巢湖学院学报.2007,(03).
    [26]郭贵生.液压传动[J].西北农林科技大学学报.2007.
    [27] Kailash Krishnaswamy and Perry Y. Li,On Using Unstable Electrol hydraulic Valves for Control[J].Journal of Dynamic Systems, Measurement, and Control, 2002(1):183-190.
    [28]张书慧,马成林,杜巧玲,聂听,吴才聪,韩云霞.精确农业自动变量施肥机控制系统设计与实现[J].农业工程学报,2004,(l):113-116.
    [29]钟肇新,王灏,可编程控制器入门教程[M].华南大学出版社,1999(5).
    [30]陈洁.现代PLC控制技术与发展[J].电机电器技术,2004.(3).
    [31] Simosi.A.The method of improving the efficiency of PLC. Machanision Manufacture and Autoimmunization[J].2002,46 (2):27~29.
    [32] Lasepas. John. The PLC Control of Packaging production Line[J].Paekaging Engineering 2003,27(3):17~20.
    [33] Kinner , R.H .PLC control system training utilizing Process simulation techniques[J].Processing Automation ll,1996.
    [34] Jones, War din. Design of a PLC Based Control System for a Batch Reactor [J].Proceedings of the IASTED International Symposium on Circuits and Systems, 1991:90.
    [35] S7-200 Module Specifications [M].l-18,22~24.
    [36]李述孟.基于ARM的变量施肥控制系统研究.[D].长春:吉林大学生物与农业工程学院,2006.
    [37] http://www.71168.cn/2006/2006-7-21/2006721133157.Html.
    [38] Goss,DennisE.PLC device and Process simulator [J].ISA,TECH/EXPO Technology Update Conference Proceedings .v5o,1995.
    [39]赵继文,传感器与电路设计[M].科学出版计,1998.
    [40] Hrovat.D. , Powers. W.E. Computer Control System for Automation Power trains[J].IEEE control System Magazine,1988:3 10.[66].
    [41] SIEMENS AG.自由口模式下PLC与计算机的通信[DB/OL].
    [42] Gerry , Amies , Bob , Greene , Aircraft Hydraulic System , Dynamic Analysis , Frequency Response Computer program Technical Manual[J].AFAPL-TR-76-43 VO,3,Feb 1987.
    [43] YokotA S, Hiraoto K Anultra high-speed electro-hydraulic servo valve by making use of multilayered Piezo-electric device (PZT)[C].Proc. of the 1st International Symposium of Fluid Power and Control .Beijing,1991,10.
    [44] Henke-R. Fluid Power Controls Embrance Electronic Techniques [J].Control Engineering, 1984(3):71-76.
    [45] Yuan Shihua,Hu Jibin.The efficiency of multirangehydro-mechanical stepless transmission [J].Journal of Beijing Institute of Technology ,1998,7(2):129~134.
    [46]吴根茂.新编路甬祥.电液比例技术[M].机械工业出版社,1988.
    [47]实用电液比例技术[M].杭州:浙江大学出版社,2006.
    [48]韩颖等.阀控马达速度控制系统的速度控制系统研究[D].北京交通大学,2004.
    [49] Paul,A.K.AC operated EDT crane Control with variable voltage variable frequency drive Proceeding of the IEEE international Conference on Power Electronics[J].Drives & Energy Systems for industrial Growth,v2,1996,p857-861.
    [50]周万珍,高鸿斌,PLC分析与设计应用[M],北京:电子工业出版社,2001.1
    [51]韩云霞.2BFJ-6型自动变量施肥机控制系统研究.吉林大学硕士学位论文[D].2004,5.
    [52]马启青,刘志强,韩建武,耿宇涛,孙克俭,基于自由口模式实现S7-200系列PLC与PC机串行通信[J],微计算机信息(测控仪表自动化),2003(11):32-33.
    [53]许毅,雄文龙,雷静.基于PC与S7-200实现自由通信协议的研究[J].武汉理工大学学报,2002,26(4):513~515.
    [54] Fang. Y, Zergeroglu. E,Nonlinear coupling Control laws for an overhead Crane System[J].IEEE Conference on Control Application-Proceeding,2001:639~644.
    [55] Trimble Navigation Limited. http://www.trimble.com/.
    [56]王广运,郭秉义.差分GPS定位技术与应用[M].北京:电子工业出版社,1996.
    [57] SIEMENS,SIMATICS7-200可编程序控制器系统手册[M].2003(4).
    [58]吴才聪.精确农业变量施肥决策研究与技术经济分析[D].长春:吉林大学生物与农业工程学院,2003,4.
    [59]吴才聪,张书慧,马成林,杨印生,韩云霞.利用MapBasic划分精确农业田块网格方法的研究[J].农业工程学报,2002,18(2):156~159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700