动臂起重机若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动臂式变幅方式被广泛应用于各种类型的旋转起重机中,如海洋工程起重机、船用起重机、动臂塔机等。在动臂起重机的设计过程中,存在着一些关键性的问题,例如桁架式臂架弦杆节间距的确定、变幅机构铰点坐标的确定以及起重性能的计算方法等等。虽然在以前的期刊中有专门针对某一具体问题的论述,但是其研究方法繁琐,目的不是针对起重机的整体设计,结论也并不能很好地应用到实际的设计中,有一定的局限性。
     针对上述问题,本文从力学的角度,就动臂起重机设计过程中存在的几项关键技术,系统地进行了研究归纳,对该类起重机的设计提供参考。论文的主要研究工作和研究成果如下:
     (1)总结移动配重的几种实现形式,找出配重重心位置随臂架仰角的变化规律,并以钢丝绳配重移动方式为例,阐述了移动配重位置设计时需考虑的因素,为动臂塔机移动配重技术的设计提供参考。
     (2)从理想压杆、实际压杆、双向压弯杆件的强度、稳定性出发,以力学的角度科学的推导出确定桁架式构件单肢节间距的方法;并推导出一给定构件所能承受的最大轴向压力,为桁架式臂架系统的设计提供参考。
     (3)从构件的实际受力出发,以力学方式推导出变幅系统铰点坐标与构件受力的关系,用简单的数学关系式即可初步判断铰点确定的是否合适,避免了通常采用的优化设计中的编程调试过程,为系统铰点的设计提供参考。
     (4)开发了动臂起重机辅助设计系统。其主要任务是各种动臂式起重机产品的结构校核和起重性能计算。该系统适合于任何钢丝绳变幅方式的起重机的结构设计,并针对多种不同的设计规范,分别进行了完整的分析过程。
     同时以大连理工大学工程机械研究所与长沙中联重工科技发展股份有限公司合作开发的TCR6055-32动臂塔机为例,并通过有限元分析验证了本文研究成果的正确性、可行性以及专用软件系统的实用性。
The luffing jib way is widely used in various types of cranes, such as offshore cranes, ship cranes and tower cranes. In the design of these cranes, there are some key technologies, such as how to determine the length of truss joint of the chord; the three pin-connected joints coordinates of the luffing system and the method to calculate the lifting performance and so on. While in the previous journals, there are some discuss to some specific issues, the research method is complex, which is not aimed at the overall design of the crane, whose conclusions are not be well applied to the actual design, so there are some limitations.
     In allusions to the issues mentioned above, some key techniques are to be studied systematically in this paper in the mechanical point of view, which is a reference to the design of this kind of the cranes. The main research and the results of the paper are as follows:
     (1)The realization form of movable-counterweight is summed and the change law of the movable-counterweight center of gravity position and the boom angle is found out. In the end of this section, take the form of wire rope as an example, the factors considered in the design of the movable-counterweight are described, which provides a reference to the design of movable-counterweight in tower cranes.
     (2) Considering of the strength and stability of the ideal compressed bar, actual compressed bar and compression bending bar in two-way, the method to determine the length of truss joint of the chord is derived in the mechanical point of view. In the same time, the biggest axial pressure to a given component is derived, which provides a reference to the design of the truss-type jib system.
     (3) Considering of the actual force to the components, the relationship of the three pin-connected joints coordinates of the luffing system and the force to them is derived in the mechanical pin-connected joints of view. We can use simple mathematical relationship to pre-judge whether the pin-connected joints coordinates are rational, which can avoid the debugging process in the optimal design and provide a reference to the design of luffing system.
     (4) Luffing jib cranes aided design system is developed, whose main task is to check the structure and compute the lifting performance of all this kind of cranes. This system is suitable for the structure design of any luffing jib cranes and it contains the complete analysis process for various kinds of codes.
     At the same time, take TCR6055-32, cooperating between DUT and Zoomlion, as an example by FEM to reason the correctness and feasibility of the method proposed, and the practicability of the soft developed.
引文
[1]顾迪民.工程起重机.北京:中国建筑工业出版社,1988.
    [2]刘振辉,谭卫卫,谭家华.超大型海洋工程起重系统发展现状,中国海洋平台,2006,(2).
    [3]刘佩衡 国内外塔式起重机发展概况,工程机械与维修,1997(8).
    [4]起重机设计规范GB3811—1983.
    [5]中国船级社CCS.
    [6]Lloyd's register of shipping-Code for lifting appliances in a marine environment.
    [7]ABS-Guide for certification of lifting appliances.
    [8]API Spec 2C-2004 Specification for offshore pedestal mounted cranes.
    [9]ANSI/AISC-Specification for structural steel buildings.
    [10]DNV-Rules for certification of lifting appliances.
    [11]BV-Rules for the classification and certification of lifting appliances of ships and offshore units.
    [12]郑惠强 按稳定条件确定塔机臂架腹杆的最佳间距,水利电力机械,1993,(1).
    [13]蔺建国 动臂塔机在国外的发展及应用,建筑机械,2001,(11).
    [14]张明勤 塔机平衡重自适应调节机构研究,建筑机械化,2007,(2).
    [15]张英,姚燕安,查建中机构平衡的可移动配重法,上海交通大学学报,2006,12(40).
    [16]张明勤,孙小丽,曲振波等应用连杆机构实现起重机平衡重自适应调节,机械设计与研究,2003,8(19).
    [17]秦耀刚 平衡重在起重机械上的运用,起重运输机械,1983(12).
    [18]徐克晋.金属结构.北京:机械工业出版社,1993
    [19]王金诺,于兰峰.起重运输机金属结构.北京:中国铁道出版社,2002
    [20]张质文,虞和谦,王金诺等.起重机设计手册.北京:中国铁道出版社,2001.
    [21]陈国璋,孙桂林,孙学伟等.起重机计算实例.北京:中国铁道出版社,1985.
    [22]杨颖等 塔机臂架腹杆角度对杆件受力的影响,水利电力机械,1995,(2).
    [23]张洪,刘和平 格构式单臂架弦杆的受力特点及设计,太原重型机械学院学报,1993(14).
    [24]朱玉玺,陈琳 桁架弦杆横向屈曲长度的实用算法,国外石油机械,1995,3(6).
    [25]R.Stocki,K.Kolanek,S.Jendo et all.Study on Discrete Optimization Techniques in Reliability-based Optimization of Truss Structures,2001,79:2235-2247.
    [26]W.H.Tong,G.R.Liu.An Optimization Procedure for Truss Structures with Discrete Design Variables and Dynamic Constraints,2001,79:155-162.
    [27]P.Dayawansa,G.Chitty,B.Kerezsi et all.Fracture Mechanics of Mining Dragline Booms,2006,13:716-725.
    [28]郑惠强 金属强度 上海:同济大学出版社,1996.
    [29]永航栋等 钢结构稳定性原理 西安:西安交通大学出版社,1991.
    [30]陈卫明 补偿滑轮组铰点位置的优化,同济大学学报,2000,8(28).
    [31]施云权 变幅三铰点的实用设计,工程机械,1989(9).
    [32]Hirokazu Araya,Makoto Kakuzen,Hideki Kinugawa et all.Level Luffing Control System for Crawler Cranes,2004,13:689-697.
    [33]李华飚,毕宗睿,李水根.Visual Basic数据库编程.北京:人民邮电出版社,2004.
    [34]龚沛曾,陆慰民,杨志强.Visual Basic程序设计简明教程.北京:高等教育出版社,2003.
    [35]高春艳,刘彬彬,王斌.Visual Basic开发技术大全.北京:人民邮电出版社,2007.
    [36]李华飚,毕宗睿,李水根.Visual Basic数据库编程.北京:人民邮电出版社,2004.
    [37]程菊生,黄水光,史俊友 门座起重机总体方案设计专家系统,起重运输机械,1997(8).
    [38]魏长胜,陆莹 塔机塔身计算机辅助设计方法研究与系统开发,建筑机械,1993(7).
    [39]贾文华,殷晨波,程本松 塔式起重机的计算机辅助设计系统,起重运输机械,2008(8).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700