履带起重机塔式臂架的整体稳定性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会进步和技术的不断发展,以及各施工企业对高效益和高效率的执着追求,整体吊装工程越来越普遍,这就要求吊装用起重机的起重能力、作业幅度和高度越来越大。起重机日益向着大型、高耸、轻柔、格构化方向发展。由于高强度钢材的大量采用,提高了结构强度,却使刚度和稳定性问题日显突出。复杂桁架式结构的稳定性分析成为当代大型起重机结构设计计算的难点。履带起重机的臂架是由钢管焊接而成的大型空间超静定桁架结构,工程中常使用有限元法来进行设计计算,具有主副臂结构的履带起重机格构式臂架的整体稳定性分析更是目前我国起重机设计分析人员所面临的难题。因此,结合起重机设计规范,寻求简单、实用、有效的方法极为必要。
     通过对起重机吊臂的受力分析,采用了用放大系数法求截面弯矩,从而用应力法校核其稳定性;
     引入了悬臂式结构端部水平位移的便捷算式。在此基础上,通过位移比较的方法,引入了双肢格构式构件和四肢格构式构件等效为实腹构件时等效惯性矩的计算公式。在不改变构件长度的情况下,实现了格构式结构到实腹式结构的等效。通过等效惯性矩的计算方法,对变截面格构式构件的稳定性计算进行了初步的探讨,引入了两端铰支的变截面梁失稳特征方程。为研究弯曲梁的失稳问题打下了基础。
     对两节梁组成的弯曲梁在横向力和竖向力作用下的失稳问题进行了研究,通过建立每节梁临界状态下弯曲和扭转变形微分方程,根据杆件变形的边界条件以及杆件之间的变形协调关系,得出了一端固定一端悬臂的弯曲梁在横向力和竖向力作用下平面外失稳的特征方程,并进行了讨论。
     对具有主、副臂结构的履带起重机格构式臂架的整体稳定性进行了研究,给出了具有主、副臂结构格构式臂架失稳的临界载荷的计算方法和采用应力法校核稳定性的方法。以具体的实例给出了具有主副臂结构的履带起重机格构式臂架整体稳定性的计算方法和步骤。
With the constant development of society and technology, as well as, the unremitting pursuance of the construction enterprises for more benefits and higher efficiency, integrative suspension-and-installation projects become more and more prevalent, thus caused a more and more demanding request of lifting ability, working extent and height of the cranes used for suspecting and installing. Modern cranes tend to be larger, higher, more ingenious and lattice structural. The adoption of ample high-strength steels has improved the structure strength, but it has also made the problem of intensity and stability more conspicuous at the same time. The stability analysis of complex truss structure gets to be the nodus of the calculations in the structure designs of modern good-size cranes. Tracklayer-cranes' arms are good-size space-hyper-static truss structures made up by jointing steel tubes. The finited-element technique is often used to perform calculations in designs in projects. The analysis of integrative stability of the lattice structural arms of tracklayer-cranes with main & subsidiary arms is even the puzzle for designers and analyst in our country. So we conclude that it is very necessary to seek for pithy, practical and efficient techniques following crane designing criterions.
     By analyzing force bearing status of cranes' arms, adopting enlarge-coefficient techniques to work out section bend quadrature, then we can use stress technique to collate the integrative stability of it.
     A convenient formula to calculate the horizontal displacement of the cantilevered end was introduced. On this basis, by a method to compare the displacements, a formula was reached to calculate the equivalent inertia quadtature, when two-limbs lattice structural component and four-limbs lattice structural component are equal to abdomen-solid component. Without changing the length of components, the equivalence between the lattice structures and abdominal structures has come true. Through the method of calculating the equivalent inertia quadtature, we conducted a preliminary study about the stability calculation of variable cross-section lattice members, and reach to a characteristic equation which describes the stability-losing of the variable cross-section beam which was hinged at both ends.
     The stability-losing problems of bending beam which is component of two beams and under the force from horizontal and vertical directions have been studied, through the establishment of differential equations of each beam bending, reversing and deformation under the critical state, according to the boundary conditions of bar deformation and coordinating relations between the transformative bars, we achieved a characteristic equation that describes the stability-losing beyond the plane of the bending beam whose one end was fixed and the other was cantilever when it is under the force from horizontal and vertical directions, and had a discussion.
     Studied the integrative stability of the lattice structural arms of tracklayer-cranes with main & subsidiary arms, the methods to calculate stability critical load in and out of the lattice structural jibs with main & subsidiary arms lifting plane and using stress technique to collate the integrative stability are presented. Specific examples are given to show the method and steps to calculate the the integrative stability of the lattice structural arms of tracklayer-cranes with main & subsidiary arms.
引文
1 王金诺,于兰丰.起重运输机金属结构.第一版.中国铁道出版社.2002:285-295
    2 陈玮璋.起重机械金属结构.第一版.人民交通出版社.1986:166-182
    3 陈骥.钢结构稳定理论与设计.科学出版社.2003:11-24
    4 刘光栋,罗汉泉.杆系结构稳定.人民交通出版社.1988:1-4
    5 陈铁云,沈惠申.结构的屈曲.上海科学技术文献出版社.1993:1-3
    6 顾迪民.起重机械事故分析和对策.人民出版社.2001:210-224
    7 楚中毅,陆念力,车仁炜,楚兰英.一种梁杆结构稳定性分析的精确有限元法.哈尔滨建筑大学学报,2002,35(4):25-28
    8 周慎杰,王锡平,李文娟,王凯.履带起重机臂架有限元分析方法.山东大学学报,2005.35(1):22-26
    9 张连文,郭卫军,王昊,马新敏,张忠海,陈以田,刘振.双吊点臂架整体稳定性校核段的选择.建筑机械化,2003(2):28-29
    10 GB 3811-83,起重机设计规范[s]:56-60
    11 Klaus-J(u丨¨)rgen Bathe.Advanees in Nonlinear Finite Element Analysis ofAutomobiles.1997,64(5):881-891
    12 王凯,周慎杰.80吨履带起重机桁架式臂架系统有限元分析方法.机械设计与研究2005.21(5):88-91
    13 尹刚,冯贤桂.变截面压杆的临界压力近似计算.重庆工学院学报.2005(11):22-24
    14 蓝天,姚卓智.桅杆结构的非线形分析.中国建筑研究院结构所.1980:2-4
    15 陆念力,兰朋,李良.二阶理论条件下的梁杆系统精确有限元方程及应用.哈尔滨建筑大学学报,1998,31(4):67-74
    16 陆念力,张立强,孟小平.梁杆系统精确有限元方程及其在几何非线性分析和稳定计算中的应用.建筑机械,1996(3):18-20
    17 谷礼新,郑海斌,彭卫平.塔式起重机起重臂结构和稳定性有限元分析.机电工程技术.2005(8):27-31
    18 陆念力,兰朋,白桦.起重机箱形伸缩臂稳定性分析的精确理论解,哈尔滨建筑大学学报,2000,35(2):89-93
    19 张连文,郭卫军,王昊,马新敏,张忠海,陈以田,刘振.双吊点臂架整体稳定性校核段的选择.建筑机械化,2003(2):28-29
    20 李涵,塔式起重机双吊点水平臂整体稳定性分析研究.哈尔滨工业大学硕士位论文.2005:29-36
    21 Pal Tomka.Lateral stability of coupled simply supported beams.Journal of Constructional Steel Research,2001,5?(5):517-523
    22 Lan Peng,Liu Manlan,Lu Nianli.Out-of-plane stability of a bending beam.GongchengLixue,2005,22:152-155
    23 徐克晋.金属结构(第2版)机械工业出版社.1990:56-70
    24 S.P.铁摩辛柯.弹性稳定理论(第二版).科学出版社.1965
    25 Potrc I,Sraml M.On the Numerical Analysis of the Contact Problems at CraneMachanisms.Zeitschrift fur Angewandte Mathematik and Mechanik,2000,80(supp12):S491-S492
    26 孙焕纯,王跃方.对桁架结构稳定分析经典理论的讨论.计算力学学报.2005(3):316-320
    27 S.Shimizu,M.Nakano.Strength and Behavior of the Corner Zones in Steel RigidFrame Columns with Shifted Beams.Journal of Constructional Steel Research.2000,53(2):245-263
    28 陈思作,吴海洋.平面钢框架失稳形式的研究.筑技术开发.2005(3):38-41
    29 张连文,马新敏,王昊,郭卫军,刘继忠。双吊点塔式起重机臂架整体稳定性计算.起重运输机械.20 104.(2):16-18
    30 胡永飞,塔身腹杆体系探讨,建筑机械.1992(2):20-22
    31 Guo-Qiang Li,Jin-Jun Li.A tapered Timoshenko-Euler beam element foranalysis of steel portal frames[J].Journal of Constructional Steel Research,2002,58(12):1531-1544
    32 薛渊.塔式起重机塔身刚度计算分析的高效方法.哈尔滨工业大学硕士学位论文.2001:25-30
    33 S.Naguleswaran.Transverse vibration and stability of an Euler- Bernoulli beamwith step change in cross-section and in axial force[J].Journal of Sound and Vibration,2004,270(5):1045-1055
    34 Kim Moon-Young a,Kim Sung-Bo,Kim Nam-II.Spatial stability of shear deformable curved beams with non-symmetric thin-walled sections.Ⅰ:Stabilityformulation and closed-form solutions.Computers and Structures.2005(83):2525-2541
    35 David H.Ellis,Scott R.Swengel,George W.Archibald,Cameron B.Kepler.Asociogram for the cranes of the world.Behavioural Processes.1998(43):125-151
    36 李以申,陆念力,顾迪民.塔式起重机起重臂结构稳定计算的研究(一)--具有连续变化截面析架构件的欧拉临界力计算.建筑机械,1996(12):23-26
    37 王勖成.有限单元法.清华大学出版社.2003:55-77
    38 Hasan t(u丨¨)rk,Mustafa Sabuncu.Stability analysis of a cantilever composite am on elastic supports.Composites Science and Technology.2005(65):1982-1995
    39 Mustafa Sabuncu,Kaan Evran.Dynamic stability of a rotating asymmetric cross-section Timoshenko beam subjected to an axial periodic force.Finite Elementsin Analysis and Design.2005(41):1011-10266
    40 李以申,陆念力,顾迪民.塔式起重机起重臂结构稳定计算的研究(二)--具有连续变化截面析架构件的欧拉临界力计算.建筑机械,1996(12):23-26
    41 B.Nadler,M.B.Rubin.A new 3-D Finite Element for Nonlinear Elasticity Usingthe theory of a Cosserat Point.International Journal of Solids and Structures.2003,40(17):4585-4614
    42 李以申,陆念力,顾迪民.塔式起重机起重臂结构稳定计算的研究(四)-转角位移方程法求解构件欧拉临界力.建筑机械,1997(2):9-13
    43 J.G.Teng,J.Yao.Distortional Buckling of Channel Beam-columns.Thin-walled structures.2003,41(7):595-617
    44 N.A.Fallah,C.Bailey.Comparison of Finite Element and Finite Volume Methods Application in Geometrically Nonlinear Stress Analysis.Applied Mathematical Modelling.2004,24(7):439-455
    45 Phani Kumar V.V.Nukala,Donald W.White.A Mixed Finite Element for Threedimensional Nonlinear Analysis of steel Frames.Computer Methods inApplied Mechanics and Engineering.2004,193(23-26):2507-2545
    46 Kiyohiro Imai,Dan M.Frangopol.Geometrically Nonlinear Finite Element Reliability Analysis of Structural Systems.Computers and Structures.2000,77(6):677-691
    47 李以申,陆念力,顾迪民.塔式起重机起重臂结构稳定计算的研究(三)--微分方程法求解阶梯状变截面非保向力悬臂梁构件的欧拉临界力.建筑机械,1997(1):12-19
    48 J.L.Bonet,P.F.Miguel.Biaxial Bending Moment Magnifier Method.2004,26(13):2007-2019
    49 任体旺,格构式轴压构件稳定性计算及精度分析.哈尔滨工业大学硕士毕业论文.2004:35-52
    50 Yang.Y.B.Incrementally small-deformation theory fro nonlinear analysis ofstructural frames.Engineer Structure.2002,24(6):783-798
    51 Samir Z.Al-Sadder.Exact Expressions for Stability Functions of a General Non-prismatic Beam-column Member.Journal of Constructional Steel Reaserch.2004,60(11):1561-1584
    52 张质文,虞和谦,王金诺等.起重机设计手册.北京:中国铁道出版社,1998
    53 王佳,有主副臂结构的起重机格构式臂架整体稳定性研究.哈尔滨工业大学硕士毕业论文.2006:21-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700