挤压气膜变摩擦装置研制及触觉再现实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多通道、多媒体、智能化是人机交互技术的发展趋势,利用人的多种感觉通道和动作通道(视觉,听觉,触觉,嗅觉等),以并行和非精确方式与计算机系统进行交互,极大地提高了人机交互的自然性和高效性。触觉作为人类认识和感知外部世界的重要信息通道,被广泛应用于人机交互技术的研究中。针对虚拟现实以及遥操作系统,触觉的模拟与再现是增强系统真实感,营造沉浸效果的重要因素。因此,设计一个能够准确、实时地再现触觉特性的人机接口装置显得尤为重要。基于挤压气膜效应,本文设计并开发一种具有实时性、快速性的触觉再现人机接口装置。
     首先,通过对触觉产生机理及挤压气膜效应进行分析,确定了基于挤压气膜效应的触觉再现方式。根据挤压气膜产生机理及压电学相关理论选择可产生弯曲振动的双晶片作为振动主体。并设计了压电陶瓷支架、振动装置壳体等相关机械结构及手指位置检测系统等相关电路。
     其次,对触觉再现的核心部分压电振子的结构根据承载力、共振频率、振动的理论振幅、压电陶瓷安全工作功率等约束条件,进行优化,确定能满足触觉再现的最优化结构。
     再次,为了获得压电振子驱动信号与摩擦系数间的对应关系,进行了摩擦力标定试验,根据试验结果得出了15种质感触觉和4种纹理触觉的控制信号。并开发了便于操作者使用的人机交互界面。
     最后,根据上述设计做出样机,进行实验分析,通过对20名受试者进行调查,证实了本装置的有效性。并设计复杂质感触觉再现和纹理再现实验,验证变摩擦触觉再现装置对复杂质感触觉和纹理触觉的再现能力。
Multi-channel, multi-media and intelligence are the development trends of human-computer interaction technology. It will break the traditional limitations of visual feedback of human-computer interaction and greatly improve the natural human-computer interaction and high efficiency to interact with computer systems in a parallel and non-precision approach, using a variety of people feeling channels, such as visual, auditory, touch, and smell, etc.Tactile has been widely used in virtual reality system and telepresence system as an important information channel for human knowledging and perceiving world. In virtual reality system and telepresence system, haptic display is an important mathod enhancing interactive vitality and immersion. By the development of virtual reality technology and interactive telerobot technology, it is very important and necessary to design a man-machine interface, which can realize real-time and precision of haptic display. This paper presents a novel real-time precision tactile display based on air squeeze film effect
     Firstly, the way of tactile representation has been determined through analyzing the mechanism of tactile and the effect of gas film squeezing. According to the mechanism of gas film squeezing and the related theory of Piezoelectricity, the duplex crystal able to generate bending vibration has been selected as the vibration subject. Meanwhile, related mechanical structures, such as the frame made of Piezoelectric and shells of vibration devices and related circuits for figure positioning have been designed.
     Secondly, to satisfy the optimized structure of tactile representation, the structure of the piezoelectric vibrator, which is the core of tactile representation, has been optimized according to the constraints such as bearing capacity, resonance frequency, theoretical amplitude of vibration and the safe working power of Piezoelectric, etc.
     Then, the corresponding relation between the driving signals of piezoelectric vibrator and the friction coefficient has been defined by test. And according to the test results, the control signals for twelve kinds of friction tactile and four kinds of textural have been designed. Moreover, the software of human-computer interactive convenient to use has been programmed.
     Lastly, experiment analysis of the prototype constructed according to the design above verified the feasibility of tactile representation based on the effect of gas film squeezing. Through the investigation of 20 tested people, effectiveness of the device to most groups has been validated.
引文
1潘红艳,陶霖密,徐光祐.远程教学平台人机交互界面的人机学研究.中国远程教育, 2006(12):61-63
    2吴兆卿,饶培伦.触觉交互——一种新兴的交互技术.人类工效学, 2006, 12 (1) : 57-59
    3 M. E. Hodges. It Just Feels Right. Computer Graphics World, 1998, 21 (5) :1-5
    4 K.Salisbury. Haptics: The Technology of Touch. HPCwire Special, 1995-11-10 (2)
    5 P. Paul, P. Helen, P. Chetz, et al The Haptic Perception of Texture in Virtual Environment: an Investigation With Two Devices. Haptic Human-Computer Interaction, Glasgow, UK, Springer, 2000: 25-30
    6 C. S. Campbell, K. W. May, P. P. Maglio. What You Feel Must be What You See. Proc of Interact’1999. Edinburgh: IOS Press, 1999:383-390
    7 I. Oakley, S. A. Brewster, P. D. Gray. Solving Multi-target Haptic Problems in Menu Interaction. Extended Abstracts of ACM CHI 2001 (Seattle, WA), 2001: 357-358
    8 A. Yamamoto, S. Nagasawa, H. Yamamoto, T. Higuchi. Electrostatic Tactile Display with Thin Film Slider and Its Application to Tactile Telepresentation Systems. IEEE Transaction on Visualization and Computer Graphics,Vol. 12, No. 2, March/April 2006: 168– 177
    9 J. Streque, A. Talbi, P. Pernod, V. Preobrazhensky. Electromagnetic Actuation Based on MEMS Technology for Tactile Display. Lecture notes in computer and science, Vol. 5024, Haptics: Perception, devices and scenarios, Springer Berlin, 2008: 437-446
    10 J. Streque, A. Talbi, P. Pernod, V. Preobrazhensky. New Magnetic Micro-Actuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display. IEEE Transactions on Haptics - Special Issue, 2009: 1-11
    11 R. Vitushinsky, S. Schmitz, A. Ludwig. Bistable Thin-Film Shape Memory Actuators for Applications in Tactile Displays. Journal of Microelectro-mechanical Systems. 2009, 18(1): 186-194
    12 W. R. Provancher, N. D. Sylvester. Fingerpad Skin Stretch Increases thePerception of Virtual Friction. IEEE Transactions on Haptics. 2009, 2(4): 212 - 223
    13 W. Provancher, M. Cutkosky, K. Kuchenbecker, G. Niemeyer. Contact Location Display for Haptic Perception of Curvature andObject Motion. Robotics Research. 2005, 24(9): 691– 702
    14 Y. Ikei, K. Wakamatsu, S. Fukuda. Vibratory Tactile Display of Image-based Textures. Virtual Environment and Teleoperator Systems. 2003:53– 61
    15 N. Asamura, N. Yokoyama, H. Shinoda. Selectively Stimulating Skin Receptors for Tactile Display. IEEE Computer Graphics and Applications. 1998: 32– 37
    16 N. Asamura, N. Yokoyama, H. Shinoda. A Method of Selective Stimulation to Epidermal Skin Receptors for Realistic Touch Feedback. IEEE Virtual Reality 1999, 5: 274– 281
    17 T. Nara, M. Takaaki, S. Tach, T. Higuchi. An Application of SAW to a Tactile Display in Virtual Reality. IEEE Ultrasonics Symposium. 2000: 313– 316
    18 L, Rahal, J. Cha, A. E. Saddik. Continuous Tctile Prception for Vbrotactile Dsplays. Proceedings of Multimedia Communications Research Laboratory School of Information Technology and Engineering University of Ottawa, Canada, 2009
    19 M. Takasaki, T. Nara, T. Mizuno. A Computer Inerface Using Surface Acoustic Wave Tactile Display. Hongo, PRESTO, Japan, 2002: 3200-3204
    20李嘉,胡军,刘文江,胡怀中.遥操作机器人压电振动式触觉显示器的研制.机器人. 2003, 25(7): 593 - 597
    21陈旭,宋爱国,李建清.一种新的虚拟纹理触觉再现方法及其装置实现.测控技术, 2006, 8 : 72– 75
    22刘佳,宋爱国.人手柔性触觉感知特性.东南大学学报. 2007, 37(5): 55 - 57
    23陈旭,宋爱国,林国余.纹理触觉信息检测系统研究.传感器与仪器仪表. 2009, 25(5): 132– 133
    24帅立国,况迎辉,王雪梅,许艳芳.时空二维机器人电触觉临场感模型研究.机器人. 2005, 27(5) : 441– 444
    25 T. Maeno, K. Kobayashi, N. Yamazaki. Relationship between the Structure of Human Finger Tissue and the Location of Tactile Receptors. JSME Int J,1998(41): 94-100
    26 ASMS E253 04. Standard Terminology Relating to Sensory Evaluation ofMaterials and Products, 2004,06(01)
    27 R. Romo, E. Salinas. Sensing and Deciding in the Somatosensory System. Current Opinion in Neurobioliogy, 1999, 9(4): 487– 493
    28 T. Maeno, K. Kobayashi, N. Yamazaki. Relationship between the Structure of Human Finger Tissue and the Location of Tactile Receptors. JSME Int J, Series C, 1998, 41(1): 94– 100
    29 Hu Jiyong, Ding Xin, Wang Rubin. Biomechanical Mechanism of Fabric Softness Discrimination. Fiber and Polymers, 2007, 8(4): 372-376
    30 K. O. Johnson, T. Yoshioka, F. Vega-Bermudez. Tactile Functions of Mechanoreceptive Afferents Innervating the Hand. J Clinical Neurophysiology, 2000, 17(6):539-558
    31 K. O. Johnson, S. S. Hsiao. Neural Mechanisms of Tactual Form and Tecture Perception. Annual Review of Neuroscience, 1992,15:227-250
    32 K. Johnson, T. Yoshioka, F. Vega-Bermudez. Tactile Functions of Mechanoreceptive Afferents Innervating the Hand. J Clinical Neurophysiology, 2000(17):539-558
    33 Y. Park, M. Uchida. A Miniature Tactor Design for Upper Extremity Prosthesis. ICROS-SICE Itnernational Joint Conference 2009, Fukuoka International Center, Japan, 2009: 2139-2143
    34乐国安.“心理物理学”的发展和现状评述.心理学报. 1983, 1: 1-8
    35赫保源.谈谈心理物理学方法.心理科学通信. 1965, 2: 45-56
    36刘凯龙,孙向军,赵志勇,王世鑫.基于心理物理学的图像评价技术研究.系统仿真学报. 2005, 17(2): 417-420
    37 (美)贾菲.压电陶瓷.科学出版社, 1979: 14 -25
    38 (英)范兰德拉特, (英)塞德林顿.压电陶瓷,科学出版社, 1981:19– 31
    39 J. Marie. Modelling of Three-layered Piezoelectric Plates Mechanics Research Communications. 2000,27(2):191-195
    40 S. J. Bolanowski, G. A. Gescheider, R. T. Verillo. Four Channels Mediat the Mechanical Aspects of Touch. J Acoust Soc Am, 1988, 84(5):1680-1694
    41栾桂冬,张金铎,王仁乾.压电换能器和换能器阵.北京大学出版社, 1990:2~150
    42刘品宽,孙立宁,祝宇虹,赵研峰.双压电复合薄圆板驱动器的理论分析.压电与声光, 2002, 24(2): 111-115
    43小飒工作室,最新经典ANSYS及Workbench教程.第一版.电子工业出版社, 2004:378-442
    44苏荣华,梁冰.结构仿真分析ANSYS应用.第一版.东北大学出版社, 2005: 214-226
    45 A. Fernanders, J. Pouget. Two-dimensional Modeling of Laminated Piezoelectric Composites: Analysis and Numerial Result Thin-Walled Structures. 2001, 39:3~22
    46 G. Robles, V. Hayward. Force can Overcome Object Geometry in the Perception of Shape through Active Touch. Nature 412, 2001: 445-448
    47 G. Robles, V. Hayward. Virtual Surfaces and Haptic Shape Perception. In Proc. ASME Dynamics Systems and Control Division. The American Society of Mechanical Engineers, 2000(2):1081-1085
    48 G. Robles. Comparing the Role of Lateral Force During Active and Passive Touch: Lateral Force and its Correlates are Inherently Ambiguous Cues for Shape Perception under Passive Touch Conditions. Proceedings of Eurohaptics 2002 University of Edinburgh United Kingdom: 159-164
    49张亮,卫星.基于RS-485总线的多通道数据监测系统.微计算机信息. 2006, 22(12) : 104-106
    50龚建伟. Visual C++/Turbo C串口通信编程实践.人们邮电出版社, 2002: 64-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700