利用表面张力组成理论研究高分子膜对蛋白质的吸附作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超滤膜的污染问题是膜分离技术中的一个研究热点。为了开发耐污染的超滤膜,建立有效的膜污染机理理论是非常必要的。目前通常采用亲疏水作用理论对膜与污染物之间的吸附行为进行解释。由于这是用单一参数进行解释,所以常常不能够准确解释膜污染的行为,因此需要采用更为准确的理论对膜污染进行分析。目前能够更准确描述材料表界面作用的理论是表面张力组成理论,但这个理论还没有被广泛用于对膜污染的研究,并且很多高分子材料的表面张力组成没有经过详细测定。因此本论文采用表面张力组成理论研究高分子膜污染的行为,以牛血清蛋白(BSA)为污染物研究对象,用动态接触角技术系统测定了十多种高分子材料(PES、PBT、PEI、POM、PPO、PC、PSF、PVDF、SAR等)以及自制的PES、PVDF和PSF超滤膜的表面张力组成参数。通过添加蛋清蛋白,来制备抗蛋白质污染的聚醚砜超滤膜,系统研究了制膜工艺条件与膜抗蛋白质污染之间的关系。
     对于用高分子材料制备的无孔均质膜,BSA吸附量与材料的表面张力及两者之间的界面张力,存在如下关系:当高分子材料的色散能值增加时,高分子材料对BSA蛋白的吸附量增加;对于路易斯碱值来说,高分子材料对BSA的吸附量随着路易斯碱值的减小而增加;当高分子材料与BSA的界面张力值增加时,BSA吸附量增加。高分子材料的表面张力与其分子结构之间存在一定的关系。分子结构中含有醚基团的材料,如PBT、PC、PPO及POM表现出较强的路易斯碱性,苯环的位置对临近基团有较大的影响,苯环可以减小醚基的路易斯酸碱性,因此,PEI、PES和PSF的路易斯碱值是很小的。
     对于由PES、PSF和PVDF制成的超滤膜,实验发现:当超滤膜的色散能值增加时,超滤膜对BSA的吸附量增加;超滤膜对BSA的吸附量随着路易斯碱值的减小而增加;当超滤膜与BSA的界面张力值增加时,BSA吸附量增加。总体看来,BSA在具有多孔的超滤膜表面的吸附行为与其在无孔的高分子薄膜表面吸附时表现的行为基本一致。
     对于由蛋清蛋白作为共混剂制备的PES超滤膜,实验发现制膜工艺的最佳条件为:PES浓度为18wt.%,蛋清蛋白浓度为4wt.%, PEG浓度为10wt.%,凝固浴温度为20℃,预蒸发时间为10s。共混超滤膜的抗BSA污染性能从大到小依次为:PES/EW (4wt.%)>PES/EW (6wt.%)>PES/EW (2wt.%)>Pure PESo纯PES超滤膜的通量衰减系数为52.36%, PES/EW (4wt.%)共混超滤膜与纯PES超滤膜相比,其通量衰减系数下降到45.60%。BSA在共混改性的超滤膜表面的吸附行为与其在无孔的高分子薄膜表面吸附时表现的行为也基本一致。
     本论文的研究工作对于系统的认识高分子材料结构及其表面张力组成之间的关系、深入理解高分子膜材料及超滤膜被蛋白质污染之间的关系具有重要的理论参考价值。
The pollution problem on the ultrafiltration membrane has been concerned in membrane separation field. It is necessary to establish an effective mechanism of membrane fouling theory to develop anti-fouling membranes. At present, the theory of hydrophilic-hydrophobic interaction was adopted to explain adsorption behavior between contamination and membrane. As this is one single parameter theory, it often can not accurately explain the behavior of membrane fouling. Thus it is necessary for unsing more accurate theory to analyze the membrane fouling mechanism. The surface tension components theory was considered to accurately explain surface and interface interaction of materials, but this theory has not been widely used for studying membrane fouling mechanism. And the surface tension components values of many polymer materials have not been determined. Therefore, in this dissertation, the surface tension components theory was used for researching the membrane fouling behavior. Bovine serum albumin was taken as the pollutants. Dynamic cycling contact angle technique was adopted to measure the surface tension components values of the polymer materials (PES、PBT、PEI、POM、PPO、PC、PSF、PVDF、SAR, etc.) and self-made ultrafiltration membranes (PES、PVDF and PSF). Egg white was blended with PES to fabricate the antifouling ultrafiltration membrane. The relationship between preparation conditions of fabricating membrane and membrane fouling has been investigated.
     The non-porous homogeneous films were fabricated from polymer materials. It was found that there were some relationships between the BSA adsorption amount, surface tensions of the polymer films and the interfacial tensions between the BSA and the polymers. When the Lifshitz-van der Waals force value of the polymers increased, the BSA adsorption amount increased. For the electron donor component value, increase of electron donor component value induced weak adsorption on the polymers for BSA. When the interfacial tension value between the polymer materials and BSA increased, the BSA adsorption amount increased. It has some relationships between surface tension components and the molecular structure of the polymer materials. For PBT、PC、PPO and POM, their structures contained the ether groups, consequently, their electron donor values were large. The position of benzene ring had a big influence on the adjacent group. Benzene ring could significantly reduce the electron donor-acceptor values of ether group. Therefore, the electron donor values of PEI, PES and PSF were small.
     The ultrafiltration membranes were fabricated from PES、PSF and PVDF. It was found that when the Lifshitz-van der Waals force value of ultrafiltration membrane increased, BSA adsorption amount on the ultrafiltration membrane increased. Increase of electron donor component values induced weak adsorption on the ultrafiltration membrane for BSA. When the interfacial tension values between ultrafiltration membrane and BSA increased, the BSA adsorption amount increased. On the whole, the adsorption behavior on the porous ultrafiltration membranes for BSA was similar with the adsorption behavior on the non-porous polymer materials for BSA.
     The egg white was blended with PES to modify the ultrafiltration membranes. The proper conditions of preparing the PES/EW membranes were:the concentration of PES in the casting solution was 18wt.%. The concentration of egg white in the casting solution was 4wt.%. The concentration of PEG in the casting solution was 10wt.%. The temperature of coagulation bath was 20℃, and the evaporating time was 10 seconds. The order from high to low for the antifouling performance of the blended membrane was:PES/EW (4wt.%)>PES/EW (6wt. %)>PES/EW (2wt.%)>PES (pure). The flux attenuation coefficient value decreased from 52.36% for the PES/EW (4wt.%) membrane to 45.6% for the pure PES membrane. The adsorption behavior on the blended ultrafiltration membrane for BSA was similar with the adsorption behavior on the non-porous polymer materials for BSA.
     This research work will play an important role in systemically understanding the relationship between molecular structure and surface tension components for polymer materials, and it will also have a significant value for deeply understanding the relationship between polymer materials and membrane fouling from protein.
引文
[1]颜肖慈,罗明道.界面化学.北京:化学工业出版社,2005,5-8
    [2]陈传煊,表面物理化学.北京:科学技术文献出版社,1995,61-63
    [3]C.J.V. Oss, M.K. Chaudhury, R.J. Good. Mechanism of partition in aqueous media. Separation Science and Technology,1987,22(6):1515-1526
    [4]C.J.V. Oss, R.J. Good, M.K. Chaudhury. Estimation of the polar surface tension parameters of glycerol and formamide, for use in contact angle measurement s on polar solids. Journal of Dispersion Science and Technology,1990,11(1):75-81
    [5]张远超,朱定一,许少妮.高聚物表面的润湿性实验及表面张力的计算.科学技术与工程,2009,13(9):3595-3600
    [6]赵国玺,朱步瑶.表面活性剂原理.北京:中国轻工业出版社,2003,45-68
    [7]N. Lozano, A. Pinazo, R. Pons, L. Perez, E.I. Franses. Surface tension and adsorption behavior of mixtures of diacyl glycerol arginine-based surfactants with DPPC and DMPC phospholipids. Colloids and Surfaces B:Biointerfaces,2009,74:67-74
    [8]C.J.V. Oss. Interfacial forces in aqueous media. new york:1994, ISBN 0-8247-9168-1
    [9]A.F. Stalder, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann. A snake-based approach to accurate determination of both contact points and contact angles. Colloids and Surfaces A: Physicochem. Eng. Aspects,2006,286:92-103
    [10]曹晓平,蒋亦民.浸润接触线的摩擦性质与固体表面张力的Wenzel行为.物理学报,2005,54(5):2202-2206
    [11]李大勇,石德全,李峰,张宇彤.液态合金表面张力检测技术研究与应用的进展.铸造,2004,53(1):12-17
    [12]H. Tavana, A.W. Neumann. Recent progress in the determination of solid surface tensions from contact angles. Advances in Colloid and Interface Science,2007, (132):1-32
    [13]C.H. Sun, J.C. Berg. Effect of moisture on the surface free energy and acid-base properties of mineral oxides. Journal of Chromatography A,2002,969:59-72
    [14]罗晓斌,朱定一,石丽敏.基于接触角法计算固体表面张力的研究进展.科学技术与工程,2007,7(19):4997-5004
    [15]C. Karaguzel, M.F. Can, E. Sonmez, M.S. Celik. Effect of electrolyte on surface free energy components of feldspar minerals using thin-layer wicking method. Journal of Colloid and Interface Science,2005,285:192-200
    [16]吴爱民,孙载坚.确定固体聚合物表面张力方法的研究.中国塑料,1999,13(4):87-92
    [17]王晖,顾帼华,邱冠周.接触角法测量高分子材料的表面能.中南大学学报,2006, 37(5):942-947
    [18]C.T. Chen, Z.Y. Al-Saigh. Characterization of Semicrystalline Polymers by Inverse Gas Chromatography.1. Poly (vinylidene fluoride). Macromolecules,1989,22:2974-2981
    [19]I. Kaya, E. Ozdemir. Thermodynamic interactions and characterisation of poly (isobornyl methacrylate) by inverse gas chromatography at various temperatures. Polymer,1999,40: 2405-2410
    [20]C. Etxabarren, M. Iriarte, C. Uriarte, A. Etxeberr, J.J. Iruin. Polymer-solvent interaction parameters in polymer solutions at high polymer concentrations. Journal of Chromatography A,2002,969:245-254
    [21]J.M.R.C.A. Santos, K. Fagelman, J.T. Guthrie. Characterisation of the surface Lewis acid-base properties of poly (butylene terephthalate) by inverse gas chromatography. J Chromatogr A,2002,969(1-2):111-118
    [22]J.M.R.C.A. Santos, J.T. Guthrie. Study of a core-shell type impact modifier by inverse gas chromatography. J Chromatogr A,2005,1070(1-2):147-154
    [23]罗晓斌,朱定一,石丽敏.基于接触角法计算固体表面张力的研究进展.科学技术与工程,2007,7(19):4997-5004
    [24]C. Karaguzel, M.F. Can, E. Sonmez, M.S. Celik. Effect of electrolyte on surface free energy components of feldspar minerals using thin-layer wicking method. Journal of Colloid and Interface Science,2005,285:192-200
    [25]A.F. Stalder, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann. A snake-based approach to accurate determination of both contact points and contact angles. Colloids and Surfaces A: Physicochem. Eng. Aspects,2006,286:92-103
    [26]E. Chibowski, R. Perea-Carpio. A Novel Method for Surface Free-Energy Determination of Powdered Solids. Journal of Colloid and Interface Science,2001,240:473-479
    [27]E. Chibowski, R. Perea-Carpio. Problems of contact angle and solid surface free energy determination. Advances in Colloid and Interface Science,2002,98:245-264
    [28]贺杰.表面张力对光致空泡动力学特性影响的实验研究.南京理工大学硕士学位论文,2008
    [29]郭瑞.表面张力测量方法综述.计量与测试技术,2009,36(4):62-64
    [30]王从厚,吴鸣.国外膜工业发展概况.膜科学与技术,2002,22(1):65-72
    [31]陈虎,刘进荣,马青山.超滤膜分离过程强化方法综述.膜科学与技术,2003,29(2):70-72
    [32]黄加乐,董声雄.我国膜技术的应用现状与前景.福建化工.2000,3:3-6
    [33]时钧,袁权,等.膜技术手册.北京:化学工业出版社,2001,137-162
    [34]E. Debik, G. Kaykioglu, A. Coban, I. Koyuncu. Reuse of anaerobically and aerobically pre-treated textile wastewaterby UF and NF membranes. Desalination,2010,256:174- 180
    [35]王学松.膜分离技术及其应用.北京:科学出版社,1994,2-4
    [36]王湛.膜分离技术基础.北京:化学工业出版社,2000,208-210
    [37]范为.聚醚砜超滤膜结构的影响因素与性能研究.浙江大学硕士学位论文,2007
    [38]贾茹.离子交换树脂/聚醚砜杂化膜的制备和表征.天津工业大学硕士学位论文,2007
    [39]张建国,罗小娟.膜的制备方法及应用研究.山东化工,2004,33:16-21
    [40]H. Susanto, M. Ulbricht. Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives. Journal of Membrane Science,2009,327:125-135
    [41]P. Fievet, C. Labbez, A. Szymczyk. Electrolyte transport through amphoteric nanofiltration membranes. Chemical Engineering Science,2002,57(15):2921-2931
    [42]Y. Zhao, L. Song, S.L. Ong. Fouling of RO membranes by effluent organic matter (EfOM): Relating major components of EfOM to their characteristic fouling behaviors. Journal of Membrane Science,2010,349:75-82
    [43]A.F. Ismailete. The deduction of fine stucrtural details of asymmetric nanofiltartion membranes using theoretical models. Joumal of Membrane Science,2004,231:25-36
    [44]张胜兰,沈新元,李继平.凝固条件对聚丙烯睛超滤膜结构与性能的影响.中国纺织大学学报,2000,26(4):4-7
    [45]李战胜,李恕广,江成璋.浸入凝胶法聚合物膜形成机理的研究现状.膜科学与技术,2002,22(2):29-36
    [46]孙大海.PVDF超滤膜的制备及其成膜机理研究.浙江大学硕士学位论文,2006
    [47]王庐岩.聚偏氟乙烯共混相容性及成膜机理研究.北京工业大学硕士学位论文,2002
    [48]陆茵.关于湿法相转换成膜机理的探讨.膜科学与技术,1999,19(5):38-43
    [49]王庆瑞,陈雪英,等.纤维素中空纤维膜的成形条件和性能的关系.膜科学与技术,1989,9(3):18-20
    [50]A. Iwama, Y. Kazuse. New polyimide ultrafiltration membranes for organic use. Journal of Membrane Science,1982,11(3):297-309
    [51]邓晓玲,姜佩华,迟莉娜.聚氯乙烯/聚砜共混中空纤维超滤膜的研制.东华大学学报,2003,19(5):104-107
    [52]陆晓锋,等.紫外辐照改性聚砜超滤膜.膜科学与技术,1998,18(5):50-54
    [53]孙文鹏.超滤膜污染影响因素及与高密度沉淀技术组合工艺研究.北京工业大学硕士学位论文,2009
    [54]王静,张雨山.超滤膜和微滤膜在污(废)水处理中的应用研究现状及发展趋势.工业水处理,2001,21(3):4-7
    [55]李永建,王鸿儒.有机超滤膜的制备及在工业废水处理中的应用进展.水处理技术,2009,35(10):27-32
    [56]钱俊青.膜表面特性影响蛋白质超滤分离的研究.浙江大学学报,2000,26(2):187-190
    [57]冯晓,任南琪,陈兆波.超滤膜分离工艺处理大豆乳清蛋白废水的效能.化工学报,2009,60(6):1477-1486
    [58]姜忠义,吴洪.超滤技术在现代中药生产中的应用.化工进展,2002,21(2):122-126
    [59]朱利平.聚醚砜、聚醚砜酮多孔膜的结构可控.浙江大学博士学位论文,2007
    [60]许振良.膜法水处理技术.北京:化学工业出版社,2000
    [61]刘荷英,何淑漫,陈楚敏,周健.阻抗蛋白质吸附材料研究进展.化工进展,2009,28(3):429-436
    [62]邵刚.膜法水处理技术[M].冶金工业出版社,2000
    [63]王继斌.不同截留分子量超滤膜的污染特性及动力学特征.西安建筑科技大学硕士学位论文,2007
    [64]王婷.两性离子基团改性聚醚砜超滤膜研究.天津大学硕士学位论文,2006
    [65]J.L.Wu, X. Huang. Effect of mixed liquor properties on fouling propensity in membrane bioreactors. Journal of Membrane Science,2009,342:88-96
    [66]汪锰.聚醚砜超滤膜荷电化及其表面动电现象的研究.浙江大学博士学位论文,2006
    [67]P. Bures, Y.B. Huang, E. Oral, N.A. Peppas. Surface modifications and molecular imprinting of polymers in medical and pharmaceutical applications. Journal of Controlled Release,2001,72:25-33
    [68]G.V. Lubarsky, M.M. Browne, S.A. Mitchell, M.R. Davidson, R.H. Bradley. The influence of electrostatic forces on protein adsorption. Colloids and Surfaces B:Biointerfaces,2005, 44:56-63
    [69]尹秀丽,邓桦,杨溥臣.PVDF/PS共混超滤膜的研究.水处理技术,1997,23(2):131-134
    [70]程洪斌,尹秀丽.聚偏氟乙烯/聚丙烯腈共混膜的研究.天津纺织工学院学报,1998,17(1):54-60
    [71]N. Moussaif, R. Jerome. Modification of the polycarbonate/poly (vinylidene fluoride) interface by poly (methyl methacrylate) effect on the interfacial adhesion and interfacial tension. Macromolecular Symposium,1999,139:125-135
    [72]M.S. Shoichet, S.R. Winn, S. Athavale, et al. Poly (ethylene oxide)-Grafted thermoplastic membranes for use as cellular hybrid bio-artifical organdy in the central nervous system. Biotechnology ans Bioengineering,1994,43(7):563-572
    [73]M.D. Duca, C.L. Plosceanua, T. Popb. Surface modifications of polyvinylidene fluoride (PVDF) under Arplasma. Polymer Degradation and Stability,1998,61(1):65-72
    [74]邢丹敏,武冠英,胡家俊.改性聚氯乙烯超滤膜的研究(1)等离子体改性膜结构和性能的研究.膜科学与技术,1996,16(1):49-55
    [75]赵春田,礼巍,张贤,等.聚丙烯微孔膜表面的空气等离子体处理.功能高分子学报,1996,9(3):337-344
    [76]M. Stamm. Polymer Surfaces and Interfaces. Springer,2008 Springer-Verlag Berlin Heidelberg, ISBN 978-3-540-73864-0
    [77]J. Long, M.N. Hyder, R.Y.M. Huang, P. Chen. Thermodynamic modeling of contact angles on rough, heterogeneous surfaces. Advances in Colloid and Interface Science,2005,118: 173-190
    [78]E. Chibowski. On some relations between advancing, receding and Young's contact angles. Advances in Colloid and Interface Science,2007,133:51-59
    [79]C.N.C. Lam, N. Kim, D. Hui, D.Y. Kwok, M.L. Hair, A.W. Neumann. The effect of liquid properties to contact angle hysteresis. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2001,189:265-278
    [80]M. Hoorfar, M.A. Kurz, A.W. Neumann. Evaluation of the surface tension measurement of axisymmetric drop shape analysis (ADSA) using a shape parameter. Colloids and Surfaces A:Physicochem. Eng. Aspects,2005,260:277-285
    [81]Y.Y. Zuo, M. Ding, A. Bateni, M. Hoorfar, A.W. Neumanna. Improvement of interfacial tension measurement using a captive bubble in conjunction with axisymmetric drop shape analysis (ADSA). Colloids and Surfaces A:Physicochem. Eng. Aspects,2004,250:233-246
    [82]M. Hoorfar, A. Amirfazli, J.A. Gaydos, A.W. Neumann. The effect of line tension on the shape of liquid menisci near stripwise heterogeneous walls. Advances in Colloid and Interface Science,2005,114-115:103-118
    [83]M. Hoorfar, A.W. Neumann. Recent progress in Axisymmetric Drop Shape Analysis (ADSA). Advances in Colloid and Interface Science,2006,121:25-49
    [84]C.D. Volpe, D. Maniglio, M. Brugnara, S. Siboni, M. Morra. The solid surface free energy calculation I. In defense of the multicomponent approach. Journal of Colloid and Interface Science,2004,271:434-453
    [85]S. Siboni, C.D. Volpe, D. Maniglio, M. Brugnara. The solid surface free energy calculation II. The limits of the Zisman and of the "equation-of-state" approaches. Journal of Colloid and Interface Science,2004,271:454-472
    [86]A.F. Stalder, G. Kulik, D. Sage, L. Barbieri, P. Hoffmann. A snake-based approach to accurate determination of both contact points and contact angles. Colloids and Surfaces A: Physicochem. Eng. Aspects,2006,286:92-103
    [87]A. Bazylak, J. Heinrich, N. Djilali, D. Sinton. Liquid water transport between graphite paper and a solid surface. Journal of Power Sources,2008,185:1147-1153
    [88]Q. Shi, Y.L. Su, S.P. Zhu, C. Li, Y.Y. Zhao, Z.Y. Jiang. A facile method for synthesis of pegylated polyethersulfone and its application in fabrication of antifouling ultrafiltration membrane. Journal of Membrane Science,2007,303:204-212
    [89]W. Zhao, Y.L. Su, C. Li, Q. Shi, X. Ning, Z.Y Jiang. Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. Journal of Membrane Science,2008,318:405-412
    [90]B. He, J.H. Lee, N.A. Patankar. Contact angle hysteresis on rough hydrophobic surfaces. Colloids and Surfaces A:Physicochem. Eng. Aspects,2004,248:101 - 104
    [91]I.V.D. Plancken, A.V. Loey, M.E. Hendrickx. Effect of heat-treatment on the physico-chemical properties of egg white proteins:A kinetic study. Journal of Food Engineering,2006,75:316-326
    [92]M. Weijers, F.V.D. Velde, A. Stijnman, A.V.D. Pijpekamp, R.W. Visschers. Structure and rheological properties of acid-induced egg white protein gels. Food Hydrocolloids,2006, 20:146-159
    [93]C.J.V. Oss, M.K. Chaudhury, R.J. Good. Monopolar surfaces. Advances in Colloid and Interface Science,1987,28:35-64
    [94]K. Ishihara, H. Nomura, T. Mihara, et al. Why do phospholipids polymers reduce protein adsorption? Journal of Biomedical Materials Research Part A,1998,39(2):323-330
    [95]K. Ishihara, Y. Iwasaki. Reduced protein adsorption on novel phospholipids polymers. Journal Biomaterials Application,1998,13(2):111-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700