含氮多齿配体构筑的配位聚合物的合成、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用1-(1H-1,2,4-三唑基甲基)-3,5-双吡啶基-1,2,4-三唑(简写为tmbpt)的几种异构体作为主配体,以过渡金属阳离子作为中心金属离子,与多元羧酸根阴离子或多金属氧酸盐阴离子在水热条件下自组装,构筑了一系列具有多种结构的化合物。探索这些化合物的合成条件,研究它们的网络所属拓扑类型,并考察含氮配体、阴离子和过渡金属的种类对化合物结构的影响,并探究这些化合物的结构和性质之间的关系。本文在水热条件下合成了26个配位聚合物,用红外光谱(IR)、元素分析和热重分析对这些化合物进行了表征。此外,还研究了这些化合物的发光性质及光催化行为。1.以含氮多齿配体1-(1H-1,2,4-三唑基甲基)-3,5-双(4-吡啶基)-1,2,4-三唑(简写为4,4'-tmbpt)作为主配体,芳香多元羧酸(o-H2bdc=1,2-benzenedicarboxylic acid、m-H2bdc=1,3-benzenedicarboxylic acid、5-OH-H2bdc=5-hydroxy-1,3-benzenedicarboxylic acid1,2,3-H3btc=1,2,3-benzenetricarboxylic acid和p-H2bdc=1,4-benzenedicarboxylic acid)作为辅助配体,选用Zn(Ⅱ)和Cd(Ⅱ)作为中心金属离子,合成了8个配位聚合物。化合物1、3和7展示了二维→三维的插指结构。化合物2是一个具有6-连接(412·63)拓扑网络的三维框架。化合物4展现了一个基于六核金属簇的(3,4,8)-连接的三维框架。化合物5和8是同构的,具有基于三核金属簇的(3,9)-连接的三维框架结构。化合物6展示了个相对较少的二维→三维的多聚穿套结构。
     [Cd(4,4'-tmbpt)(o-bdc)(H2O)]·5.25H2O (1)
     [Cd(4,4'-tmbpt)(m-bdc)](2)
     [Cd(4,4'-tmbpt)(5-OH-bdc)](3)
     [Cd5Na2(4,4'-tmbpt)2(1,2,3-btc)4(H2O)3.5]·6.5H2O (4)
     [Cd3(4,4'-tmbpt)(1,2,3-btc)2(H2O)2]·H2O (5)
     [Zn(4,4'-tmbpt)(m-bdc)](6)
     [Zn3(4,4'-tmbpt)2(m-bdc)3]·5.5H2O (7)
     [Zn3(4,4'-tmbpt)(1,2,3-btc)2(H2O)2]·H2O (8)2.含氮多齿配体1-(1H-1,2,4-三唑基甲基)-3-(3-吡啶基)-5-(2-吡啶基)-1,2,4-三唑(简写为2,3'-tmbpt)和1-(1H-1,2,4-三唑基甲基)-3,5-双(3-吡啶基)-1,2,4-三唑(简写为3,3'-tmbpt)和不同的芳香多元羧酸(1,3,5-H3btc=1,3,5-benzenetricarboxylic acid和H4btec=1,2,4,5-benzenetetracarboxylic acid)以及Zn(Ⅱ)离子在水热条件下反应,得到了8个具有各种结构类型的配位聚合物。化合物9和14具有一维的链状结构。化合物10展示了个具有三维CdSO4型网络的二重互穿结构。化合物11展现了一个具有二维sqI型网络的二重互穿结构。化合物12展示了一个具有三维(63)(69·8)拓扑网络的二重互穿结构。化合物13展现了一个具有三维(83)(85·10)拓扑网络的框架结构。化合物15是二维层状结构。化合物16展现了一个具有三维(4·62)(42·68·85)拓扑网络的二重互穿结构。
     [Zn(2,3'-tmbpt)(o-bdc)(H2O)] (9)
     [Zn(2,3'-tmbpt)(m-bdc)] (10)
     [Zn(2,3'-tmbpt)(p-bdc)]·H2O (11)
     [Zn2(2,3'-tmbpt)(1,3,5-btc)(OH)]·0.5H2O (12)
     [Zn(2,3'-tmbpt)(btec)0.5]·2H2O (13)
     [Zn(3,3'-tmbpt)(o-bdc)]·H2O (14)
     [Zn(3,3'-tmbpt)(m-bdc)(H2O)]·H2O (15)
     [Zn2(3,3'-tmbpt)(1,3,5-btc)(OH)(H2O)] (16)
     3.以3,3'-tmbpt,1-(1H-1,2,4三唑基甲基)-3-(4-吡啶基)-5-(3-吡啶基)-1,2,4-三唑(简写为3,4’-tmbpt)和4,4’-tmbpt作为主配体,5-(4’-羧基苄氧基)间苯二酸(简写为H3L)作为为辅助配体,与Ag(Ⅰ)和Cd(Ⅱ)离子反应,得到4个包含金属簇的高连接配位化合物。化合物17具有基于七核单元[Ag7(COO)7]的(3,12)-连接的三维框架。化合物18是基于四核单元[NaCd3(μ3-OH)(COO)5]的(3,4,10)-连接的三维框架。化合物19展示了一个基于双核单元[Cd2(COO)2]的三维(3,4,8)-连接网络。化合物20是一个基于三核单元[Cd3(COO)3]的双节点(3,9)-连接框架。
     [Ag7(4,4'-tmbpt)(HL)2(L)(H2O)] (17)
     [NaCd3(4,4'-tmbpt)(L)2(OH)]·H20 (18)
     [Cd3(3,3'-tmbpt)2(L)2(H2O)2]·3.5H2O (19)
     [Cd3(3,4'-tmbpt)2(L)2(H2O)]·15H2O (20)
     4.以2,3'-tmbpt、1-(1H-1,2,4三唑基甲基)-3-(4-吡啶基)-5-(2-吡啶基)-1,2,4-三唑(2,4’-tmbpt)、3,3’-tmbpt和3,4’-tmbpt为含氮配体,以八钼酸盐作为阴离子,Ag(Ⅰ)离子作为金属中心,在水热条件下合成了6个配位聚合物。化合物21展示了一个三维(3,4,8)-连接网络,拓扑符号是(4·82)(42·84)(43·820·105)。化合物22展现了一个三维(4,6)-连接的自穿插网络,拓扑符号是(64·82)(42·63·82)(42·68·84·10)。化合物23是一个基于两种不同的八钼酸盐异构体的三维框架。化合物24是由Ag-有机层和[ε-MO8O26]4阴离子构成的三维框架。化合物25展示了一个有趣的一维→二维的多聚穿套结构。化合物26展现了一个二维层状结构。二维层被N-H…O氢键相互作用扩展成一个三维超分子结构。
     [Ag2(2,3'-tmbpt)(β-Mo8O26)0.5] (21)
     [Ag2(2,4'-tmbpt)2(α-Mo8O26)0.5(H20)0.5]·2H20 (22)
     [Ag3(3,3'-tmbpt)2(α-H2Mo8O26)0.5(βMo8O26)0.5] ·3.5H2O (23)
     [Ag2(3,3'-tmbpt)(ε-Mo8O26)0.5]·1.75H2O (24)
     [Ag2(3,4'-tmbpt)2(β-Mo8O26)0.5]·0.5H20 (25)
     [Ag(3,4'-Htmbpt)(βMo8O26)0.5] (26)
The aim of this thesis is to construct a series of coordination polymers with various structures based on several isomers of multidentate N-donor ligands1-((1H-1,2,4-triazol-1-y1)methy1)-3,5-bis(pyridy1)-1,2,-triazole (tmbpt), polycarboxylates/polyoxometalates anions and transition metal ions under hydrothermal conditions. The synthesis conditions, types of topological structures, effects of the structures of organic ligands and the types of metal ions and anions on the structures of the compounds, and the relationship between structures and properties of the compounds have been investigated in detail.
     Twenty-six coordination polymers have been hydrothermally synthesized and characterized by infrared spectra (IR), elemental analyses and thermogravimetric (TG) analyses. Moreover, the luminescent properties and photocatalytic behaviors of the compounds have also been investigated.
     1. The combination of multidentate N-donor ligand1-((1H-1,2,4-triazol-1-yl)methy1)-3,5-bis(4-pyridyl)-1,2,4-triazole (4,4'-tmbpt) and auxiliary aromatic polycarboxylic acids (o-H2bdc=1,2-benzenedicarboxylic acid, m-Hbdc1,3-benzenedicarboxylic acid,5-OH-H2bdc=5-hydroxy-1,3-benzenedicarboxylic acid,1,2,3-H3btc=1,2,3-benzenetricarboxylic acid and p-H2bdc=1,4-benzenedicarboxylic acid) in the presence of Cd(Ⅱ) and Zn(Ⅱ) ions provides eight coordination polymers. Compounds1,3and7display different2D→3D inter digitated structures. Compound2shows a3D6-connected framework with (412·63) topology. Compound4reveals a3D (3,4,8)-connected net based on hexanuclear units. Compounds5and8are isostructural and display3D (3,9)-connected frameworks based on trinuclear units. Compound6exhibits an unusual2D→3D polythreaded architecture.
     [Cd(4,4'-tmbpt)(o-bdc)(H2O)]·5.25H2O (1)
     [Cd(4,4'-tmbpt)(m-bdc)](2)
     [Cd(4,4'-tmbpt)(5-OH-bdc)](3)
     [Cd5Na2(4,4'-tmbpt)2(1,2,3-btc)4(H2O)3.5]·6.5H2O (4)
     [Cd3(4,4'-tmbpt)(1,2,3-btc)2(H2O)2]·H2O (5)
     [Zn(4,4'-tmbpt)(m-bdc)](6)
     [Zn3(4,4'-tmbpt)2(p-bdc)3]·5.5H2O (7)
     [Zn3(4,4'-tmbpt)(1,2,3-btc)2(H2O)2]·H2O (8)
     2. The mixed ligands of1-((1H-1,2,4-triazol-1-yl)methyl)-3-(3-pyridyl)-5-(2-pyridyl)-1,2,4-triazole (2,3'-tmbpt) and 1-((1H-1,2,4-triazol-1-yl)methyl)-3,5-bis(3-pyridyl)-1,2,4-triazole (3,3'-tmbpt) with distinct aromatic polycarboxylic acids (1,3,5-H3btc=1,3,5-benzenetricarboxylic acid and H4btec1,2,4,5-benzenetetracarboxylic acid) in the presence of Zn(Ⅱ) ions afford eight coordination polymers with various structures under hydrothermal conditions. Compounds9and14display1D chain structures. Compound10shows a3D2-fold interpenetrating CdSO4-type framework. Compound11reveals a2D2-fold interpenetrating square layer (sql) structure. Compound12exhibits a3D2-fold interpenetrating framework with (63)(69-8) topology. Compound13shows a non-interpenetrating3D framework with (83)(85-10) topology. Compound15has a2D layer structure. Compound16displays a3D2-fold interpenetrating framework with (4·62)(42·68·85) topology.
     [Zn(2,3'-tmbpt)(m-bdc)(H2O)](9)
     [Zn(2,3'-tmbpt)(m-dc)](10)
     [Zn(2,3'-tmbpt)(m-bdc)]·H2O (11)
     [Zn2(2,3'-tmbpt)(1,3,5-btc)(OH)]·0.5H2O (12)
     [Zn(2,3'-tmbpt)(btec)o.5]·2H2O (13)
     [Zn(3,3'-tmbpt)(o-bdc)]-H2O (14)
     [Zn(3,3'-tmbpt)(/m-bdc)(H2O)]·H2O (15)
     [Zn2(3,3'-tmbpt)(1,3,5-btc)(OH)(H2O)](16)
     3. The reactions of3,3'-tmbpt,1-((1H-1,2,4-triazol-1-yl)-methyl)-3-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazole)(3,4'-tmbpt) and4,4'-tmbpt with Ag(I) and Cd(II) ions with the help of5-(4'-carboxybenzyloxy)isophthalic acid give four highly connected coordination compounds containing metal clusters. Compound17features a3D (3,12)-connected net based on heptanuclear [Ag7(COO)7] units. Compound18displays a3D (3,4,10)-connected net constructed by tetranuclear [NaCd3(μ3-OH)(COO)5] units. Compound19exhibits a3D (3,4,8)-connected net based on binuclear [Cd2(COO)2] units. Compound20is a3D binodal (3,9)-connected framework constructed by trinuclear [Cd3(COO)4] units.
     [Ag7(4,4'-tmbpt)(HL)2(L)(H2O)](17)
     [NaCd3(4,4'-tmbpt)(L)2(OH)]-H2O (18)
     [Cd3(3,3'-tmbpt)2(L)2(H2O)2]-3.5H2O (19)
     [Cd3(3,4'-tmbpt)2(L)2(H2O)]·1.5H2O (20)
     4. Six coordination polymers based on multidentate N-donor ligands2,3'-tmbpt,1-((1H-1,2,4-triazol-l-yl)methyl)-3-(4-pyridyl)-5-(2-pyridyl)-1,2,4-triazole)(2,4'-tmbpt),3,3'-tmbpt and3,4'-tmbpt, octamolybdates and Ag(I) ions have been synthesized under hydrothermal conditions. Compound21displays a rare3D (3,4,8)-connected net with (4·82)(42·84)(43·820·105) topology. Compound22shows a3D (4,6)-connected self-catenated framework with (64-82)(42-63-82)(42-68-84-10) topology. Compound23is a scarce3D framework based on two different kinds of [Mo8O26]4-isomers. Compound24exhibits a3D framework constructed by silver-organic sheets and the rare [ε-Mo8O26]4-anions. Compound25shows an interesting1D→2D polythreaded structure. Compound26has a2D layer structure, which is linked by the hydrogen bonds to form a3D supramolecular architecture.
     [Ag2(2,3'-tmbpt)(β-Mo8O26)0.5](21)
     [Ag2(2,4'-tmbpt)2(α-Mo8O26)0.5(H2O)0.5]·2H2O (22)
     [Ag3(3,3'-tmbpt)2(α-H2Mo8O26)0.5(β-Mo8O26)0.5]·3.5H2O (23)
     [Ag2(3,3'-tmbpt)(ε-Mo8O26)0.5]·1.75H2O (24)
     [Ag2(3,4'-tmbpt)2(β-Mo8O26)0.5]·0.5H2O (25)
     [Ag(3,4'-Htmbpt)(β-Mo8O26)0.5](26)
引文
[1]Corma A, Garcia H, Xamena F X L. Engineering Metal-Organic Frameworks for Heterogeneous Catalysis[J]. Chem Rev,2010,110(8):4606-4655.
    [2]Yoon M, Srirambalaji R, Kim K. Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis[J]. Chem Rev,2012,112(2):1196-1231.
    [3]Wu H, Gong Q, Olson D H, et al. Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks[J]. Chem Rev,2012,112(2):836-868.
    [4]Suh M P, Park H J, Prasad T K, et al. Hydrogen Storage in Metal-Organic Frameworks[J]. Chem Rev,2012,112(2):782-835.
    [5]Deng H, Grunder S, Cordova K E, et al. Large-Pore Apertures in a Series of Metal-Organic Frameworks[J]. Science,2012:1018-1023.
    [6]Kaye S S, Dailly A, Yaghi O M, et al. Impact of Preparation and Handling on the Hydrogen Storage Properties of Zn4O(1,4-benzenedicarboxylate)3(MOF-5)[J]. J Am Chem Soc,2007129(46):14176-14177.
    [7]Wang C, Zhang T, Lin W B. Rational Synthesis of Noncentrosymmetric Metal-Organic Frameworks for Second-Order Nonlinear Optics[J]. Chem Rev,2012,112(2):1084-1104.
    [8]Robin A Y, Fromm K M. Coordination polymer networks with O-and N-donors:What they are, why and how they are made[J]. Coord Chem Rev,2006,250:2127-2157.
    [9]Batten S R, Champness N R, Chen X M, et al. Coordination polymers, metal-organic frameworks and the need for terminology guidelines[J]. CrystEngComm,2012,14:3001-3004.
    [10]游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社,2000.
    [11]孙为银.配位化学[M].北京:化学工业出版社,2004.
    [12]洪茂椿,陈荣,梁文平.21世纪的无机化学[M].北京:科学出版社,2005.
    [13]Kan W Q, Liu Y Y, Yang J, et al. Syntheses, structures and photoluminescent properties of a series of metal-organic frameworks based on a flexible tetracarboxylic acid and different bis(imidazole) ligands[J]. CrystEngComm,2011,13:4256-4269.
    [14]Kan W Q, Ma J F, Liu Y Y, et al. A series of coordination polymers based on5-(2-carboxybenzyloxy)isophthalic acid and bis(imidazole) ligands:syntheses, topological structures and phot olumine scent properties[J]. CrystEngComm,2012,14: 2316-2326.
    [15]Sun J K, Cai L X, Chen Y J, et al. Reversible luminescence switch in a photochromic metal-organic framework[J]. Chem Commun,2011,47:6870-6872.
    [16]Bai H Y, Ma J F, Yang J, et al. Effect of Anions on the Self-Assembly of Cd(II)-Containing Coordination Polymers Based on a Novel Flexible Tetrakis (imidazole) Ligand[J]. Cryst Growth Des,2010,10(2):995-1016.
    [17]Cao R, Sun D F, Liang Y, et al. Syntheses and Characterizations of Three-Dimensional Channel-like Polymeric Lanthanide Complexes Constructed by1,2,4,5-Benzenetetracarboxylic Acid[J]. Inorg Chem,2002,41:2087-2094.
    [18]Chen M, Chen S S, Okamura T, et al. pH Dependent Structural Diversity of Metal Complexes with5-(4H-1,2,4-Triazol-4-yl)benzene-1,3-dicarboxylic Acid[J]. Cryst Growth Des,2011,11(5):1901-1912.
    [19]Mainardes R M, Silva L P. Drug Delivery Systems:Past, Present, and Future[J]. Curr Drug Targets,2004,5:449-455.
    [20]Davis M. E, Chen Z, Shin D M. Nanoparticle therapeutics:an emerging treatment modality for cancer[J]. Nat Rev Drug Discovery,2008,7:771-782.
    [21]Peer D, Karp J M, Hong S, et al. Nanocarriers as an emerging platform for cancer therapy[J]. Nature Nanotechnol,2007,2:751-760.
    [22]Couvreur P, Tulkens P, Roland M, et al. Nanocapsules:A new type of lysosomotropic carrier[J]. FEBS Lett,1977,84(2):323-326.
    [23]Horcajada P, Gref R, Baati T, et al. Metal-Organic Frameworks in Biomedicine[J]. Chem Rev,2012,112(2):1232-1268.
    [24]Dyer A, Morgan S, Wells P, et al. The use of zeolites as slow release anthelmintic carriers[J]. Helminthology,2000,74(2):137-141.
    [25]Horcajada P, Marquez-Alvarez C, Ramila A, et al. Controlled release of Ibuprofen from dealuminated faujasites[J]. Solid State Sci,2006,8(12):1459-1465.
    [26]Arruebo M, Fernandez-Pacheco R, Irusta S, et al. Sustained release of doxorubicin from zeolite-magnetite nanocomposites prepared by mechanical activation [J]. Nanotechnology,2006,17(16):4057-4064.
    [27]Uglea C V, Albu I, Vatajanu A, et al. Drug delivery systems based on inorganic materials: I. Synthesis and characterization of a zeolite-cyclophosphamide system[J]. J Biomater SciPolym Ed,1994,6(7):633-637.
    [28]Pavelic K, Hadzija M, Bedrica L, et al. Natural zeolite clinoptilolite:new adjuvant in anticancer therapy [J]. J Mol Med,2001,78(12):708-720.
    [29]Levy M H, Wheelock E F. Effects of intravenous silica on immune and non-immune functions of the murine host[J]. J Immunology,1975,115(1):41-48.
    [30]Vallet-Regi M, Ramila A, del Real R P, et al. A New Property of MCM-41:Drug Delivery System[J]. Chem Mater,2001,13(2):308-311.
    [31]Slowing I I, Trewyn B G, Giri S, et al. Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications[J]. Adv Funct Mater,2007,17(8):1225-1236.
    [32]Manzano M, Colilla M, Vallet-Regi M. Drug delivery from ordered mesoporous matrices[J]. Exp Opin Drug Delivery,2009,6(12):1383-1400.
    [33]Rosenholm J M, Sahlgren C, Lind en M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles-opportunities&challenges [J]. Nanoscale,2010,2:1870-1883.
    [34]He Q, Shi J. Mesoporous silica nanoparticle based nano drug delivery systems:synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility[J]. J Mater Chem,2011,21:5845-5855.
    [35]Ambrogio M W, Thomas C R. Zhao Y, et al. Mechanized Silica Nanoparticles:A New Frontier in Theranostic Nanomedicine[J]. Acc Chem Res,2011,44(10):903-913.
    [36]Liu T, Li L, Teng X, et al. Single and repeated dose toxicity of mesop orous hollow silica nanoparticle s in intravenously exposed mice[J]. Biomater,2011,32(6):1657-1668.
    [37]Hudson S P, Padera R F, Langer R, et al. The biocompatibility of mesoporous silicates[J]. Biomater,2008,29(30):4045-4055.
    [38]Xie G, Sun J, Zhang D, et al. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice[J]. Arch Toxicol,2010,84(3):183-190.
    [39]Nishimori H, Masuo K, Katsuhiro I, et al. Silica nanoparticles as hepatotoxicants[J]. Eur J Pharm Biopharm,2009,72(3):496-501.
    [40]He Q, Zhang Z, Gao F, et al. In vivo Biodistribution and Urinary Excretion of Mesoporous Silica Nanoparticles:Effects of Particle Size and PEGylation[J]. Small,2011,7(2):271-280.
    [41]Lu J, Liong M, Li Z, et al. Biocompatibility, Biodistribution, and Drug-Delivery Efficiency of Mesoporous Silica Nanoparticles for Cancer Therapy in Animals [J]. Small,2010,6(16):1794-1805.
    [42]Horcajada P, Serre C, Vallet-Regi M, et al. Metal-Organic Frameworks as Efficient Materials for Drug Delivery[J]. Angew Chem Int Ed,2006,45(36):5974-5978.
    [43]Ferey G, Serre C, Mellot-Draznieks C, et al. A Hybrid Solid with Giant Pores Prepared by a Combination of Targeted Chemistry, Simulation, and Powder Diffraction [J]. Angew Chem Int Ed,2004,116(46):6456-6461.
    [44]Ferey G, Mellot-Draznieks C, Serre C, et al. A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area[J]. Science,2005,309(5743):2040-2042.
    [45]Whitfield T R, Wang X, Liu L, et al. Metal-organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions[J]. J Solid State Sci, 2005,7(9):1096-1103.
    [46]Serre C, Millange F, Thouvenot C, et al. Very Large Breathing Effect in the First Nanoporous Chromium(Ⅲ)-Based Solids:MIL-53or CrⅢ(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x·H2Oy[J]. J Am Chem Soc,2002,124(45):13519-13526.
    [47]An J, Geib S J, Rosi N L. Cation-Triggered Drug Release from a Porous Zinc-Adeninate Metal-Organic Framework[J]. J Am Chem Soc,2009,131(24):8376-8377.
    [48]Taylor-Pashow K M L, Rocca J D, Xie Z, et al. Postsynthetic Modifications of Iron-Carboxylate Nanoscale Metal-Organic Frameworks for Imaging and Drug Delivery[J]. J Am Chem Soc,2009,131(40):14261-14263.
    [49]Horcajada P, Chalati T, Serre C, et al. Porous metal-organic framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nat Mater,2010,9:172-178.
    [50]Sun C Y, Qin C, Wang C G, et al. Chiral Nanoporous Metal-Organic Frameworks with High Porosity as Materials for Drug Delivery[J]. Adv Mater,2011,23(47):5629-5632.
    [51]Zhao D, Tan S, Yuan D, et al. Surface Functionalization of Porous Coordination Nanocages Via Click Chemistry and Their Application in Drug Delivery[J]. Adv Mater,2011,23(1):90-93.
    [52]Cui Y, Yue Y, Qian G, et al. Luminescent Functional Metal-Organic Frameworks[J]. Chem Rev,2012,112(2):1126-1162.
    [53]Eliseeva S V, Bunzli J C G. Lanthanide luminescence for functional materials and bio-sciences[J]. Chem Soc Rev,2010,39:189-227.
    [54]Binnemans K. Lanthanide-Based Luminescent Hybrid Materials[J]. Chem Rev,2009,109(9):4283-4374.
    [55]Hwang S H, Moorefield C N, Newkome G R. Dendritic macromolecules for organic light-emitting diodes[J]. Chem Soc Rev,2008,37:2543-2557.
    [56]Carlos L D, Ferreira R A S, Bermudez V Z, et al. Progress on lanthanide-based organic-inorganic hybrid phosphors[J]. Chem Soc Rev,2011,40:536-549.
    [57]Lo S C, Burn P L. Development of Dendrimers:Macromolecules for Use in Organic Light-Emitting Diodes and Solar Cells[J]. Chem Rev,2007,107(4):1097-1116.
    [58]Grimsdale A C, Chan K L, Martin R E, et al. Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices[J]. Chem Rev,2009,109(3):897-1091.
    [59]Veinot J G C, Marks T J. Toward the Ideal Organic Light-Emitting Diode. The Versatility and Utility of Interfacial Tailoring by Cross-Linked Siloxane Interlayers[J]. J Acc Chem Res,2005,38(8):632-643.
    [60]Suh M, Cheon Y, Lee E. Syntheses and functions of porous metallosupramolecular networks [J]. Coord Chem Rev,2008,252(8-9):1007-1026.
    [61]Allendorf M D, Bauer C A, Bhakta R K. Luminescent metal-organic frameworks[J]. Chem Soc Rev,2009,38:1330-1352.
    [62]Chen B, Xiang S, Qian G. Metal-Organic Frameworks with Functional Pores for Recognition of Small Molecules[J]. Acc Chem Res,2010,43(8):1115-1124.
    [63]Ferey G. Hybrid porous solids:past, present, future[J]. Chem Soc Rev,2008,37:191-214.
    [64]Silva C G, Corma A, Garcia H. Metal-organic frameworks as semiconductors[J]. J Mater Chem,2010,20:3141-3156.
    [65]Zhao B, Chen X Y, Cheng P, et al. Coordination Polymers Containing1D Channels as Selective Luminescent Probes[J]. J Am Chem Soc,2004,126(47):15394-15395.
    [66]Lee E Y, Jang S Y, Suh M P. Multifunctionality and Crystal Dynamics of a Highly Stable, Porous Metal-Organic Framework [Zn4O(NTB)2][J]. J Am Chem Soc,2005,127(17):6374-6381.
    [67]Chen B, Yang Y, Zapata F, et al. Luminescent Open Metal Sites within a Metal-Organic Framework for Sensing Small Molecules[J]. Adv Mater,2007,19(13):1693-1696.
    [68]Xie Z, Ma L, deKrafft K E, et al. Porous Phosphorescent Coordination Polymers for Oxygen Sensing[J]. J Am Chem Soc,2010,132(3):922-923.
    [69]Wu C D, Hu A, Zhang L, et al. A Homochiral Porous Metal-Organic Framework for Highly Enantioselective Heterogeneous Asymmetric Catalysis[J]. J Am Chem Soc,2005,127(25):8940-8941.
    [70]Banerjee M, Das S, Yoon M, et al. Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal-Organic Porous Materials [J]. J Am Chem Soc,2009,131(22):7524-7525.
    [71]Ma L, Wu C D, Wanderley M M, et al. Single-Crystal to Single-Crystal Cross-Linking of an Interpenetrating Chiral Metal-Organic Framework and Implications in Asymmetric Catalysis[J]. Angew Chem Int Ed,2010,49(44):8244-8248.
    [72]Song F, Wang C, Lin W. A chiral metal-organic framework for sequential asymmetric catalysis[J]. Chem Commun,2011,47:8256-8258.
    [73]Chen Y Q, Liu S J, Li Y W, et al. A Two-Fold Interpenetrated Coordination Framework with a Rare (3,6)-Connected lohl Topology:Magnetic Properties and Photocatalytic Behavior[J]. Cryst Growth Des,2012,12(11):5426-5431.
    [74]Yang G, Zhang P P, Liu L L, et al.3D binary silver(I)1,2,4-triazolates:syntheses, structures and topologies[J]. CrystEngComm,2009,11:663-670.
    [75]Wang X L, Qin C, Wang E B, et al. Metal Nuclearity Modulated Four-, Six-, and Eight-Connected Entangled Frameworks Based on Mono-, Bi-, and Trimetallic Cores as Nodes[J]. Chem Eur J,2006,12(10):2680-2691.
    [76]Fu J, Li H, Mu Y, et al. Reversible single crystal to single crystal transformation with anion exchange-induced weak Cu2+…I-interactions and modification of the structures and properties of MOFs[J]. Chem Commun,2011,47:5271-5273.
    [77]Liu Q K, Ma J P, Dong Y B. Adsorption and Separation of Reactive Aromatic Isomers and Generation and Stabilization of Their Radicals within Cadmium(II)-Triazole Metal-Organic Confined Space in a Single-Crystal-to-Single-Crystal Fashion[J]. J Am Chem Soc,2010,132(20):7005-7017.
    [78]Aijaz A, Lama P, Bharadwaj P, et al. Two-Dimensional Coordination Polymer with a Non-interpenetrated (4,4) Net Showing Anion Exchange and Structural Transformation in Single-Crystal-to-Single-Crystal Fashion[J]. Inorg Chem,2010,49(13):5883-5889.
    [79]王恩波,胡长文,许林等.多酸化学导论[M].北京:化学工业出版社,2002.
    [80]PoPe M T杂多和同多多金属氧酸盐[M].王恩波等译,长春:吉林大学出版社,1991.
    [81]王恩波,李阳光,鹿颖等.多酸化学概论[M].长春:东北师范大学出版社,2009.
    [82]侯广峰.多金属氧酸盐—铜—氮杂环配合物的晶体工程研究[D].长春:吉林大学化学系,2011.
    [83]Xiao D R, Hou Y, Wang E B, et al. Hydrothermal synthesis and characterization of an unprecedented η-type octamolybdate:[{Ni(phen)2}2(Mo8O26)][J]. Inorg Chim Acta,2004,357(9):2525-2531.
    [84]Niven M L, Cruywagen J J, Heyns J B B. The first observation of γ-octamolybdate-synthesis, crystal and molecular structure of [Me3N(CH2)6NMe3]2[Mo8O26]·2H2O[J]. Dalton Trans,1991:2007-2011.
    [85]Xi R, Wang B, Isobe K, et al. Isolation and X-ray Crystal Structure of a New Octamolybdate:[(RhCp*)2(μ2-SCH3)3]4[Mo8O26]-2CH3CN (Cp*=η-C5Me5)[J]. Inorg Chem,1994,33(4):833-836.
    [86]Masters A F, Ghellu S F, Brownlee R T, et al. Inter conversion of Polyoxometalates[J]. Inorg Chem,1980,19(12):3866-3868.
    [87]Hagrman D, Zubieta C, Rose D J, et al. Composite solids constructed from one-dimensional coordination polymer matrices and molybdenum oxide subunits: Polyoxomolybdate clusters within [{Cu(4,4'-bpy)}4Mo8O26] and [{Ni(H2O)2(4,4'-bpy)2}2Mo8O26] and one-dimensional oxide chains in [{Cu(4,4'-bpy)}4Mo15O47]·8H2O[J]. Angew Chem Int Ed Engl,1997,36(8):873-876.
    [88]Xu J Q, Wang R Z, Yang G Y, et al. Metal-oxo cluster-supported transition metal complexes:hydrothermal synthesis and characterization of [{M(phen)2}2(Mo8O26)](M=NiorCo)[J]. Chem Commun,1999:983-984.
    [89]Allis D G, Burkholder E, Zubieta J, et al. A new octamolybdate:observation of the θ-isomer in [Fe(tpyprz)2]2[Mo8O26]-3.7H2O (tpyprz=tetra-2-pyridylpyrazine)[J]. Polyhedron,2004,23(7):1145-1152.
    [90]Sun C Y, Wang E B, Xiao D R, et al. The first example of a structure containing both α-and β-octamolybdates:synthesis and structure of a new three-dimensional supramolecular network [Co(2,2'-bipy)3]4[Mo8O26]2·5H2O (2,2'-bipy2,2'-bipyridine)[J]. J Mol Struct,741(2005):149-153.
    [91]Lv J, Shen E, Li Y, et al. A Novel Pillar-Layered Organic-Inorganic Hybrid Based on Lanthanide Polymer and Polyomolybdate Clusters:New Opportunity toward the Design and Synthesis of Porous Framework[J]. Cryst Growth Des,2005,5(1):65-67.
    [92]Li S L, Lan Y Q, J F Ma, et al. Syntheses and Structures of Organic-Inorganic Hybrid Compounds Based on Metal-Fluconazole Coordination Polymers and the β-Mo8O26Anion[J]. Inorg Chem,2007,46(20):8283-8290.
    [93]Lan Y Q, Li S L, Wang X L, et al. Supramolecular Isomerism with Polythreaded Topology Based on [Mo8O26]4-Isomers[J]. Inorg Chem,2008,47(2):529-534.
    [94]Lan Y Q, Li S L, Wang X L, et al. Self-Assembly of Polyoxometalate-Based Metal Organic Frameworks Based on Octamolybdates and Copper-Organic Units:from CuⅡ, CuⅠ,Ⅱ to CuⅠ via Changing Organic Amine[J]. Inorg Chem,2008,47(18):8179-8187.
    [95]Du X D, Li C H, Zhang Y, et al. Coordination polymers based on the octamolybdate and flexible bis(triazole) ligands with different spacer lengths [J]. CrystEngComm,2011,13:2350-2357.
    [96]Liu H Y, Wu H, Yang J, et al. pH-Dependent Assembly of1D to3D Octamolybdate Hybrid Materials Based on a New Flexible Bis-[(pyridyl)-benzimidazole] Ligand[J]. Cryst Growth Des,2011,11(7):2920-2927.
    [97]Wu H, Yang J, Liu Y Y, et al. pH-Controlled Assembly of Two Unusual Entangled Motifs Based on a Tridentate Ligand and Octamolybdate Clusters:1D+1D→3D Poly-Pseudorotaxane and2D→2D→3D Polycatenation[J]. Cryst Growth Des,2012,12(5):2272-2276.
    [98]Sheldrick G M. SHELXS-97Programs for X-ray Crystal Structure Solution, University of Gottingen, Gottingen, Germany,1997.
    [99]Sheldrick G M. SHELXL-97, Programs for X-ray Crystal Structure Refinement, University of Goottingen, Gottingen, Germany,1997.
    [100]Zhang J, Li Z J, Kang Y, et al. Hydrothermal Syntheses, Crystal Structures, and Properties of a Novel Class of3,3',4,4'-Benzophenone-tetracarboxylate (BPTC) Polymers[J]. Inorg Chem,2004,43(25):8085-8091.
    [101]Shimomura S, Higuchi M, Matsuda R, et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer[J]. Nat Chem,2010,2:633-637.
    [102]Li J R, Kuppler R J, Zhou H C, et al. Selective gas adsorption and separation in metal-organic frameworks[J]. Chem Soc Rev,2009,38:1477-1504.
    [103]Farha O K, Malliakas C D, Kanatzidis M G, et al. Control over Catenation in Metal-Organic Frameworks via Rational Design of the Organic Building Block[J]. J Am Chem Soc,2010,132(3):950-952.
    [104]Sauvage J P. Molecular Catenanes, Rotaxanes and Knots, A Journey Through the World of Molecular Topology [M], Dietrich-Buchecker, C. Wiley-VCH, Weinheim,1999.
    [105]Kim K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies[J]. Chem Soc Rev,2002,31:96-107.
    [106]Eddaoudi M, Kim J, Rosi N, et al. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage[J]. Science,2002,295(5554):469-472.
    [107]Sun D F, Ma S Q, Ke Y X, et al. An Interweaving MOF with High Hydrogen Uptake[J]. J Am Chem Soc,2006,128(12):3896-3897.
    [108]Batten S R. Topology of interpenetration[J]. CrystEngComm,2001,3:67-72.
    [109]Batten S R, Robson R. Interpenetrating Nets:Ordered, Periodic Entanglement[J]. Angew Chem Int Ed,1998,37(11):1460-1494.
    [110]Wu H, Yang J, Su Z M, et al. An Exceptional54-Fold Interpenetrated Coordination Polymer with103-srs Network Topology[J]. J Am Chem Soc,2011,133(30):11406-11409.
    [111]Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry[J]. Coord Chem Rev,2003,246(1-2):247-289.
    [112]Carlucci L, Ciani G, Proserpio D M. Borromean links and other non-conventional links in'poly catenated'coordination polymers:re-examination of some puzzling networks[J]. CrystEngComm,2003,5:269-279.
    [113]Wang X L, Qin C, Wang E B, et al. Entangled Coordination Networks with Inherent Features of Polycatenation, Polythreading, and Polyknotting[J]. Angew Chem Int Ed,2005,44(36):5824-5827.
    [114]Wu H, Liu H Y, Liu Y Y, et al. An unprecedented2D-3D metal-organic polyrotaxane framework constructed from cadmium and a flexible star-like ligand[J]. Chem Commun,2011,47:1818-1820.
    [115]Batten S R, Hoskins B F, Robson R. Interdigitation, Interpenetration and Intercalation in Layered Cuprous Tricyanomethanide Derivatives[J]. Chem Eur J,2000,6(1):156-161.
    [116]Carlucci L, Ciani G, Proserpio D M. A new type of supramolecular entanglement in the silver(Ⅰ) coordination polymer [Ag2(bpethy)s](BF4)2[bpethy1,2-bis(4-pyridyl)ethyne][J]. Chem Commun,1999:449-450.
    [117]Qin C, Wang X, Carlucci L, et al. From arm-shaped layers to a new type of polythreaded array:a two fold interpenetrated three-dimensional network with a rutile topology[J]. Chem Commun,2004:1876-1877.
    [118]Cao X Y, Lin Q P, Qin Y Y, et al. In Situ Obtained Cu(Ⅱ) Compound with Coexistence of Poly catenation and Polythreading[J]. Cryst Growth Des,2009,9(1):20-23.
    [119]Wang X L, Qin C, Wang E B, et al. An Unusual3D Inter digitated Architecture Self-Assembled from Sidearm-Containing2D Bilayer Motifs with a Cuboidal Framework[J]. Eur J Inorg Chem,2005:3418-3421.
    [120]Wang X L, Qin C, Wang E B, et al. Interlocked and Interdigitated Architectures from Self-Assembly of Long Flexible Ligands and Cadmium Salts[J]. Angew Chem Int Ed,2004,43(38):5036-5040.
    [121]Li Z X, Xu Y, Zuo Y, et al. Varying Ligand Backbones for Modulating the Interpenetration of Coordination Polymers Based on Homoleptic Cobalt(II) Nodes[J]. Cryst Growth Des,2009,9(9):3904-3909.
    [122]Hoskins B F, Robson R, Slizys D A. A Hexaimidazole Ligand Binding Six Octahedral Metal Ions To Give an Infinite3D a-Po-Like Network Through Which Two Independent2D Hydrogen-Bonded Networks Interweave [J]. Angew Chem Int Ed,1997,36(24):2752-2755.
    [123]Hu J S, Shang Y J, Yao X Y, et al. Syntheses, Structures, and Photochemical Properties of Six New Metal-Organic Framewo rks Based on Aromatic Dicarbox ylate Acids and V-Shape d Imidazole Ligands[J]. Cryst Growth Des,2010,10(9):4135-4142.
    [124]Liu H K, Tan H Y, Cai J W, et al. Assembly of a3D nanoporous framework [Cu6(OH)4(tib)8]n8+from Cu(II) and the flexible tripodal ligand tib[J]. Chem Commun,2001:1008-1009.
    [125]Su C Y, Cai Y P, Chen C L, et al. Ligand-Directed Molecular Architectures: Self-Assembly of Two-Dimensional Rectangular Metallacycles and Three-Dimensional Trigonal or Tetragonal Prisms[J]. J Am Chem Soc,2003,125(28):8595-8613.
    [126]Hoskins B F, Robson R, Slizys D A. An Infinite2D Polyrotaxane Network in Ag2(bix)3(NO3)2(bix=1,4-Bis(imidazol-1-ylmethyl)benzene)[J]. J Am Chem Soc,1997,119(12):2952-2953.
    [127]Jin C M, Lu H, Wu L Y, et al. A new infinite inorganic [n]catenane from silver and bis(2-methylimidazolyl)methaneligand[J]. Chem Commun,2006:5039-5041.
    [128]Li X J, Wang X Y, Gao S, et al. Two Three-Dimensional Metal-Organic Frameworks Containing One-Dimensional Hydroxyl/Carboxylate Mixed Bridged Metal Chains: Syntheses, Crystal Structures, and Magnetic Properties[J]. Inorg Chem,2006,45(4):1508-1516.
    [129]Yang J, Ma J F, Liu Y Y, et al. A Series of Lead(Ⅱ) Complexes withπ-π Stackings: Structural Diversities by Varying the Ligands[J]. Cryst Growth Des,2009,9(4):1894-1911.
    [130]Yang J, Ma J F, Liu Y Y, et al. Organic-Acid Effect on the Structures of a Series of Lead(II) Complexes[J]. Inorg Chem,2007,46(16):6542-6555.
    [131]Xu Z, Lee S, Kiang Y H, et al. A Cross-linked Large Channel Organic Coordination Solid[J]. Adv Mater,2001,13(9):637-641.
    [132]Choi H J, Suh M P. Electrochemical Measurement of the Free Energy of Adsorption of n-Alkanethiolates at Ag(111)[J]. J Am Chem Soc,1998,120(5):1062-1069.
    [133]Zheng S L, Tong M L, Fu R W, et al. Toward Designed Assembly of Microporous Coordination Networks Constructed from Silver(I)-Hexamethylenetetramine Layers[J]. Inorg Chem,2001,40(14):3562-3569.
    [134]Zhang Z J, Xiang S C, Zheng Q, et al. A Rare Uninodal9-Connected Metal-Organic Framework with Permanent Porosity[J]. Cryst Growth Des,2010,10(5):2372-2375.
    [135]Morris J J, Noll B C, Henderson K W. High-connectivity networks:characterization of the first uninodal9-connected net and two topologically novel7-connected nets[J]. Chem Commun,2007:5191-5193.
    [136]Yang E, Liu Z S, Lin S, et al. A microporous [Ni3(μ3-OH)] cluster-based framework with9-connected ncb topology[J]. Inorg Chem Commun,2011,14(10):1588-1590.
    [137]Zhang Y B, Zhang W X, Feng F Y, et al. A Highly Connected Porous Coordination Polymer with Unusual Channel Structure and Sorption Properties[J]. Angew Chem Int Ed,2009,48(29):5287-5290.
    [138]Ren G, Liu S, Ma F, et al. A9-connected metal-organic framework with gas adsorption properties[J]. J Mater Chem,2011,21:15909-15913.
    [139]Kong F, Xu X, Mao J G. A Series of New Ternary and Quaternary Compounds in the LiⅠ-GaⅢ-TeIⅤ-O System[J]. Inorg Chem,2010,49(24):11573-11580.
    [140]Kang Q Q, Long L S, Huang R B, et al. La(NO2)3, a novel (3,9)-connected lanthanide-based network[J]. Acta Crystallogr Sect E Struct Rep Online,2004, E60(2): i12-i14.
    [141]Du L, Wang K M, Fang R B, et al. Multidimensional Snowflake-shaped (3,9)-connected Metal-Organic Frameworks Composed of Ni3(μ3-O) Building Blocks and Symmetry Ligand Pyridine-3,5-dicarboxylic Acid[J]. Z Anorg Allg Chem,2009,635(2):375-378.
    [142]Yang Q F, Yu Y, Song T Y, et al.2D and3D networks of lanthanide with mixed dicarboxylate ligands:syntheses, crystal structures and photoluminescent properties[J]. CrystEngComm,2009,11:1642-1649.
    [143]Shi Y J, Chen X T, Li Y Z, et al. Pb(dca)2(dca=dicyanamide):a novel3D compound with unusual coordination modes of dicyanamide[J]. New J Chem,2002,26:1711-1713.
    [144]Santis G D, Fabbrizzi L, Licchelli M, et al. Molecular Recognition of Carboxylate Ions Based on the Metal-Ligand Interaction and Signaled through Fluorescence Quenching[J]. Angew Chem Int Ed,1996,35(2):202-204.
    [145]McGarrah J E, Kim Y J, Hissler M, et al. Toward a Molecular Photochemical Device:A Triad for Photoinduced Charge Separation Based on a Platinum Diimine Bis(acetylide) Chromophore[J]. Inorg Chem,2001,40(18):4510-4511.
    [146]Wu Q, Esteghamatian M, Hu N X, et al. Synthesis, Structure, and Electroluminescence of BR2q (R=Et, Ph,2-Naphthyl and q=8-Hydroxyquinolato)[J].Chem Mater,2000,12(1):79-83.
    [147]Liu Y Y, Ma J F, Yang J, et al.Structures of metal-organic networks based on flexible1,1'-(1,4-butanediyl)bis(imidazole-2-phenyl) ligand[J]. CrystEngComm,2008,10:565-572.
    [148]Liu H Y, Wu H, Ma J F, et al. Syntheses, Structures, and Photoluminescence of Zinc(Ⅱ) Coordination Polymers Based on Carboxylates and Flexible Bis-[(pyridyl)-benzimidazole]Ligands[J]. Cryst Growth Des,2010,10(11):4795-4805.
    [149]Zhang Z J, Liu H Y, Zhang S Y, et al. A rare2D coordination polymer of graphite-like structure extended by infinite silver-oxygen-silver bonds[J]. Inorg Chem Commun,2009,12(3):223-226.
    [150]Yang J, Yue Q, Li G D, et al. Structures, Photoluminescence, Up-Conversion, and Magnetism of2D and3D Rare-Earth Coordination Polymers with Multicarboxylate Linkages[J]. Inorg Chem,2006,45(7):2857-2865.
    [151]Thirumurugan A, Natarajan S. Synthesis, structure and luminescent properties of yttrium benzene dicarboxylates with one-and three-dimensional structure [J]. J Chem Soc Dalton Trans,2004:2923-2928.
    [152]Yang Y, Du P, Ma J F, et al. A Series of Metal-Organic Frameworks Based on Different Salicylic Derivatives and1,1'-(1,4-Butanediyl)bis(imidazole) Ligand:Syntheses, Structures, and Luminescent Properties [J]. Cryst Growth Des,2011,11(12):5540-5553.
    [153]Wen L L, Lu Z D, Lin J G, et al. Syntheses, Structures, and Physical Properties of Three Novel Metal-Organic Frameworks Constructed from Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Synthons [J]. Cryst. Growth Des,2007,7(1):93-99.
    [154]Kan W Q, Ma J F, Liu Y Y, et al.0D,2D and3D metal phosphonates assembled from a new2'-carboxybiphenyl-4-ylmethylphosphonic acid:Syntheses, topological structures and photoluminescent properties [J]. CrystEngComm,2012,14:2268-2277.
    [155]Kan W Q, Ma J F, Liu B, et al. A series of coordination polymers based on5,5'-(ethane-1,2-diyl)-bis(oxy)diisophthalic acid and structurally related N-donor ligands:syntheses, structures and properties [J]. CrystEngComm,2012,14:286-299.
    [156]Su Z, Fan J, Okamura T, et al. Interpenetrating and Self-Penetrating Zinc(Ⅱ) Complexes with Rigid Tripodal Imidazole-Containing Ligand and Benzenedicarboxylate[J]. Cryst Growth Des,2010,10(4):1911-1922.
    [157]Stock N, Biswas S. Synthesis of Metal-Organic Frameworks (MOFs):Routes to Various MOF Topologies, Morphologies, and Composites[J]. Chem Rev,2012,112(2):933-969.
    [158]Kreno L E, Leong K, Farha O K, et al. Metal-Organic Framework Materials as Chemical Sensors[J]. Chem Rev,2012,112(2):1105-1125.
    [159]Otsubo K, Wakabayashi Y, Ohara J, et al. Bottom-up realization of a porous metal-organic nanotubular assembly[J]. Nat Mater,2011,10:291-295.
    [160]Poloni R, Smit B, Neaton J B. Ligand-Assisted Enhancement of CO2Capture in Metal-Organic Frameworks[J]. J Am Chem Soc,2012,134(15):6714-6719.
    [161]Zheng B, Bai J, Duan J. et al. Enhanced CO2Binding Affinity of a High-Uptake rht-Type Metal-Organic Framework Decorated with Acylamide Groups[J]. J Am Chem Soc,2011,133(4):748-751.
    [162]Fu R, Hu S, Wu X. Syntheses, crystal structures, thermal stabilities, luminescence and magnetism of two3D pillared metal phosphonates[J]. Dalton Trans,2009:9843-9848.
    [163]Lin Z J, Liu T F, Xu B, et al. Pore-size tuning in double-pillared metal-organic frameworks containing cadmium clusters[J]. CrystEngComm,2011,13:3321-3324.
    [164]Dong L J, Zhao C C, Xu X, et al. Temperature-Dependent Crystal Self-Assembly, Disassembly, and Reassembly Among Three Cadmium(Ⅱ) Carboxylate-Phosphinates[J]. Cryst. Growth Des,2012,12(4):2052-2058.
    [165]Hou G, Bi L, Li B, et al. Reaction Controlled Assemblies of Polyoxotungstates (-molybdates) and Coordination Polymers[J]. Inorg Chem,2010,49(14):6474-6483.
    [166]Chen C, Ma J F, Liu B, et al. Two Unusual3D Copper(Ⅱ) Coordination Polymers Constructed by p-Sulfonated Calixarenes and Bis(triazolyl) Ligands[J]. Cryst Growth Des,2011,11(10):4491-4497.
    [167]Tian A X, Ying J, Peng J, et al. Using Flexible and Rigid Organic Ligands to Tune Topology Structures Based on Keggin Polyoxometalates[J]. Cryst Growth Des,2010,10(3):1104-1110.
    [168]Zhang S Y, Shi W, Lan Y H, et al. Observation of slow relaxation of the magnetization and hysteresis loop in an antiferromagnetic ordered phase of a2D framework based on CoⅡ magnetic chains[J]. Chem Commun,2011,47:2859-2861.
    [169]Liu K, Shi W, Cheng P. The coordination chemistry of Zn(II), Cd(II) and Hg(II) complexes with1,2,4-triazole derivatives[J]. Dalton Trans,2011,40:8475-8490.
    [170]Kawamichi T, Haneda T, Kawano M, et al. X-ray observation of a transient hemiaminal trapped in a porous network[J]. Nature,2009,461:633-635.
    [171]Ohara K, Kawano M, Inokuma Y. et al. A Porous Coordination Network Catalyzes an Olefin Isomerization Reaction in the Pore[J]. J Am Chem Soc,2010,132(1):30-31.
    [172]Inokuma Y, Yoshioka S, Fujita M, et al. A Molecular Capsule Network:Guest Encapsulation and Control of Diels-Alder Reactivity [J]. Angew Chem Int Ed,2010,49(47):8912-8914.
    [173]Marti-Rujas J, Islam N, Hashizume D, et al. Ab Initio Powder Diffraction Structure Analysis of a Host-Guest Network:Short Contacts between Tetrathiafulvalene Molecules in a Pore[J]. Angew Chem Int Ed,2011,50(27):6105-6108.
    [174]Fan J, Zhu H F, Okamura T, et al. Novel One-Dimensional Tubelike and Two Dimensional Polycatenated Metal-Organic Frameworks[J]. Inorg Chem,2003,42(1):158-162.
    [175]Liu H K, Tong X J. Assembly of supermolecular complexes from the tripodal ligand titmb:assembly of a large M6L8cage from14components[J]. Chem Commun,2002:1316-1317.
    [176]Zhang Z H, Song Y, Okamura T, et al. Syntheses, Structures, Near-Infrared and Visible Luminescence, and Magnetic Properties of Lanthanide-Organic Frameworks with an Imidazole-Containing Flexible Ligand[J]. Inorg Chem,2006,45(7):2896-2902.
    [177]Bai H Y, Ma J F, Yang J, et al. Eight Two-Dimensional and Three-Dimensional Metal-Organic Frameworks Based on a Flexible Tetrakis(imidazole) Ligand:Synthesis, Topological Structures, and Photoluminescent Properties[J]. Cryst Growth Des,2010,10(4):1946-1959.
    [178]Bai H Y, Yang J, Liu B, et al. Syntheses, structures, and photolumine scence of five silver(I) coordination polymers based on tetrakis(imidazol-1-ylmethyl)methane [J]. CrystEngComm,2011,13:5877-5884.
    [179]Su Z, Zhao Y, Chen M, et al. Anion-and auxiliary ligand-directed synthesis of cadmium(II) complexes with3,5-di(1H-imidazol-1-yl)benzoate[J]. CrystEngComm,2011,13:1539-1549.
    [180]Lin J D, Cheng J W, Du S W, et al. Five d103D Metal-Organic Frameworks Constructed From Aromatic Polycarboxylate Acids and Flexible Imidazole-Based Ligands[J]. Cryst Growth Des,2008,8(9):3345-3353.
    [181]Su Z, Bai Z S, Fan J, et al. Synthesis and Characterization of3d-3d Homo-and Heterometallic Coordination Polymers with Mixed Ligands[J]. Cryst Growth Des,2009,9(12):5190-5196.
    [182]Shao K Z, Zhao Y H, Lan Y Q, et al. Molecular tectonics of metal-organic frameworks based on ligand-modulated polynuclear zinc SBUs and aromatic multicarboxylic acids[J]. CrystEngComm,2011,13:889-896.
    [183]He K H, Li Y W, Chen Y Q, et al. Structure Modulation in Zn(Ⅱ)-1,4-Bis(imidazol-1-yl) benzene Frameworks by Varying Dicarboxylate Anions[J]. Cryst Growth Des,2012, 12(1):189-196.
    [184]Li L J, Qin C, Wang X L, et al. Synthesis and characterization of two self-catenated networks and one case of pcu topology based on the mixed ligands[J]. CrystEngComm,2012,14:4205-4209.
    [185]Chen Z L, Su Y, Xiong W, et al. Controlling the dimensionalities and structures of homochiral Zn(Ⅱ) and Cd(Ⅱ) compounds of N-(p-tosyl)-S-carboxymethyl-L-cysteine via tuning the connecting modes of metal ions and chiral linkers by different kinds of ancillary ligands[J]. CrystEngComm,2009,11:318-328.
    [186]Wen Y H, Sheng T L, Zhu Q L, et al. Self assembly of a tren-derivative hydrogenated Schiff base with transition metal ions:syntheses, crystal structures and photoluminescent properties[J]. CrystEngComm,2012,14:2879-2885.
    [187]Wang H, Huo L H, Deng Z P, et al. Syntheses, crystal structures and luminescent properties of Zn(Ⅱ)/Cd(Ⅱ) supramolecular complexes incorporating4-sulfinobenzoate and its in situ oxidized ligand[J]. CrystEngComm,2012,14:3501-3508.
    [188]Yang E C, Zhao H K, Ding B, et al. Four Novel Three-Dimensional Triazole-Based Zinc(Ⅱ) Metal-Organic Frameworks Controlled by the Spacers of Dicarboxylate Ligands:Hydrothermal Synthesis, Crystal Structure, and Luminescence Properties[J]. Cryst Growth Des,2007,7(10):2009-2015.
    [189]Chen W, Wang J Y, Chen C, et al. Photolumine scent Metal-Organic Polymer Constructed from Trimetallic Clusters and Mixed Carboxylates[J]. Inorg Chem,2003,42(4):944-946.
    [190]Kang Y, Zhang J, Li Z J, et al. Syntheses, structures, and photolumine scent properties of four d10metal-quinolinato coordination polymers with similar rod-like SBUs[J]. Inorg Chim Acta,2006,359(7):2201-2209.
    [191]Guo Z, Cao R, Li X, et al. A Series of Cadmium(Ⅱ) Coordination Polymers Synthesized at different pH Values[J]. Eur J Inorg Chem,2007:742-748.
    [192]Guo J, Ma J F, Liu B, et al. A Series of2D and3D Metal-Organic Frameworks Based on a Flexible Tetrakis(4-pyridyloxymethylene)methane Ligand and Polycarboxylates: Syntheses, Structures, and Photolumine scent Properties[J]. Cryst Growth Des,2011,11(8):3609-3621.
    [193]Li GZ, Yu M Z, Wang L, et al. Sol-Gel Fabrication and Photoluminescence Properties of SiO2@Gd2O3:Eu3+Core-Shell Particles[J]. J Nanosci Nanotechnol,2006,6(5):1416-1422.
    [194]Kitagawa S, Kitaura R, Noro S. Functional Porous Coordination Polymers[J]. Angew Chem IntEd,2004,43(18):2334-2375.
    [195]Natarajan R, Savitha G, Dominiak P, et al. Corundum, Diamond, and PtS Metal-Organic Frameworks with a Difference:Self-Assembly of a Unique Pair of 3-Connecting D2d-Symmetric3,3',5,5'-Tetrakis(4-pyridyl)bimesityl[J]. Angew Chem Int Ed,2005,44(14):2115-2119.
    [196]Lan Y Q, Li S L, Shao K Z, et al. A (3,12)-Connected3D Metal-Organic Framework Based on Nanosized Octanuclear Zinc Clusters[J]. Cryst Growth Des,2008,8(10):3490-3492.
    [197]Alexandrov E V, Blatov V A, Kochetkov A V, et al. Underlying nets in three-periodic coordination polymers:topology, taxonomy and prediction from a computer-aided analysis of the Cambridge Structural Database[J]. CrystEngComm,2011,13:3947-3958.
    [198]Proserpio D M. Topological crystal chemistry:Polycatenation weaves a3D web[J]. Nat Chem,2010,2:435-436.
    [199]Wells A F. Three-Dimensional Nets and Polyhedra[M]. Wiley:New York,1977.
    [200]Friedrichs O D, Huson D H.4-Regular Vertex-Transitive Tilings of E3[J]. Discrete Comput Geom,2000,24:279-292.
    [201]O'Keeffe M. Crystal structures:Tiling by numbers[J]. Nature,1999,400:617-618.
    [202]Ockwig N W, Friedrichs O D, O'Keeffe M, et al. Reticular Chemistry:Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks[J]. Acc Chem Res,2005,38(3):176-182.
    [203]Blatov, V A, O'Keeffe M, Proserpio D M. Vertex-, face-, point-, Schlafli-, and Delaney-symbols in nets, polyhedra and tilings:recommended terminology[J]. CrystEngComm,2010,12:44-48.
    [204]Blatov V A, Carlucci, Cian G, et al. Interpenetrating metal-organic and inorganic3D networks:a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database[J]. CrystEngComm,2004,6:378-395.
    [205]Batten S R, Suzanne M N, David R T. Coordination Polymers Design, Analysis and Application[M]. The Royal Society of Chemistry:Milton Road, UK,2009; Chapter2.
    [206]Hu S, Meng Z S, Tong M L. Structure and Topology Versatility of Metal-Organic Frameworks Based on Tetradentate Ligands Isolated from Hydrothermal Metal/Ligand Reactions[J]. Cryst Growth Des,2010,10(4):1742-1748.
    [207]Wang X L, Qin C, Lan Y Q, et al. Metal-organic replica of γ-Pu:the first uninodal10-connected coordination network based on pentanuclear cadmium clusters[J]. Chem Commun,2009:410-412.
    [208]Liu X, Huang K L. A12-Connected Dodecanuclear Copper Cluster with Yellow Luminescence[J]. Inorg Chem,2009,48(18):8653-8655.
    [209]Chen J, Feng Y L, Jiang Z G, et al. Two unusual binodal highly-connected3D networks constructed with mutiflexible ligands[J]. CrystEngComm,2011,13:6071-6076.
    [210]Li X, Sun H L, Wu X S, et al. Unique (3,12)-Connected Porous Lanthanide-Organic Frameworks Based on Ln4O4Clusters:Synthesis, Crystal Structures, Luminescence, and Magnetism[J]. Inorg Chem,2010,49(4):1865-1871.
    [211]Luo T T, Tsai H L, Yang S L, et al. Crystal Engineering:Toward Intersecting Channels from a Neutral Network with a bcu-Type Topology[J]. Angew Chem Int Ed,2005,44(37):6063-6067.
    [212]Chun H, Kim D, Dybtsev D N, et al. Metal-Organic Replica of Fluorite Built with an Eight-Connecting Tetranuclear Cadmium Cluster and a Tetrahedral Four-Connecting Ligand[J]. Angew Chem Int Ed,2004,43(8):971-974.
    [213]Yang J, Song S Y, Ma J F, et al. Syntheses, Structures, Photoluminescence, and Gas Adsorption of Rare Earth-Organic Frameworks Based on a Flexible Tricarboxylate[J]. Cryst Growth Des,2011,11(12):5469-5474.
    [214]Chen L, Xu G J, Shao K Z, et al. pH-dependent self-assembly of divalent metals with a new ligand containing polycarboxylate:syntheses, crystal structures, luminescent and magnetic properties[J]. CrystEngComm,2010,12:2157-2165.
    [215]Zheng X J. Jin L P, Gao S, et al. Second ligand-directed self-assembly of lanthanide(Ⅲ) coordination polymers with1,4-naphthalenedicarboxylate[J]. New J Chem,2005,29:798-804.
    [216]Wu H, Liu H Y, Yang J, et al. Series of Coordination Polymers Based on Different Carboxylates and a Tri(4-imidazolylphenyl)amine Ligand:Entangled Structures and Photoluminescence[J]. Cryst Growth Des,2011,11(6):2317-2324.
    [217]Liu H Y, Liu B, Yang J, et al. Two novel inorganic-organic hybrid materials constructed from two kinds of octamolybdate clusters and flexible tetradentate ligands[J]. Dalton Trans,2011,40:9782-9788.
    [218]Liu B, Yu Z T, Yang J, et al. First Three-Dimensional Inorganic-Organic Hybrid Material Constructed From an "Inverted Keggin" Polyoxometalate and a Copper(I)-Organic Complex[J]. Inorg Chem,2011,50(18):8967-8972.
    [219]Li H X, Zhang X Y, Huo Y N, et al. Supercritical Preparation of a Highly Active S-Doped TiO2Photocatalyst for Methylene Blue Mineralization[J]. Environ Sci Technol,2007,41(12):4410-4414.
    [220]Yamase T. Photo-and Electrochromism of Polyoxometalates and Related Materials [J]. Chem Rev,1998,98(1):307-326.
    [221]Dolbecq A, Dumas E, Mayer C R, et al. Hybrid Organic-Inorganic Polyoxometalate Compounds:From Structural Diversity to Applications[J]. Chem Rev,2010,110(10):6009-6048.
    [222]Mizuno N, Yamaguchi K, Kamata K. Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates [J]. Coord Chem Rev,2005,249(17-18):1944-1956.
    [223]Song J, Luo Z, Britt D K, et al. A Multiunit Catalyst with Synergistic Stability and Reactivity:A Polyoxometalate-Metal Organic Framework for Aerobic Decontamination[J]. J Am Chem Soc,2011,133(42):16839-16846.
    [224]Meng X, Qin C, Wang X L, et al. Chiral salen-metal derivatives of polyoxometalates with asymmetric catalytic and photocatalytic activities [J]. Dalton Trans,2011,40,9964-9966.
    [225]Kong Z P, Weng L H, Tan D J, et al. Hydrothermal Synthesis, Crystal Structure, Conductivity, and Thermal Decomposition of [Cu(4,4'-bipy)(H20)(Mo3O10)]·H2O[J]. Inorg Chem,2004,43(18):5676-5680.
    [226]Hagrman D, Sangregorio C, O'Connor C J, et al. Solid state coordination chemistry: two-dimensional oxides constructed from poly oxomolyb date clusters and copper-organoamine subunits[J]. J Chem Soc Dalton Trans,1998:3707-3710.
    [227]Allis D G, Rarig R S, Burkholder E, et al. A three-dimensional bimetallic oxide constructed from octamolybdate clusters and copper-ligand cation polymer subunits. A comment on the stability of the octamolybdate isomers[J]. J Mol Struct,2004,688(1-3):11-31.
    [228]Wu C D, Lu C Z, Zhuang H H, et al. Hybrid Coordination Polymer Constructed from β-Octamolybdates Linked by Quinoxaline and Its Oxidized Product Benzimidazole Coordinated to Binuclear Copper(I) Fragments [J]. Inorg Chem,2002,41(22):5636-5637.
    [229]Zang H Y, Tan K, Guan W, et al. Inorganic-organic hybrid compounds based on the co-existence of different isomers or forms of polymolybdate[J]. CrystEngComm,2010,12:3684-3690.
    [230]Liu H Y, Wu H, Yang J, et al. pH-Dependent Assembly of ID to3D Octamolybdate Hybrid Materials Based on a New Flexible Bis-[(pyridyl)-benzimidazole] Ligand[J]. Cryst Growth Des,2011,11(7):2920-2927.
    [231]Yang M X, Chen L J, Lin S, et al. Inorganic-organic hybrid compounds based on molybdenum oxide chains and tetrazolate-bridged polymeric silver cations [J]. Dalton Trans,2011,40:1866-1872.
    [232]An H Y, Li Y G, Wang E B, et al. Self-Assembly of a Series of Extended Architectures Based on Polyoxometalate Clusters and Silver Coordination Complexes[J]. Inorg Chem,2005,44(17):6062-6070.
    [233]Lin F X, Marchal-Roch C, Bouchard P, et al.[Ag6(PMo10V2O40)](CH3COO)·8H20:A3D Macrocationic Polyoxometallic Keggin Complex[J]. Inorg Chem,2004,43(7):2240-2242.
    [234]Cochran W, Lip son H. The Determination of Crystal Structures[M]. Ithaca, NY:Cornell University Press,1966,323.
    [235]Wang X, Bi Y, Chen B, et al. Self-Assembly of Organic-Inorganic Hybrid Materials Constructed from Eight-Connected Coordination Polymer Hosts with Nanotube Channels and Polyoxometalate Guests As Templates[J]. Inorg Chem,2008,47(7):2442-2448.
    [236]Lan Y Q, Li S L, Shao K Z, et al. Construction of different dimensional inorganic-organic hybrid materials based on polyoxometalates and metal-organic units via changing metal ions:from non-covalent interactions to covalent connections[J]. Dalton Trans,2008:3824-3835.
    [237]Gong Y, Zhou Y C, Liu T F, et al. Interpenetrated metal-organic frameworks of self-catenated four-connected mok nets[J]. Chem Commun,2011,47:5982-5984.
    [238]Withersby M A, Blake A J, Champness N R, et al. Assembly of a Three-Dimensional Polyknotted Coordination Polymer [J]. J Am Chem Soc,2000,122(17):4044-4046.
    [239]Zang H Y, Du D Y, Li S L, et al. A series of POM-based entangled frameworks with the rigid ligand1,4-bis(1-imidazolyl)benzene and different isomers of octamolybdate[J]. J Solid State Chem,2011,184(5):1141-1147.
    [240]Fang X, Kogerler P. PO43"-Mediated Polyoxometalate Supercluster Assembly[J]. Angew Chem Int Ed,2008,47(42):8123-8126.
    [241]Kan W Q, Ma J F, Liu YY, et al. pH-Dependent assembly of two octamolybdate hybrid materials:A self-threading CdSO4-type framework and a3D4-connected framework[J]. CrystEngComm,2011,13:7037-7043.
    [242]Coue V, Dessapt R, Bujoli-Doeuff M, et al. Synthesis and characterization of two new photochromic organic-inorganic hybrid materials based on isopolyoxomolybdate:(HDBU)3(NH4)[β-Mo8O26]·H2Oand (HDBU)4[δ-Mo8O26][J]. J Solid State Chem,2006,179(12):3615-3627.
    [243]Zhai Q G, Wu X Y, Chen S M, et al. Construction of Ag/1,2,4-Triazole/Polyoxo-metalates Hybrid Family Varying from Diverse Supramolecular Assemblies to3-D Rod-Packing Framework[J]. Inorg Chem,2007,46(12):5046-5058.
    [244]Liao J H, Huang J S, Lai Y C. Supermolecular Architecture of a Polypseudo-rotaxane:[Cd(BPE)(α-Mo8O26)][Cd(BPE)(DMF)4]·2DMF (BPE1,2-Bis(4-pyridyl)ethane, DMF=N,N-Dimethylformamide)[J]. Cryst Growth Des,2006,6(2):354-356.
    [245]Wu H, Liu H Y, Liu B, et al. Two unprecedented3D metal-organic polyrotaxane frameworks based on a new flexible tri(imidazole) ligand[J]. CrystEngComm,2011,13:3402-3407.
    [246]Zhang L Y, Zhang J P, Lin YY, et al. Syntheses, Structures, and Photoluminescence of Three Coordination Polymers of Cadmium Dicarboxylates[J]. Cryst Growth Des,2006,6(7):1684-1689.
    [247]Chu Q, Liu G X, Huang Y Q, et al. Syntheses, structures, and optical properties of novel zinc(II) complexes with multicarboxylate and N-donor ligands[J]. Dalton Trans,2007:4302-4311.
    [248]Zhang L P, Ma J F, Yang J, et al.1D,2D, and3D Metal-Organic Frameworks Based on Bis(imidazole) Ligands and Polycarboxylates:Syntheses, Structures, and Photoluminescent Properties[J]. Cryst. Growth Des,2009,9(11):4660-4673.
    [249]Tsumura T, Kojitan N, Izumi I, et al. Carbon coating of anatase-type TiO2and photoactivity[J]. J Mater Chem,2002,12:1391-1396.
    [250]Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J]. Science,2001,293:269-271.
    [251]Lin H, Maggard P A. Microporosity, Optical Bandgap Sizes, and Photocatalytic Activity of M(I)-Nb(V)(M=Cu, Ag) Oxyfluoride Hybrids[J]. Cryst Growth Des,2010,10(3):1323-1331.
    [252]Wang C, Xie Z, deKrafft K E, et al. Light-Harvesting Cross-Linked Polymers for Efficient Heterogeneous Photocatalysis [J]. Appl Mater Interfaces,2012,4(4):2288-2294.
    [253]Liu H Y, Wu H, Ma J F, et al. Inorganic-organic hybrid compounds based on octamolybdates and metal-organic fragments with flexible multidentate ligand: syntheses, structures and characterization[J]. Dalton Trans,2011,40:602-613.
    [254]Wang B, Dong S. Electrochemical study of isopoly-and heteropoly-oxometallate film modified microelectrodes—Part2. Electrochemical behaviour of isopolymolybdic acid monolayer modified carbon fibre microelectrodes [J]. Electrochim Acta,1992,37(10):1859-1864.
    [255]Han Z G, Zhao YL, Peng J, et al. Inorganic-organic hybrid polyoxometalate containing supramolecular helical chains:Preparation, characterization and application in chemically bulk-modified electrode[J]. Electrochim Acta,2005,51(2):218-224.
    [256]Wang X L, Wang E B, Lan Y, et al. Renewable PMo12-Based Inorganic-Organic Hybrid Material Bulk-Modified Carbon Paste Electrode:Preparation, Electrochemistry and Electrocatalysis[J]. Electroanalysis,2002,14(15-16):1116-1121.
    [257]Zhu M, Peng J, Pang H J, et al. Two new polyoxometalate-based hybrids:Structural transformation played by a secondary bridging ligand [J]. Inorg Chim Acta,2010,363(14):3832-3837.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700