原子小团簇激发态性质及掺杂富勒烯密度泛函计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去的数十年里,团簇研究的发展极其迅速而且成果卓著。这一方面是由于实验技术的不断提高,使得不同尺寸的团簇制取和其物理性质的研究变得容易;另一方面,计算机和计算技术的迅速发展,使得较小团簇的原子组态和电子结构从第一性原理进行从头计算以及对它们进行动力学计算机模拟成为可能。研究团簇的几何构型、团簇的性质如何随着原子数的增长而改变、团簇的成键作用、电子结构等等,从而进一步揭示团簇的物理化学性质,构成了当今团簇物理学研究的一些中心主题。
     近几年,过渡金属碳化物团簇(met-cars)的研究是科学界一个比较热门的研究课题,因为这些材料被期望会具有许多不同与普通材料的化学和物理特性,有望在材料科学、微电子学、纳米技术、催化学以及固体化学方面会具有比较好的应用前景。而富勒烯团簇的研究是纳米科技中的一个重要组成部分。通过掺杂的方式可以改变富勒烯的物理和化学性质,从而得到我们所需要的功能材料。这些正激发人们将越来越多的热情投入到对团簇的研究之中
     本文主要采用密度泛函理论(DFT),对过渡金属碳化物以及掺杂富勒烯等团簇体系进行理论计算研究,内容分为以下几个部分:
     第一章简要介绍了团簇领域的发展现状和发展前景。
     第二章介绍了量子化学计算的发展历史和现状,重点介绍了密度泛函理论,以及常用的从头计算软件包。这些是我们进行团簇研究的理论基础和计算工具。
     第三章主要介绍了对原子小团簇的研究工作。在这部分,我们从第一性原理出发,应用密度泛函理论,分别系统地研究了MC_2(M=V、Cr、Fe和Co)、MC_3(M=Sc、V和Cr)、TiC_5和SiN团簇的中性分子和阴离子的性质,计算了它们的平衡构型、电子组态和电子亲和势等。另外,我们还应用了含时密度泛函的方法计算了这些团簇的低能激发态性质,并对实验的阴离子光电子能谱(PES)进行了理论指认。我们的计算结果与已知的实验数据相比符合得非常好。这说明含时密度泛函理论作为一种有力的理论研究工具,可以在理论上对团簇系统的低电子激发态性质作出令人信服的预测。
     第四章介绍了对C_(59)B~-和C_(59)N~+的几何结构和电子结构所进行的系统研究工作。尽管替代性掺杂富勒烯C_(59)B~-和C_(59)N~+与经典的富勒烯分子C_(60)是等电子类似物,但是我们发现由于掺杂原子的加入,富勒烯的电子结构属性已经发生了非常大的变化。掺杂原子给整个体系带来了杂质能级,使得B原子在C_(59)B~-中担任空穴的角色,而N原子在C_(59)N~+中担任施主的角色。局部态密度图显示掺杂原子与碳笼子的碳原子之间存在着轨道交叠。
In the past decades, research on clusters has been one of the largest as well as themost rapidly developed branches of physics. Taking advantage of rapid progress in theexperimental technology, it is much readily to produce clusters with different size and tostudy their physical properties; on the other side, the development of computer andalgorithms make it possible that we can carry out first-principles calculations to obtainthe geometry and the electronic structure of the small clusters and to simulate thedynamics. Nowadays, in this branch, the focus issues are to study the geometry, bonding, and electronic structure properties, to observe how the properties change with incrementof its size, and to discover more novel physical and chemical properties. The calculationsabout clusters are the subjects of this dissertation.
     Transition metal carbide clusters (met-ears) have been a subject of intenseinvestigation in recent years due to their promising applications in materials sciences, microelectronies, nanotechnology, catalysis, solid state chemistry, and so on. And thestudy of fullerenes is one important part of nanotechnology. We can change the physicaland chemical properties of fullerenes to get the material that we need by doping. All ofthose arouse people's enthusiasm for the study of clusters.
     In this dissertation, using the density functional theory (DFT) we mainly investigatethe met—cars and heterofullerenes clusters. The dissertation is divided into the followingfour chapters.
     In Chapter 1, the actuality and development of cluster researching are introducedbriefly.
     In Chapter 2, the history and actuality of quantum chemistry computation are brieflyintroduced, and we mainly describe the density functional theory (DFT) as well as somepopular ab initio software packages, which are our theoretical foundations andcomputational implements to deal with cluster system.
     In Chapter 3, the works concentrate on the study of small clusters. In this part, density functional calculations are performed to study MC_2 (M=V, Cr, Fe and Co), MC_3(M=Sc, V and Cr), TiC_5 and SiN clusters in their neutral and anionic states. Theequilibrium geometries, electronic configurations and electron affinities of these clusters are obtained. Time-dependent DFT (TDDFT) is used to calculate the excited states. Atheoretical assignment for the features in the experimental photoelectron spectrum isgiven. Our results compare well with the available experimental results, and show thatTDDFT can give the convincing prediction for the excited state properties of clusters.
     In Chapter 4, the study on the structural and electronic properties of C_(59)B~- andC_(59)N~+ is described. Though the C_(59)B~- and C_(59)N~+ are isoelectronic analogues to C_(60), it isfound that doping induces great changes in electronic properties. The doped atoms bringon impurity energy levels and make B in C_(59)B~- and N in C_(59)N~+ act as a hole and anelectron donor respectively. The PDOSs (partial densities of states) indicate thehybridization between the orbitals of the doped atoms and of the carbon atoms of thecages.
引文
1、白春礼.纳米科技现在与未来.第1版.四川:四川教育出版社,2001
    2、李玲,向航.功能材料与纳米技术.第1版.北京:化学工业出版社,2002
    3、王阳生,曾友春,卢天贶,吴学忠,熊苹,李宗福,张勤,刘松柏,吴郁郁,卢润周.纳米——新世纪逐鹿.第1版.北京:解放军出版社,2004
    4、阎子峰.纳米催化技术.第1版.北京:化学工业出版社,2003
    5、K.J.克莱邦德,陈建峰,邵磊,刘晓林.第1版.北京:化学工业出版社,2004
    6、G. D. Stein. Atoms and molecules in small aggregates. Phys. Teach. 1979 (17): 503-512
    7、王广厚.团簇物理学.第一版.上海:上海科学技术出版社,2003
    8, H. W. Kroto, J. R. Heath, S. S. O'Brien, R. E Curl, and R. E. Smalley. Nature. 1985 (318): 162-163
    9, Lan-Feng Yuan, Jinlong Yang, Ke Deng, and Qing-Shi Zhu. A First-Principles Study on the Structural and Electronic Properties of C_(36) Molecules. J. Phys. Chem. A. 2000 (104): 6666-6671
    10, W. Kratschmer, L. D. Lamb, K. Fostriopoulos, and D. R. Huffrnan0. Solid C_(60): A new form of carbon. Nature. 1990 (347): 354-358
    11、A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley. Unraveling nanotubes: field emission from an atomic wire. Science. 1995 (269): 1550-1553
    12、B. C. Guo, K. P. Kerns, and A. W. Castleman Jr. Ti_8C_(12)~+ —Metallo-Carbohedrenes: A New Class of Molecular Clusters? Science. 1992 (255): 1411-1413.
    13、K. I. Perterson, P. D. Dao, R. W. Farley, and A. W. Castleman, J. Chem. Phys. 1980 (80): 1780-1782.
    14、G. Cappellini, F. Casula, Jinlong Yang, and F. Bechstedt. Quasiparticle energies in clusters determined via total-energy differences: Application to C_(60) and Na_4. Phys. Rev. B, 1997 (56): 3628-3631
    15、D. E. Tevault. Laser-induced emission spectrum of CuO_2 in argon matrices. J. Chem. Phys. 1982 (76): 2859-2863.
    16、Ke Deng, Jinlong Yang, Lan-Feng Yuan, and Qing-Shi Zhu. A theoretical study of the linear OCuO species. J. Chem. Phys. 1999 (111): 1477-1482
    17、B.Dal, K. Deng, and J. Yang. A theoretical study of the Y_4O cluster. Chem. Phys. Lett. 2002 (364): 188-195
    18、B.Dai, K. Deng, J. Yang and Q. Zhu. Excited states of the 3d transition metal monoxides. J. Chem. Phys. 2003 (118): 9608-9613
    19、B. Dai, L. Tian and J. Yang. A theoretical study of small copper oxide clusters: Cu_2O_x (x=1-4). J. Chem. Phys. 2004 (120): 2746-2751
    20、D. Schroder, R. Brown, P. Schwerdffeger, X. B. Wang, X. Yang, L. S. Wang and H. Schwarz. Angew. Chem. Int. Ed. 2003 (42): 311-314
    21、B.Dai and J. Yang. Assignment of photoelectron spectra of AuX_2 (X=Cl, Br, and I) clusters. Chem. Phys. Lett. 2003 (379): 512 -516
    22、K. -M. Ho, A. A. Shvartsburg, B. C. Pan, Z. Y. Lu, C. Z. Wang, J. G. Wacker, J. L. Fye, and M. F. Jarrold, Nature, 392, 582 (1998).
    23、Ke Deng, Jinloong Yang, Lan-Feng Yuan, and Qing-Shi Zhu,. Hybrid density-functional study of Si_(13) clusters. Phys. Rev. A. 2002 (62): 45201-1—45201-4
    24、Y. Li, X. H. Liu, X. Y. Wang, and N. Q. Lou. Proton transfer reactions within the NH_3-CH_3OH~+ cluster. Chem. Phys. Lett. 1997 (276): 339-348
    25、王广厚,窦烈,庞锦忠等.物理学进展,1987(7):1
    26、Mark T D, Castleman Jr A W. In: Bales S D, ed. Advances in Atomic and Molecular Phys v20. Florida: Academic Press, 1985
    27、Bjφrnholm S, Borggreen J, Echt O, etal. Mean-field quantization of several hundred electrons in sodium metal clusters. Phys Rev Lett, 1990 (65): 1627-1630
    28、Iijima, Sumio. Helical Microtubules of Graphitic Carbon. Nature. 1991 (354):56-58
    29、Yam, Philip. Current events. Scientific American. December. 1993
    30、Foing, B. H.; Ehrenfreund, P. Detection of two interstellar absorption bands eoncident with spectral fatures of C+60. Nature. 1994 (369): 296-298
    31、Daly, Terry K.; Busek, Peter R.; Williams, Peter; Lewis, Charles F. Fullerenes from a fulgurite. Science. 1993 (259): 1599-1601
    32、Haddon R C,Hebard A F, Rosseinsky M J. Superconductivity at 18 K it Potassium Doped Fullerene, K(x) C(60). Nature. 1991 (350): 600-601
    33、Holozer K,Klein O. Alkali-fulleride Superconductors: Synthesis, Composition, and Diamagnetic Shielding. Science. 1991 (252): 1154-1157
    34、Friedman Simon H.; Kenyon,George L.; Decamp,Diane L. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J. Am. Chem. Soc. 1993 (115): 6506-6509
    35、S.Iijima. Helical Microtubules of Graphitic Carbon. Nature. 1991 (354): 56-58
    36、Zettl A. MATERIALS SCIENCE:Superstrong Nanotubes Show They Are Smart. Science. 1998 (281): 940-942
    37、王广厚,韩民.物理学进展,1990(3):248
    38、Gleiter H. Nanocrystalline materials. Progr Mater Sci, 1989 (33): 223-315
    39、T. A. Albright, J. K. Burdett, and M. -H. Whangbo, Orbital Interactions in Chemistry, Wiley, New York, 1985.
    40、L. S. Wang, H. Wu, S. R. Desai and L. Lou. Electronic structure of small copper oxide clusters: From Cu_2O to Cu_2O4. Phys. Rev. B, 1995, (53): 8028-8031
    41、W. Heisenberg, Zeit. Uber quantentheoretishe Umdeutung kinematisher und mechanischer Beziehungen. Physik, 1925, (33): 879-893
    42、E. Schrodinger. Uber das Verh ltnis der Heisenberg-Born-Jordanschen Quantenmechanik zu der meinen. Ann. Der Physik, 1926, (79): 361-376
    43、W. Heitler and F. London, Zeit. Wechselwirkungen neutraler Atome und homoopolare. Bindung in der Quantenmechanik. Physik, 1927, (44): 455-472
    44、R. S. Mulliken. Bonding Power of Electrons and Theory of Valence. Chem. Rev., 1931, (9): 347-388
    45、K. Fukui. A Formulation. of the Reaction Coordinate. Account Chem. Rev. 1971, (4): 57-64
    46、R. B. Woodward and R. Hoffmann. Stereochemistry of Electrocyclic Reactions. J. Am. Chem. Sot., 1965, (87): 395-397
    47、D. R. Hartree, Proc. The wave mechanics of an atom with a non-coulomb central field. Camb. Phil. Soc., 1928, (24): 111-132
    48、V. Fock. Noherungsmethode zur Losung des quantenmechanischen mehrkorper-problems. Z. Phys., 1930,(61): 126-148
    49、C. C. J. Roothaan. New developments in molecular orbital theory. Rev. Mod. Phys., 1951, (23): 69-89
    50、J.A.Pople and D.Bevedidge著,江元生译.分子轨道理论近似方法.第1版.上海:科学出版社,1976
    51、P. Hohenberg and W. Kohn. Inhomogeneous Electron Gas. Phys. Rev. B. 1964. (136): 864-871
    52、W. Kohn and L. J. Sham. Self-Consistent Equations Including Exchange And Correlation Effects. Phys. Rev.A. 1965 (140): 1133-1138
    53、W. Kohn, A. D. Becke and R. G. Parr. Density functional theory of electronic structure. J. Phys. Chem., 1996, (100): 12974-12980
    54 R. G. Parr and W. Yang. Density-Functional Theory of the Electronic Structure of Molecules. Annu. Rev. Phys. Chem., 1995, (46): 701-728
    55 K. Schwarz, E. Nusterer, and P. Margl. Ab initio molecular dynamics to study catalysis. Int. J. Quantum Chem., 1997, (61): 369-380
    56 L. Triguero, U. Wahlgren, L. G. M. Pettersson, and P. Siegbahn, DFT and MO Calculations of Atomic and Molecular Chemisorption Energies on Surface Cluster Models. Theoretica Chimica Acta, 1996,(94) : 297-310
    57 P. Duffy. Calculation of electron momentum distributions using density functional theory. Can. J. Phys., 1996, (74) : 763-772
    58 G. Schreckenbach and T. Ziegler, Calculation of the G-Tensor of Electron Paramagnetic Resonance Spectroscopy Using Gauge-Including Atomic Orbitals and Density Functional Theory. J. Phys. Chem., 1997, (101) : 3388-3399
    
    59 S. Albrecht, G. ONida, L. Reining, and R. Delsole, Ab initio calculation of excitonic effects in realistic materials. Computational Materials Science, 1998, (10) : 356-361
    
    60 A. K. Chandra and M. T. Nguyen, Structure and stability of the nitric acid-ammonia complex in the gas. Chem. Phys., 1998, (232) : 299-306
    
    61 L. Ducasse and A. Fritsch, Synthetic Metals, 1997, (86) : 2229
    
    62 G. Schreckenbach and T. Ziegler, Overview: Density functional calculations of NMR chemical shifts and ESR g-tensors. Theoretical. Chemistry. Accounts. 1998, (99) : 71-82
    
    63 E. Goldstein, B. Beno, and K. N. Houk. Density Functional Theory Prediction of the Relative Energies and Isotope Effects for the Concerted and Stepwise Mechanisms of the Diels-Alder Reaction of Butadiene and Ethylene . J. Am. Chem. Soc, 1996, (118) : 6036-6043
    
    64 P. Perez, R. Contreras, and A. Aizman, Local and nonlocal density functional calculations of the molecular structure of isomeric thiadiazoles. Theochem-Journal of Molecular Structure, 1997,(390) : 169-175
    
    65 A. P. Scott and L. Radom. Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Mller-Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J. Phys. Chem., 1996, (100) : 16502-16513
    
    66 C. Bureau and G. Lecayon. On a modeling of voltage-application to metallic electrodes using density functional theory. J. Chem. Phys., 1997, (106) : 8821 -8829
    
    67 C. Bureau and D. P. Chong, J. Electron Spec, and Related Phenomena, 1998, (88) : 657-663
    68、R.McWeeny. Methods of Molecular Quantum Mechanics, Academic Press, London. 1989
    69、J. A. Pople, D. L. Beveridge, Approximate Molecular Orbital Theory, McGraw Hill, New York. 1970
    70、M.J.S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart. A new General Purpose Quantum Mechanical Molecular Model. J. Am. Chem. Soc. 1985 (107): 3902-3909
    71、E.A. Hylleraas. ber den Grundzustand des Heliumatoms. Zeit. Physik. 1928 (48): 469-475
    72、C. Moller, M. S. Plesset. Note on an approximation treatment for many electron systems. Phys. Rev. 1934 (46): 618-622
    73、R. M. Dreizler, E. K. U. Gross, Density Functional Theory, Springer-Verlag, Berlin. 1990
    74、J. L. Labanowski, J. W. Andzelm. Density Functional Methods in Chemistry Springer-Verlag, New York 1991
    75、D. C. Langreth, J. P. Perdew. Analysis of the gradient approximation and a generalization that works. Phys. Rev. B. 1980 (21): 5469-5493
    76、F. Sire, A. St-Amant, I. Papsi, D. R. Salahub. Gaussian density functional calculations on hydrogen-bonded systems. J. Am. Chem. Soc. 1992 (114): 4391-4400
    77、T. Asada, K. Terakura. Cohesive Properties of Iron: Obtained by Use of the Generalized Gradient Approximation. Phys. Rev. B. 1992 (46): 13599-13602
    78、Lan-Feng Yuan, Jinlong Yang, Qunxiang Li, Qing-Shi Zhu. First-principles investigation for M(CO)(n)/Ag(110) (M=Fe, Co, Ni, Cu, Zn, and Ag; n = 1, 2) systems: Geometries, STM images, and vibrational frequencies. Phys. Rev. B 2002 (65): 035415-5.
    79、Lan-Feng Yuan, Jinlong Yang, Ke Deng, Qing-Shi Zhu. A first-principles study on the structural and electronic properties of C-36 molecules. J. Phys. Chem. A. 2000 (104): 6666-6671
    80、A. D. Becke. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993 (98): 1372-1377
    81、A. D. Becke. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993 (98): 5648-5652
    82、Burke K, Gross E K U, "A Guided Tour of Tune-Dependent Density Functional Theory", in Springer Lecture Notes in Physics, 1998
    83、F. Aryasetiawan and O. Gunnarsson, In- and out-of-plane vortex correlations in YBa_2Cu_3O_7. Phys. Rev. B, 1994, (50): 7219-7221
    84、M.A. Cazalilla, J. S. Dolado, A. Rubio, and P. M. Echenique, Plasmonic excitations in noble metals: The case of Ag. Phys. Rev. B, 1999, (61): 8033-8042
    85、I. Campillo, A. Rubio and J. M. Pitarke, Ab initio calculations of the dynamical response of copper. Phys. Rev. B, 1999, (59): 12188-12191
    86、A. Fleszar and W. Hanke, Phys. Rev. B, Dynamical density response of Ⅱ-Ⅵ semiconductors. 1997, (56): 12285-12289; H. Droge, A. Fleszar, W. Hanke, M. Sing, M. Knupfer, J. Fink, F. Goschenhofer, C. R. Becker, R. Kargerbauer, and H. P. Steinruck, Complex loss function of CdTe. Phys. Rev. B, 1999, (59): 5544
    87、L. A. Feldkamp, M. M. Stearns and S. S. Shionozaki, Electronic structure and optical constants of Ni by electron inelastic scattering. Phys. Rev. B, 1979, (20): 1310-1314
    88、A. G. Eguiluz, A. Fleszar and J. A. Gaspar, Nucl. Inst. Meth. Phys. Res. B, 1995, (96): 550
    89、A. Fleszar, A. A. Quong, and A. G. Eguiluz, Band-Structure and Many-Body Effects in the Dynamical Response of Aluminum Metal. Phys. Rev. Lett., 1995, (74): 590-593
    90、A. A. Quong and A. G. Eguiluz, First-principles evaluation of dynamical response and plasmon dispersion in metals. Phys. Rev. Lett., 1993, (70): 3955-3958
    91、N. E. addocks, R. W. Godby, and R. J. Needs, Band structure effects in the dynamic response of aluminium. Europhys. Lett., 1994, (27): 681-686
    92、F. Aryasetiawan and K. Karlsson, Energy Loss Spectra and P1asmon Dispersions in Alkali Metals: Negative Plasmon Dispersion in Cs. Phys. Rev. Lett., 1994, (73): 1679-1682
    93、A. Fleszar, R. Stumpf, and A. G. Eguiluz, One-electron excitations, correlation effects, and the plasmon in cesium metal. Phys. Rev. B, 1997, (55): 2068-2072
    94、K. H. Lee and K. J. Chang, First-principles study of the optical properties and the dielectric response of Al. Phys. Rev. B, 1994, (49): 2362-2367
    95、H. Bross and M. Ehrnsperger. Calculation of the dielectric function of Li metal. Z. Phys. B, 1995, (97): 17-24
    96、A. G. Eguiluz, W. Ku, and J. M. Sullivan, Journ. Phys. Chem. Solids, 2000, (113): 8478
    97、W. Ku and A. G. Eguiluz, Plasmon Lifetime in K: A Case Study of Correlated Electrons in Solids Amenable to Ab Initio Theory. Phys. Rev. Lett., 1999, (82) : 2350-2353
    98、Hessler P, Park J, Berke K. Several Theorems in Time-Dependent Density Functional Theory. Phys. Rev. Lett., 1999, (82): 378-381
    99、S. Hirata. T. J. Lee, and M. Head-Gordon, J. Chem. Phys., 1999, (111): 8094
    100、S. J. A. van Gisbergen, A. Rosa, g. Ricciardi, and E. J. Baerends, Time-dependent density functional calculations on the electronic absorption spectrum of free base porphin. J. Chem. Phys, 1999, (111): 2499-2506
    101、A. Rosa, E. J. Baerends, S. J. A. van Gisbergen, E. van Lenthe, J. A. Groeneveld, and J. G. Snijders, Electronic Spectra of M(CO)6 (M = Cr, Mo, W) Revisited by a Relativistic TDDFT Approach. J. Am. Chem. Soc., 1999, (121): 10356-10365
    102、S. J. A. van Gisbergen, J. A. Groeneveld, A. Rosa, J. G. Snijiders, and E. J. Baerends, Excitation Energies for Transition Metal Compounds from Time-Dependent Density Functional Theory. Applications to mnO_4~-, Ni(CO)_4, and Mn_2(CO)_(10). J. Phys. Chem. A, 1999, (103): 6835-6844
    103、X. Li, B. Kiran, J. Li, H. -J. Zhai, L. -S. Wang, Experimental Observation and Confirmation of Icosahedral W@Au_(12) and Mo@Au_(12) Molecules. Angew. Chem., Int. Ed. 2002 (41): 4786-4789
    104、S. Hirata, M. Head-Gordon, J. Szczepanski, M. Vala. Time-Dependent Density Functional Study of the Electronic Excited States of Polycyclic Aromatic Hydrocarbon Radical Ions. J. Phys. Chem. A. 2003 (107): 4940-4951
    105、aussian 03, Revision B.04, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M.A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K.N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavaehari, J.B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
    106、J. B. Foresman and E. Frisch, Exploring Chemistry with Electronic Structure Methods, 2nd Edition, Gaussian Inc., Pittsbregh, 1996
    107、B. Delley, An all-electron numerical method for solving the local density functional forpolyatomic molecules. J. Chem. Phys., 1990, (92): 508-517
    108、B. Delley, From molecules to solids with the DMol3 approach. J. Chem. Phys., 2000, (113): 7756-7764
    109、DMol Version 960, Density Functional Theory electronic structure program, Copyright (c) 1996 by Molecular Simulations, Inc
    110、Guo B C, Wei S, Purnell J, Buzza S and Castleman A W. Metallo-Carbohedrenes [M_8C_(12)~+ (M=V, Zr, Hf and Ti)]: A Class of Stable Molecular Cluster Ions. Science. 1992 (256): 515-516
    111、Reddy B V, Khanna S N and Jena P. Electronic, magnetic, and geometric structure of metallo-carbohedrenes. Science. 1992 (258): 1640-1643
    112、Wang L S, Li S and Wu H B. Photoelectron Spectroscopy and Electronic Structure of Met-Car Ti_8C_(12). J. Phys. Chem. 1996 (100): 19211-19214
    113、Bethune D S, Kiang C H, de Vries M S, Gorman G, Savoy R, Vazquez J and Beyers R. Cobalt—catalysed growth of carbon nanotubes with single—atomic—layer walls. Nature. 1993 (363): 605-610
    114、Duncan M A. Synthesis and Characterization of Metal-Carbide Clusters in the Gas Phase. J. Cluster Sci. 1997 (8): 239
    115、Iijima S and Ichihashi T. Single-shell carbon nanotubcs of 1-nm diameter. Nature. 1993 (363): 603-605
    116、Roszak S and Balasubramanian K. Electronic Structure and Thermodynamic Properties of ScC_2. J.Phys. Chem. A. 1997 (101): 2666-2669
    117、Hendrickx M F A and Clima S. Adiabatic electron affimities of ScC2 and ScC3 evaluated by a multiconfigurational approach. Chem. Phys. Lett. 2004 (388): 284-289
    118、Zhai H -J, Wang L -S, Jena P, Gutsev G L and Bauschlicher C W. Competition between linear and cyclic structures in monochromium carbide clusters CrC_n~- and CrC_n (n= 2-8): A photoelectron spectroscopy and density functional study. J. Chem. Phys. 2004 (120): 8996-9008
    119、Nash B K, Rao B K and Jena P. Equilibrium structure and bonding of small iron-carbon clusters. J. Chem. Phys. 1996 (105): 11020-11023
    120、Hendrickx M F A and Clima S. An ab initio study of the equilibrium structure and bonding of FeC_2 and FeC_3 clusters and their anions. Chem. Phys. Lett. 2004 (388): 290-296
    121、Arbuznikov A V and Hendrickx M. Quantum-chemical study of the geometric and electronic structure of the CoC_2 molecule. Chem. Phys. Lett. 2004 (320): 575-581
    122、Tono K, Terasaki A, Ohta T and Kondow T. Geometric and electronic structures of V_2C_2~- and V_2C_2 studied by photoelectron spectroscopy and density-functional calculations. Chem. Phys. Lett. 2002 (351): 135-141
    123、Sumathi R and Hendrickx M. Quantum chemical calculations on the structure and electronic properties of TiC. Chem. Phys. Lett. 1998 (287): 496-502
    124、Reddy B V and Khanna S N. Metallocarbohedrenes: A New Class of Metal-Carbon Assemblies. J. Phys. Chem. 1994 (98): 9446-9449
    125、Li X and Wang L-S. Electronic structure and chemical bonding between the first row transition metals and C_2: A photoelectron spectroscopy study of MC (M=Sc, V, Cr, Mn, Fe, and Co). J. Chem. Phys. 1999 (111): 8389-8395
    126、Stratmann R E, Scuseria G E and Frisch M J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J. Chem. Phys. 1998 (109): 8218-8224
    127、Bauernschmitt R and Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem. Phys. Lett. 1996 (256): 454-464
    128、Casida M E, Jamorski C, Casida K C and Salahub D R. Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: Characterization and correction of the time-dependent local density approximation ionization threshold. J. Chem. Phys. 1998 (108): 4439-4449
    129、Hirata S, Lee T J and Head-Gordon M. Time-dependent density functional study on the electronic excitation energies of polycyclic aromatic hydrocarbon radical cations of naphthalene, anthracene, pyrene, and perylene. J. Chem. Phys. 1999 (111): 8904-8912
    130、Van Gisbergen S J A, Rosa A, Ricciardi G and Baerends E J. Time-dependent density functional calculations on the electronic absorption spectrum of free base porphin. J. Chem. Phys. 1999 (111): 2499-2506
    131、Rosa A, Baerends E J, van Gisbergen S J A, van Lenthe E, Groeneveld J A and Snijders J G. Electronic Spectra of M(CO)_6 (M=Cr, Mo, W) Revisited by a Relativistic TDDFT Approach. J. Am. Chem. Soc. 1999 (121): 10356-10365
    132、Bai Y L, Cheng X H, Cheng Y, Chen X R, Yang X D. Time-Dependent Local Density Approximation Calculations for Absorption Spectra of Small Carbon Clusters. Chin. Phys. Lett. 2004 (21): 2410-2413
    133、Broclawik E and Borowski T. The calculation of ESR parameters by density functional theory: the g- and A-tensors of Co(acacen). Chem. Phys. Lett. 2001 (399): 433-439
    134、Dai B, Deng K, Yang J and Zhu Q. Excited states of the 3d transition metal monoxides. J. Chem. Phys. 2003 (118): 9608-9613
    135、Ding X, Li Z, Yang J, Hou J G and Zhu Q. Adsorption energies of molecular oxygen on Au clusters. J. Chem. Phys. 2004 (120): 9594-9600
    136、Dai B, Deng K and Yang J. A theoretical study of the Y4O cluster. Chem. Phys. Lett. 2002 (364): 188-195
    137、Becke A. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. 1993 (98): 5648-5652
    138、Lee C, Yang W and Parr R. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988 (37): 785-789
    139、Miehlich B, Savin A, Stoll H and Preuss H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989 (157): 200-206
    140、Becke A D. Density-functional thermochemistry. Ⅲ. The role of exact exchange. J. Chem. Phys. J. Chem. Phys. 1993 (98): 5648-5652
    141、Hamprecht F A, Cohen A J, Tozer D J and Handy N C. Development and assessment of new exchange-correlation functionals. J. Chem. Phys. 1998 (109): 6264-6271
    142、Boese A D, Doltsinis N L, Handy N C and Sprik M. New generalized gradient approximation functionals. J. Chem. Phys. 2000 (112): 1670-1678
    143、Boese A D and Handy N C. A new parametrization of exchange-correlation generalized gradient approximation functionals. J. Chem. Phys. 2001 (114): 5497-5503
    144、Broclawik E and Borowski T. Time-dependent DFT study on electronic states of vanadium and molybdenum oxide molecules. Chem. Phys. Lett. 2001 (339): 433-437
    145、Legge F S, Nyberg G L and Peel J B. DFT Calculations for Cu-, Ag-, and Au-Containing Molecules. J. Phys. Chem. A 2001 (105): 7905-7916
    146、B. C. Guo, K. P. Kems, A. W. Castleman Jr. Ti_8C_(12)~+-Metallo-Carbohedrenes: A New Class of Molecular Clusters?. Science. 1992 (255): 1411-1413
    147、J. S. Pilgrim, M. A. Duncan. Metallo-carbohedrenes: chromium, iron, and molybdenum analogs. J. Am. Chem. Soc. 1993(115): 6958-6961
    148、M. -M. Rohmer, M. Benard, J. -M. poblet. Structure, reactivity, and growth pathways of metallocarbohedrenes m(8)c(12) and transition metal/carbon clusters and nanocrystals: a challenge to computational chemistry. Chem.Rev. 2000 (100): 495-542
    149、L.-S. Wang, X. Li. Vibrationally resolved photoelectron spectroscopy of the first row transition metal and C_3 clusters: MC (M=Sc, V, Cr, Mn, Fe, Co, and Ni). J. Chem. Phys. 2000 (112): 3602-3608
    150、YUAN Yong-Bo, DENG Kal-Ming, LIU Yu-Zhen, TANG Chun-Mei. Assignment of photoelectron spectra of MC_2 (M=V, Cr, Fe, and Co). Chin. Phys. Lett. 2006 (23): 1761-1764
    151、S. Roszak, D. Majumdar, K. Balasubramanian. Electronic structure and spectroscopic properties of electronic states of ScC_3 and ScC_3~-. J. Chem. Phys. 2002 (116): 10238-10246
    152、Z. Cao, Q. Zhang. Is the FeC3 cluster linear? Theoretical study of the equilibrium structure and bonding of FeC_3~-. INt. J. Quant. Chem. 2003 (93): 275-279
    153、M. F. A. Hendrickx, S. Clima. Adiabatic electron affinities of ScC_2 and SeC_3 evaluated by a multiconfigurational approach. Chem. Phys. Lett. 2004 (388): 284-289
    154、M. F. A. Hendrickx, S. Clima. An ab initio study of the equilibrium structure and bonding of FeC_2 and FeC_3 clusters and their anions. Chem. Phys. Lett. 2004 (388): 290-296
    155、M. V. Ryzhkov, A. L. Ivanovskii, B. T. Delley. Electronic structure and geometry optimization of nanoparticles Fe_2C, FeC_2, Fe_3C, FeC_3 and Fe_2C_2. Chem. Phys. Lett. 2005 (404): 400-408
    156、Xue-Bin Wang, Chuan-Fan Ding, and Lai-Sheng Wang. Vibrationally Resolved Photoelectron Spectra of TiC_x~- (x=2-5) Clusters. J. Phys. Chem. A. 1997 (101): 7699-7701
    157、Hack, M. D.; Maclagan, R. G.; Scuseria, G. E. An ab initio study of TiC: A comparison of different levels of theory including density functional methods. J.Chem. Phys. 1996 (104): 6628-6630
    158、Bauschlicher, C. W.; Siegbahn, P. E. M. Chem. Phys. Lett. 1984 (104): 331.
    159、R. Sumathi, M. Hendrickx. Density Functional and Complete Active Space Self-Consistent Field Investigations on the Strueture and Electronic Properties of TiC_x (x=2-4) Clusters. 1998 (102): 4883-4889
    160、Katz, R.N. High-temperature structural ceramics. Science. 1980 (208): 841-847
    161、Giovanni Meloni, Sean M. Sheehan, Michael J. Ferguson, and Daniel M. Neumark. Negative Ion Photoelectron Spectroscopy of SIN~-. J. Phys. Chem. A. 2004 (108): 9750-9754
    162、Dusza, J.; Sajgalik, P.; Bastl, Z.; Kavecansky, V.; Durisin, J. J. Mater.Sci. Lett. 1992 (11): 208
    163、Schmidt, H.; Nabert, G.; Ziegler, G.; Goretzki, H. Characterisation and surface chemistry of uncoated and coated silicon, nitride powders. J. Eur. Ceram. Soc. 1995 (15): 667-674
    164、Amaral, M.; Oliveira, F. J.; Belmonte, M.; Fernandes, A. J. S.; Costa, F. M.; Silva, R. F. Diamond and Diamond-like materials. Surf. Eng. 2003 (19): 410-416
    165、Tarasov, I.; Dybiec, M.; Ostapenko, S.; Torchynska, T.V. Metastable defects in Si3N4 layers accessed by scanning. Physica B: Condens. Matter 2003 (340): 1124-1128
    166、Paszkowicz, W.; Minikayev, R.; Piszora. P.; Knapp, M.; Bahtz, C.; Recio, J. M./ Marques, M.; Mori-Sanchez, P.; Gerward, L.; Jiang, J.Z. Thermal expansion of spinel-type Si_3N_4. Phys. Rev. B 2004 (69): 052103
    167、Zou, L. H.; Park, D. S.; Cho, B. U.; Huang, Y.; Kim, H.D. Characterization of grain alignment in Si3N4(w)/Si3N4 composites. Mater. Lett. 2004 (58): 1587-1582
    168、W. Jevons. Proc. R. Soc. 1913 (89): 187-193
    169、Saito, S.; Endo, Y.; Hirota, E. The microwave spectrum of the SiN(~2Σ~+) radical. J. Chem. Phys. 1983 (78): 6447-6450
    170、H. Ito, K. Suzuki, K. Kondow and K. Kuchitsu. An analysis of the B ~2Σ~+ - X ~2Σ~+ emission of SiN. Dependence of the electronic transition moment on the Si-N internuclear distance. Chem. Phys. Letters. 1993 (208): 328-334
    171、S.C. Foster, K. G. Lubic and T. Amano. The 2-0 band of the A~2Π_i←X~2Σ~+ system of SiN near 3.3μm. J. Chem. Phys. 1985 (82): 709-713
    172、C. Yamada and E. Hirota. The A(~2Π_i)-X(~2Σ~+) transition of the SiN radical by infrared diode laser spectroscopy J. Chem. Phys. 1985 (82): 2547-2552
    173、C. Yamada, E. Hirota, S. Yamamoto and S. Saito. The vibrational assignment for the A ~2Π2-X~2Σ~+ band system of the SiN radical: The 0-0 bands of ~(29)SiN and ~(30)SiN. J. Chem. Phys. 1988 (88): 46-51
    174、Peterson, K. A.; Woods, R.C. Ground state spectroscopic and thermodynamic properties of AlO~-, SiN~-, CP~-, BS~-, BO~-, and CN~- from M(?)ller-Plesset perturbation theory. J. Chem. Phys. 1989 (90): 7239-7250
    175、Cai, Z. L.; Martin, J. M. L.; Francois, J. P.; Gijbels, R. Ab initio study of the X~2Σ~+ and A ~2Π states of the SiN radical. Chem. Phys. Lett. 1996 (252): 398-404
    176、Cai, Z. L.; Martin, J. M. L.; Francois, J.P. Ab initio study of the electronic spectrum of the SiN radical. J. Mol. Spectrosc. 1998 (188): 27-36
    177、Singh, P. D.; Sanzovo, G. C.; Borin, A. C.; Ornellas, F. R. Mon. Not. R. The radiative association of Si and N atoms, C and O atoms, and C atoms and S~+ ions. Astron. Soc. 1999 (303): 235-238
    178、Kalcher, J. Phys. Chem. Chem. Phys. 2002 (4): 3311-3317
    179、Midda, S.; Das, A.K. Theoretical study of spectroscopic constants and molecular properties of diatomic anions using B3LYP method. J. Mol. Struct.: THEOCHEM 2003 (640): 183-189
    180、Midda, s.; Das, A.K. Molecular properties of selected diatomic molecules of astrophysical interest. Eur. Phys. J.D. 2003 (27): 109-113
    181、D. P. Chong, Local density studies of diatomic AB molecules, A, B=C, N, O, F, Si, P, S, and Cl. Chem. Phys. Lett. 1994 (220): 102-108
    182、L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople. Gaussian-2 theory for molecular energies of first- and second-row compounds. J. Chem. Phys. 1991 (94): 7221-7230
    183、C. F. Melius and P. Ho. Theoretical study of the thermochemistry of molecules in the silicon-nitrogen-hydrogen-fluorine system. J. Phys. Chem. 1991 (95): 1410-1419
    184、H. Chen, M. Krasawski, and G. Fitzgerald. Density functional pseudopotential studies of molecular geometries, vibrations, and binding energies. J. Chem. Phys. 1993 (98): 8710-8717
    185、Y. Yuan, K. Deng, Y. Liu, C. Tang, G. Lu, J. Yang, and X. Wang. A theoretical study on the excited states of MC_3(M=Sc, V, and Cr). 2006 (40): 243-246
    186、A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Palstra, A. P. Ramirez and A.R. Kortan. Superconductivity at 18K in Potassium-doped C60. Nature. 1991 (350): 600-601
    187、K. Holczer, O. Klein, S.-M. Huang, R.B. Kaner, K.-J. Fu, R.L.Whetten and F. Diederich. Alkali-fulleride superconductors: synthesis, composition and diamagnetic shielding. Science. 1991 (252): 1154-1157
    188、K.Tanigaki, T.W.Ebbesen, S.Saito, J.Mizuki, J.S.Tsai, Y.Kubo and S.Kuroshima. Superconductivity at 33 K in CsxRbyC_(60). Nature. 1991 (352): 222
    189、Heath,J.R.; O'Brien, S.C.; Zhang,Q.; Liu, Y.; Curl,R.F.; Kroto,H.W.; Tittel,F.K.; Smalley, R.E. Lanthanum complexes of spheroidal carbon shells. J.Am.Chem.Soc. 1985 (107): 7779-7780
    190、Guo, T.; Jin, C.; Smalley, R. E. Doping bucky; Formation of boron doped buckminsterfullerene. Doping bucky: formation and properties of boron-doped buckminsterfullerene. J.Phys.Chem. 1991 (95): 4948-4950
    191、Chai, V.; Guo, T.; Jin,C.; Haufler, R.E.; Chibanete, L.P.F.; Fure, I.; Wang, L.; Alford, J.M.; Smalley, R.E. Fullerenes with metals inside. J.Phys.Chem. 1991 (95): 7564-7568
    192、Pradeep,T.; Vijayakrishnan,V.; Santa, A.K.; Rao,C.N.R. Intreaction of nitrogen with fullerenes; Nitrogen derivatives of C_(60) and C_(70). J.Phys.Chem. 1991 (95): 10564-10565
    193、Christian,J.F.; Wan,Z.; Anderson, S.L. Nitrogen ion (N+) + C_(60) fullerene reactive scattering: substitution, charge transfer, and fragmentation. J.Phys.Chem. 1992 (96): 10597-10600
    194、N. Kurita, K.Kobayashi, H. Kumahora, K.Tago and K.Ozawa. Molecular structures, binding energies and electronic properties of dopyballs C_(59)X (X=B, N and S). Chem.Phys.Letters. 1992 (198): 95-99
    195、Clemmer, D.E.; Hunter, J.M.; Shellmov, K.B.; Jarrold, M.F. Physical and chemical evidence for metallofullerenes with metal atoms as part of the cage. Nature. 1994 (372): 248-250
    196、J. Averdung, H. Luftmann, I. Schlachter and J. Mattay. A Mass-Spectrometric and Quantumchemical Study. Tetrahedron. 1995 (51): 6977-6982
    197、Keshavarz-K,M.; Gonzalez,R.G.; Srdanov, G.; Srdanov, V.L.; Collins,T.G.; Hummelen,J.C.; Bellavia-Lund,C.; Pavlovich,J.; Wudl,F.; Holczer, K. Synthesis of hydroazafullerene C59HN, the parent hydroheterofullerene. Nature. 1996 (383): 147-150
    198、Hummelen, J.C.; Knight, B.; Pavlovieh, J.; Gonzalez, R.; Wudl, F. Isolation of the Heterofullerene C_(59)N as its Dimer (C_(59)N)_2. Science. 1995 (269): 1554-1556
    199、Nuber, B.;Hirsch, A. Chem.Commun. 1996 (12): 1421-1422
    200、Hirsch, A.; Nuber, B. Nitrogen Heterofullerenes. Acc. Chem. Res. 1999 (32): 795-804
    201、Kim, K.; Hauke, F.; Hirsch, A.; Boyd, P.D.; Carter, E.; Armstrong,R.; Lay, P.; Reed, C. Synthesis of the C_(59)N~+ Carbocation. A Monomeric Azafullerene Isoelectronic to C_(60). J.Am.Chem.Soc. (125): 4024-4025
    202、Xie, R-H.; Bryant, G. W.; Sun G.; Nicklaus, M. C.; Heringer, D.; Frauenheim, T.; Manaa, M. R.; Vedene H. Smith, Jr.; Araki, Y. and Osamu Ito. Excitations, optical absorption spectra, and optical excitonic gaps of heterofullerenes. I. C_(60), C_(59)N~+, and C_(48)N_(12): Theory and experiment. J. Chem. Phys. 2004 (120): 5133-5147
    203、J.Zhao, C.Zeng, X.Cheng, K.Wang, G.Wang, J.Yang, J.G.Hou, and Q.Zhu. Single C59N Molecule as a Molecular Rectifier. Phys. Rev. Lett. 2005 (95): 045502-1—045502-4
    204、B.P.Feuston, W. Andreoni, M. Parrinello and E. Clement. Electronic and vibrational properties of C60 at finite temperature from ab initio molecular dynamics. Phys. Rev. B. 1991 (44): 4056-4059
    205、G.E. Scuseria, Ab initio theoretical predictions of the equilibrium geometries of C_(60), C_(60)H_(60) and C_(60)F_(60). Chem. Phys. Letters. 1991 (176): 423-427
    206、H. W.Kroto, J.R. Heath, S.C.O'Brien, R.F. Curl and R.E.Smalley, C60: Buckminsterfullerene. Nature. 1985 (318): 162-163
    207、J.R.Heath, R.F.Curl, H.W.Kroto, S.C. O'Brien and R.E.Smalley, Comments Condens. Matter Phys. 1987 (13): 119-141
    208、R.D. Johnson, G. Meijer and D. S. Bethune. C60 has icosahedral symmetry. J. Am. Chem. Soc. 1990 (112): 8983-8984
    209、J.M.Hawkins, A.Meyer, T.A.Lewis, et al. Crystal Structure of Osmylated: Confirmation of the Soccer Ball Frame-work. Science. 1991 (252): 312-313
    210、F.Leclercg, P.Damay, M.Foukani, et al. Precise determination of the molecular geometry in fullerene C_(60) powder: A study of the structure factor by neutron scattering in a large momentum-transfer range. Phys. Rev. B. 1993 (48): 2748-2755
    211、Hedberg,L. Hedberg,D. S. Bethune, et al. Bond Lengths in Free Molecules of Buckminsterfullerene,C_(60) From Gas-Phase Electron-Diffraction. Science. 1991 (254): 410-412
    212、R.E.Hauer, L.S.Wang, L.P.F.Chibante, et al. Fullerene triplet state production and decay: R2PI probes of C_(60) and C_(70) in a supersonic beam. Chem. Phys. Lett. 1991 (179): 449-454
    213、W. Andreoni, A. Curioni, K. Holezer, K. Prassides, M. Keshavarz-K., J.-C. Hummelen, F. Wudl. Unconventional Bonding of Azafullerenes: Theory and Experiment. J. Am. Chem. Soc. 1996 (118): 11335-11336

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700